
Staging with Class

POPL 2022

Ningning Xie Matthew Pickering Andres Löh Nicolas Wu Jeremy Yallop Meng Wang

1

Multi-stage programming

Code

input

output

generate efficient code with predictable performance

1

Multi-stage programming

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

generate efficient code with predictable performance

2

Quotations and splices

2

Quotations and splices

Code: program fragment in a future stage

2

Quotations and splices

Code: program fragment in a future stage

2

Quotations and splices

Quotation
a representation of the expression as
program fragment in a future stage

e :: Int <e> :: Code Int ⟹

Code: program fragment in a future stage

2

Quotations and splices

Quotation
a representation of the expression as
program fragment in a future stage

Splice
extracts the expression from its

representation

e :: Int <e> :: Code Int ⟹ e :: Code Int $e :: Int ⟹

Code: program fragment in a future stage

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

nk

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

k n

3

Multi-stage programming: example

Code

input

output

Code

input

outputCode

input

stage 0 stage 1

staging

power :: Int -> Int -> Int
power 0 n = 1
power k n = n * power (k – 1) n

nk

powerFive :: Int -> Int
powerFive n = power 5 n

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

k n

qpowerFive n = n * n * n * n * n * 1

4

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

4

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)⟶

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)⟶

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)⟶

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)

n * $(qpower (5 – 1) <n>)

⟶

⟶

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)

n * $(qpower (5 – 1) <n>)

⟶

⟶

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)

n * $(qpower (5 – 1) <n>)

n * $(qpower 4 <n>)

⟶

⟶

⟶

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)

n * $(qpower (5 – 1) <n>)

n * $(qpower 4 <n>)

⟶

⟶

⟶

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)

n * $(qpower (5 – 1) <n>)

n * $(qpower 4 <n>)

⟶

⟶

⟶

⟶

5

Code generation

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

n * n * n * n * n * 1

⟶ $(<$(<n>) * $(qpower (5 – 1) <n>)>)

$(<n>) * $(qpower (5 – 1) <n>)

n * $(qpower (5 – 1) <n>)

n * $(qpower 4 <n>)

⟶

⟶

⟶

⟶

……⟶

6

But…

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

6

But…

qpower :: Int -> Code Int -> Code Int
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Int -> Int
qpowerFive n = $(qpower 5 <n>)

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

rejected:
No instance for (Num a) arising from a use of 'qpower’
In the expression: qpower 5 <n>

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

rejected:
No instance for (Num a) arising from a use of 'qpower’
In the expression: qpower 5 <n>

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

rejected:
No instance for (Num a) arising from a use of 'qpower’
In the expression: qpower 5 <n>

<latexit sha1_base64="ghnHuuFtWB+7YHi9cXTv0v/UXkk=">AAACAHicbVDLSsNAFJ3UV42vqAsXboJFcFUSEXVn0Y3LCvYBTSiTyU07dPJgZiKWkI2/4saFIm79DHf+jZM0C209MHA4577meAmjQlrWt1ZbWl5ZXauv6xubW9s7xu5eV8QpJ9AhMYt538MCGI2gI6lk0E844NBj0PMmN4XfewAuaBzdy2kCbohHEQ0owVJJQ+PAKWdkHPzckfCoRmRXua4PjYbVtEqYi8SuSANVaA+NL8ePSRpCJAnDQgxsK5FuhrmkhEGuO6mABJMJHsFA0QiHINysXJ6bx0rxzSDm6kXSLNXfHRkOhZiGnqoMsRyLea8Q//MGqQwu3YxGSSohIrNFQcpMGZtFGqZPORDJpopgwqm61SRjzDGRKrMiBHv+y4uke9q0z5v23VmjdV3FUUeH6AidIBtdoBa6RW3UQQTl6Bm9ojftSXvR3rWPWWlNq3r20R9onz/aBpaO</latexit>

?

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

rejected:
No instance for (Num a) arising from a use of 'qpower’
In the expression: qpower 5 <n>

<latexit sha1_base64="ghnHuuFtWB+7YHi9cXTv0v/UXkk=">AAACAHicbVDLSsNAFJ3UV42vqAsXboJFcFUSEXVn0Y3LCvYBTSiTyU07dPJgZiKWkI2/4saFIm79DHf+jZM0C209MHA4577meAmjQlrWt1ZbWl5ZXauv6xubW9s7xu5eV8QpJ9AhMYt538MCGI2gI6lk0E844NBj0PMmN4XfewAuaBzdy2kCbohHEQ0owVJJQ+PAKWdkHPzckfCoRmRXua4PjYbVtEqYi8SuSANVaA+NL8ePSRpCJAnDQgxsK5FuhrmkhEGuO6mABJMJHsFA0QiHINysXJ6bx0rxzSDm6kXSLNXfHRkOhZiGnqoMsRyLea8Q//MGqQwu3YxGSSohIrNFQcpMGZtFGqZPORDJpopgwqm61SRjzDGRKrMiBHv+y4uke9q0z5v23VmjdV3FUUeH6AidIBtdoBa6RW3UQQTl6Bm9ojftSXvR3rWPWWlNq3r20R9onz/aBpaO</latexit>

?

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

rejected:
No instance for (Num a) arising from a use of 'qpower’
In the expression: qpower 5 <n>

<latexit sha1_base64="ghnHuuFtWB+7YHi9cXTv0v/UXkk=">AAACAHicbVDLSsNAFJ3UV42vqAsXboJFcFUSEXVn0Y3LCvYBTSiTyU07dPJgZiKWkI2/4saFIm79DHf+jZM0C209MHA4577meAmjQlrWt1ZbWl5ZXauv6xubW9s7xu5eV8QpJ9AhMYt538MCGI2gI6lk0E844NBj0PMmN4XfewAuaBzdy2kCbohHEQ0owVJJQ+PAKWdkHPzckfCoRmRXua4PjYbVtEqYi8SuSANVaA+NL8ePSRpCJAnDQgxsK5FuhrmkhEGuO6mABJMJHsFA0QiHINysXJ6bx0rxzSDm6kXSLNXfHRkOhZiGnqoMsRyLea8Q//MGqQwu3YxGSSohIrNFQcpMGZtFGqZPORDJpopgwqm61SRjzDGRKrMiBHv+y4uke9q0z5v23VmjdV3FUUeH6AidIBtdoBa6RW3UQQTl6Bm9ojftSXvR3rWPWWlNq3r20R9onz/aBpaO</latexit>

?

7

Multi-stage programming and type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

rejected:
No instance for (Num a) arising from a use of 'qpower’
In the expression: qpower 5 <n>

<latexit sha1_base64="ghnHuuFtWB+7YHi9cXTv0v/UXkk=">AAACAHicbVDLSsNAFJ3UV42vqAsXboJFcFUSEXVn0Y3LCvYBTSiTyU07dPJgZiKWkI2/4saFIm79DHf+jZM0C209MHA4577meAmjQlrWt1ZbWl5ZXauv6xubW9s7xu5eV8QpJ9AhMYt538MCGI2gI6lk0E844NBj0PMmN4XfewAuaBzdy2kCbohHEQ0owVJJQ+PAKWdkHPzckfCoRmRXua4PjYbVtEqYi8SuSANVaA+NL8ePSRpCJAnDQgxsK5FuhrmkhEGuO6mABJMJHsFA0QiHINysXJ6bx0rxzSDm6kXSLNXfHRkOhZiGnqoMsRyLea8Q//MGqQwu3YxGSSohIrNFQcpMGZtFGqZPORDJpopgwqm61SRjzDGRKrMiBHv+y4uke9q0z5v23VmjdV3FUUeH6AidIBtdoBa6RW3UQQTl6Bm9ojftSXvR3rWPWWlNq3r20R9onz/aBpaO</latexit>

?

8

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

8

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

8

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

8

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

A solid theoretical foundation for integrating type classes into multi-
stage programs

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

8

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

A solid theoretical foundation for integrating type classes into multi-
stage programs

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Easy to implement and stay close to existing implementations

8

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

A solid theoretical foundation for integrating type classes into multi-
stage programs

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Easy to implement and stay close to existing implementations

9

How does multi-stage programming ensure type safety?

Code

input

outputCode

input

stage 0 stage 1

staging

9

How does multi-stage programming ensure type safety?

Code

input

outputCode

input

stage 0 stage 1

staging

qpowerN :: Int -> Int
qpowerN n = $(qpower n <n>)

9

How does multi-stage programming ensure type safety?

Code

input

outputCode

input

stage 0 stage 1

staging

qpowerN :: Int -> Int
qpowerN n = $(qpower n <n>)

n

9

How does multi-stage programming ensure type safety?

Code

input

outputCode

input

stage 0 stage 1

staging

qpowerN :: Int -> Int
qpowerN n = $(qpower n <n>)

n

n * $(qpower (n – 1) <n>)⟶
……⟶

9

How does multi-stage programming ensure type safety?

Code

input

outputCode

input

stage 0 stage 1

staging

qpowerN :: Int -> Int
qpowerN n = $(qpower n <n>)

n

n * $(qpower (n – 1) <n>)⟶
……⟶

9

How does multi-stage programming ensure type safety?

Code

input

outputCode

input

stage 0 stage 1

staging

qpowerN :: Int -> Int
qpowerN n = $(qpower n <n>)

n

n * $(qpower (n – 1) <n>)⟶
……⟶

rejected!

10

Well-stagedness: the level of an expression

Splice
extracts the expression from its

representation

e :: Int <e> :: Code Int ⟹ e :: Code Int $e :: Int ⟹

Quotation
a representation of the expression as
program fragment in a future stage

10

Well-stagedness: the level of an expression

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

10

Well-stagedness: the level of an expression

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

10

Well-stagedness: the level of an expression

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

x : int

10

Well-stagedness: the level of an expression

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

x : int

10

Well-stagedness: the level of an expression

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr type

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

x : int

11

Well-stagedness: the level of an expression

level: evaluation order of expressions

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr type

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

x : int

11

Well-stagedness: the level of an expression

level: evaluation order of expressions

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr type

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
=+1 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

x : int

11

Well-stagedness: the level of an expression

level: evaluation order of expressions

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr type

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
=+1 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

leveled
x : int

11

Well-stagedness: the level of an expression

level: evaluation order of expressions

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr type

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
=+1 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

leveled
x : (int , 0)

12

Well-stagedness: the level restriction

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
=+1 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

level: evaluation order of expressions

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr type

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

leveled
x : (int , 0)

The level restriction: each variable is used only at the
level in which it is bound

12

Well-stagedness: the level restriction

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
=+1 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

level: evaluation order of expressions

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr type

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

leveled
x : (int , 0)

The level restriction: each variable is used only at the
level in which it is bound

qpowerN :: Int -> Int
qpowerN n = $(qpower n <n>)

12

Well-stagedness: the level restriction

Splice
extracts the expression from its

representation

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
=+1 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

level: evaluation order of expressions

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

context expr type

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Quotation
a representation of the expression as
program fragment in a future stage

leveled
x : (int , 0)

The level restriction: each variable is used only at the
level in which it is bound

qpowerN :: Int -> Int
qpowerN n = $(qpower n <n>)rejected!

13

Is the problem with qpower well-stageness?

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

The level restriction: each variable is used only at the
level in which it is bound

well-staged?

13

Is the problem with qpower well-stageness?

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

The level restriction: each variable is used only at the
level in which it is bound

well-staged?
<latexit sha1_base64="tChhUl+lxHXfGpAKVx8vl5UdtZ4=">AAACBHicbVDLSsNAFJ3UV42vqMtugkVwVRIRdWfRjcsK9gFtKJPpxA6dTMLMjVhCFm78FTcuFHHrR7jzb5ykWWjrgYHDOfc1x485U+A430ZlaXllda26bm5sbm3vWLt7HRUlktA2iXgkez5WlDNB28CA014sKQ59Trv+5Cr3u/dUKhaJW5jG1AvxnWABIxi0NLRq5qAYkmqdCsDZAOiDnpNeZObQqjsNp4C9SNyS1FGJ1tD6GowikoR6EOFYqb7rxOClWAIjnGbmIFE0xmSiV/U1FTikykuL/Zl9qJWRHURSPwF2of7uSHGo1DT0dWWIYazmvVz8z+snEJx7KRNxAlSQ2aIg4TZEdp6IPWKSEuBTTTCRTN9qkzGWmIDOLQ/Bnf/yIukcN9zThntzUm9elnFUUQ0doCPkojPURNeohdqIoEf0jF7Rm/FkvBjvxsestGKUPfvoD4zPHwdemFg=</latexit>

?
<latexit sha1_base64="tChhUl+lxHXfGpAKVx8vl5UdtZ4=">AAACBHicbVDLSsNAFJ3UV42vqMtugkVwVRIRdWfRjcsK9gFtKJPpxA6dTMLMjVhCFm78FTcuFHHrR7jzb5ykWWjrgYHDOfc1x485U+A430ZlaXllda26bm5sbm3vWLt7HRUlktA2iXgkez5WlDNB28CA014sKQ59Trv+5Cr3u/dUKhaJW5jG1AvxnWABIxi0NLRq5qAYkmqdCsDZAOiDnpNeZObQqjsNp4C9SNyS1FGJ1tD6GowikoR6EOFYqb7rxOClWAIjnGbmIFE0xmSiV/U1FTikykuL/Zl9qJWRHURSPwF2of7uSHGo1DT0dWWIYazmvVz8z+snEJx7KRNxAlSQ2aIg4TZEdp6IPWKSEuBTTTCRTN9qkzGWmIDOLQ/Bnf/yIukcN9zThntzUm9elnFUUQ0doCPkojPURNeohdqIoEf0jF7Rm/FkvBjvxsestGKUPfvoD4zPHwdemFg=</latexit>

?

13

Is the problem with qpower well-stageness?

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

The level restriction: each variable is used only at the
level in which it is bound

well-staged?
<latexit sha1_base64="tChhUl+lxHXfGpAKVx8vl5UdtZ4=">AAACBHicbVDLSsNAFJ3UV42vqMtugkVwVRIRdWfRjcsK9gFtKJPpxA6dTMLMjVhCFm78FTcuFHHrR7jzb5ykWWjrgYHDOfc1x485U+A430ZlaXllda26bm5sbm3vWLt7HRUlktA2iXgkez5WlDNB28CA014sKQ59Trv+5Cr3u/dUKhaJW5jG1AvxnWABIxi0NLRq5qAYkmqdCsDZAOiDnpNeZObQqjsNp4C9SNyS1FGJ1tD6GowikoR6EOFYqb7rxOClWAIjnGbmIFE0xmSiV/U1FTikykuL/Zl9qJWRHURSPwF2of7uSHGo1DT0dWWIYazmvVz8z+snEJx7KRNxAlSQ2aIg4TZEdp6IPWKSEuBTTTCRTN9qkzGWmIDOLQ/Bnf/yIukcN9zThntzUm9elnFUUQ0doCPkojPURNeohdqIoEf0jF7Rm/FkvBjvxsestGKUPfvoD4zPHwdemFg=</latexit>

?
<latexit sha1_base64="tChhUl+lxHXfGpAKVx8vl5UdtZ4=">AAACBHicbVDLSsNAFJ3UV42vqMtugkVwVRIRdWfRjcsK9gFtKJPpxA6dTMLMjVhCFm78FTcuFHHrR7jzb5ykWWjrgYHDOfc1x485U+A430ZlaXllda26bm5sbm3vWLt7HRUlktA2iXgkez5WlDNB28CA014sKQ59Trv+5Cr3u/dUKhaJW5jG1AvxnWABIxi0NLRq5qAYkmqdCsDZAOiDnpNeZObQqjsNp4C9SNyS1FGJ1tD6GowikoR6EOFYqb7rxOClWAIjnGbmIFE0xmSiV/U1FTikykuL/Zl9qJWRHURSPwF2of7uSHGo1DT0dWWIYazmvVz8z+snEJx7KRNxAlSQ2aIg4TZEdp6IPWKSEuBTTTCRTN9qkzGWmIDOLQ/Bnf/yIukcN9zThntzUm9elnFUUQ0doCPkojPURNeohdqIoEf0jF7Rm/FkvBjvxsestGKUPfvoD4zPHwdemFg=</latexit>

?

13

Is the problem with qpower well-stageness?

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>) type classes

The level restriction: each variable is used only at the
level in which it is bound

well-staged?
<latexit sha1_base64="tChhUl+lxHXfGpAKVx8vl5UdtZ4=">AAACBHicbVDLSsNAFJ3UV42vqMtugkVwVRIRdWfRjcsK9gFtKJPpxA6dTMLMjVhCFm78FTcuFHHrR7jzb5ykWWjrgYHDOfc1x485U+A430ZlaXllda26bm5sbm3vWLt7HRUlktA2iXgkez5WlDNB28CA014sKQ59Trv+5Cr3u/dUKhaJW5jG1AvxnWABIxi0NLRq5qAYkmqdCsDZAOiDnpNeZObQqjsNp4C9SNyS1FGJ1tD6GowikoR6EOFYqb7rxOClWAIjnGbmIFE0xmSiV/U1FTikykuL/Zl9qJWRHURSPwF2of7uSHGo1DT0dWWIYazmvVz8z+snEJx7KRNxAlSQ2aIg4TZEdp6IPWKSEuBTTTCRTN9qkzGWmIDOLQ/Bnf/yIukcN9zThntzUm9elnFUUQ0doCPkojPURNeohdqIoEf0jF7Rm/FkvBjvxsestGKUPfvoD4zPHwdemFg=</latexit>

?
<latexit sha1_base64="tChhUl+lxHXfGpAKVx8vl5UdtZ4=">AAACBHicbVDLSsNAFJ3UV42vqMtugkVwVRIRdWfRjcsK9gFtKJPpxA6dTMLMjVhCFm78FTcuFHHrR7jzb5ykWWjrgYHDOfc1x485U+A430ZlaXllda26bm5sbm3vWLt7HRUlktA2iXgkez5WlDNB28CA014sKQ59Trv+5Cr3u/dUKhaJW5jG1AvxnWABIxi0NLRq5qAYkmqdCsDZAOiDnpNeZObQqjsNp4C9SNyS1FGJ1tD6GowikoR6EOFYqb7rxOClWAIjnGbmIFE0xmSiV/U1FTikykuL/Zl9qJWRHURSPwF2of7uSHGo1DT0dWWIYazmvVz8z+snEJx7KRNxAlSQ2aIg4TZEdp6IPWKSEuBTTTCRTN9qkzGWmIDOLQ/Bnf/yIukcN9zThntzUm9elnFUUQ0doCPkojPURNeohdqIoEf0jF7Rm/FkvBjvxsestGKUPfvoD4zPHwdemFg=</latexit>

?

14

Well-staged type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

14

Well-staged type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

14

Well-staged type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration

14

Well-staged type classes

qpower :: NumDict a -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) dNum $(n) $(qpower dNum (k – 1)) n >

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower dNum 5 <n>)

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

dictionary-passing elaboration
well-staged?

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

15

Key idea: staged type class constraints

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

15

Key idea: staged type class constraints

unstaged staged

Int Code Int

Num a CodeC (Num a)

15

Key idea: staged type class constraints

unstaged staged

Int Code Int

Num a CodeC (Num a)

15

Key idea: staged type class constraints

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

qpower :: Code (NumDict a) -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) $(dNum) $(n) $(qpower dNum (k – 1)) n>

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower <dNum> 5 <n>)

dictionary-passing elaboration

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

qpower :: Code (NumDict a) -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) $(dNum) $(n) $(qpower dNum (k – 1)) n>

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower <dNum> 5 <n>)

dictionary-passing elaboration

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

qpower :: Code (NumDict a) -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) $(dNum) $(n) $(qpower dNum (k – 1)) n>

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower <dNum> 5 <n>)

dictionary-passing elaboration

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

qpower :: Code (NumDict a) -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) $(dNum) $(n) $(qpower dNum (k – 1)) n>

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower <dNum> 5 <n>)

dictionary-passing elaboration

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

qpower :: Code (NumDict a) -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) $(dNum) $(n) $(qpower dNum (k – 1)) n>

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower <dNum> 5 <n>)

dictionary-passing elaboration

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

qpower :: Code (NumDict a) -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) $(dNum) $(n) $(qpower dNum (k – 1)) n>

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower <dNum> 5 <n>)

dictionary-passing elaboration

15

Key idea: staged type class constraints

qpower :: CodeC (Num a) => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1)) n>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)

qpower :: Code (NumDict a) -> Int -> Code a -> Code a
qpower dNum 0 n = <1>
qpower dNum k n = < (*) $(dNum) $(n) $(qpower dNum (k – 1)) n>

qpowerFive :: NumDict a -> a -> a
qpowerFive dNum n = $(qpower <dNum> 5 <n>) well-staged!

dictionary-passing elaboration

16

Constraint resolution

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

16

Constraint resolution

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

16

Constraint resolution

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

16

Constraint resolution

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

16

Constraint resolution

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

•; � =̀ 41 w2CG 42 : g , � =̀ 41 : g ^ � =̀ 42 : g
^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the ex-
pression 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if � =̀ 4 : g then
•

=̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ `

pgm2 : f{ dgm2, and ⇥{ ⇥, and • ` f{ g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

ev : (⇠,=) 2 �

� |== ⇠ { ev

ev : (⇠,=) 2 �

� |== ⇠ { ev

dNum : (Num a, 0) 2 �

� |=0 Num a { dNum

dNum : Num a 2 �

� |= Num a { dNum

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

17

Level-indexed constraint resolution

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : (⇠,=) 2 �

� |== ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

•; � =̀ 41 w2CG 42 : g , � =̀ 41 : g ^ � =̀ 42 : g
^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the ex-
pression 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if � =̀ 4 : g then
•

=̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ `

pgm2 : f{ dgm2, and ⇥{ ⇥, and • ` f{ g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

ev : (⇠,=) 2 �

� |== ⇠ { ev

ev : (⇠,=) 2 �

� |== ⇠ { ev

dNum : (Num a, 0) 2 �

� |=0 Num a { dNum

dNum : Num a 2 �

� |= Num a { dNum

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

17

Level-indexed constraint resolution

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : (⇠,=) 2 �

� |== ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

•; � =̀ 41 w2CG 42 : g , � =̀ 41 : g ^ � =̀ 42 : g
^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the ex-
pression 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if � =̀ 4 : g then
•

=̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ `

pgm2 : f{ dgm2, and ⇥{ ⇥, and • ` f{ g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

ev : (⇠,=) 2 �

� |== ⇠ { ev

ev : (⇠,=) 2 �

� |== ⇠ { ev

dNum : (Num a, 0) 2 �

� |=0 Num a { dNum

dNum : Num a 2 �

� |= Num a { dNum

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

17

Level-indexed constraint resolution

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : (⇠,=) 2 �

� |== ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
� =̀ _J)K { � JK

| q
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

•; � =̀ 41 w2CG 42 : g , � =̀ 41 : g ^ � =̀ 42 : g
^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the ex-
pression 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if � =̀ 4 : g then
•

=̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ `

pgm2 : f{ dgm2, and ⇥{ ⇥, and • ` f{ g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

ev : (⇠,=) 2 �

� |== ⇠ { ev

ev : (⇠,=) 2 �

� |== ⇠ { ev

dNum : (Num a, 0) 2 �

� |=0 Num a { dNum

dNum : Num a 2 �

� |= Num a { dNum

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

17

Level-indexed constraint resolution

incr :: Num a => a -> a
incr x = x + 1

incr :: NumDict a -> a ->a
incr dNum x = (+) dNum x

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : (⇠,=) 2 �

� |== ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
� =̀ _J)K { � JK

| q
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
� =̀ _J)K { � JK

| q
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

•; � =̀ 41 w2CG 42 : g , � =̀ 41 : g ^ � =̀ 42 : g
^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the ex-
pression 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if � =̀ 4 : g then
•

=̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ `

pgm2 : f{ dgm2, and ⇥{ ⇥, and • ` f{ g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

ev : (⇠,=) 2 �

� |== ⇠ { ev

ev : (⇠,=) 2 �

� |== ⇠ { ev

dNum : (Num a, 0) 2 �

� |=0 Num a { dNum

dNum : Num a 2 �

� |= Num a { dNum

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

18

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

A solid theoretical foundation for integrating type classes into multi-
stage programs

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

easy to implement and stay close to existing implementations

18

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

A solid theoretical foundation for integrating type classes into multi-
stage programs

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

easy to implement and stay close to existing implementations

19

How to evaluate staged programs?

19

How to evaluate staged programs?

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

19

How to evaluate staged programs?

level

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

19

How to evaluate staged programs?

level 0

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

19

How to evaluate staged programs?

level 0 1

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

19

How to evaluate staged programs?

level 0 1 0

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

19

How to evaluate staged programs?

⟶
level 0 1 0

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

the spliced expression

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

the spliced expression

type of s (so the type of e3 is Code 𝜏)

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

the spliced expression

level of the e3 (so level of s is 0 + 1 = 1)

type of s (so the type of e3 is Code 𝜏)

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

the spliced expression

the type context

level of the e3 (so level of s is 0 + 1 = 1)

type of s (so the type of e3 is Code 𝜏)

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

the spliced expression

the type context

level of the e3 (so level of s is 0 + 1 = 1)

type of s (so the type of e3 is Code 𝜏)

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

level of the quotation

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

20

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

the spliced expression

the type context

level of the e3 (so level of s is 0 + 1 = 1)

type of s (so the type of e3 is Code 𝜏)

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

level of the quotation
a splice is bound to the
innermost surrounding
quotation at the same level

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

21

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

21

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Straightforward evaluation

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

21

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Straightforward evaluation

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:17

value E F 8 | _x : g .4 | ⇤a.4 | J4KqE

splice environment value qE F • | qE,� =̀ B : g = E

[qE]4 inserts splices in qE back into 4 .
[•]4 = 4
[qE,� =̀ B : g = J4 0KqE

0]4 = [qE] (4 [B 7! [qE
0
]4 0])

dgm1 �! dgm2 (Program reduction)
����������

D �! D
0

def D; dgm �! def D 0; dgm

������������

def k : g = E ; dgm �! dgm[k 7! E]

�����������
4 �! 4 0

4 : g �! 4 0 : g
������������

S �! S
0

spdef S; dgm �! spdef S0; dgm

�������������

spdef � `
= B : g = J4KqE ; dgm �! dgm[B 7! ([qE]4)]

D1 �! D2 (De�nition reduction)
������

4 �! 4 0

k : g = 4 �! k : g = 4 0

S1 �! S2 (Splice de�nition reduction)
��������

4 �! 4 0

� `
= B : g = 4 �! � `

= B : g = 4 0

41 �! 42 (Reduction)�������

(_x : g .41) 42 �! 41 [x 7! 42]

��������

(⇤a.4) g �! 4 [a 7! g]
������

41 �! 4 01
41 42 �! 4 01 42

�������
4 �! 4 0

4 g �! 4 0 g

�������
q �! q 0

J4Kq �! J4Kq0

q1 �! q2 (Splice environment reduction)
���������

q �! q 0

q,� `
= B : g = 4 �! q 0,� `

= B : g = 4

���������
4 �! 4 0

qE,� `
= B : g = 4 �! qE,� `

= B : g = 4 0

Fig. 5. Values and dynamic semantics in � JK

Essentially, � =̀ B : g = J4K• corresponds to the expression $J4K in the source level, whose splicing
result is bound to B . The position of B inside dgm indicates where the source program $J4K was
originally found, and by substituting B with 4 we successfully insert the splicing result back into
that position. Rule ������������� deals with the more general case where qE can be non-empty,
which corresponds to nested splices, i.e., the source expression 4 (as in $J4K) may itself contain more
splices, and those splices (of the corresponding level, in this case �1) are re�ected as the splice
environment qE associated to J4KqE . In this case, we need to �rst insert those splice de�nitions back
into the expression, i.e., as [qE]4 , and then we conclude by substituting B with [qE]4 .

After we evaluate all de�nitions and splice de�nitions, we can then start evaluating the expression
(rule �����������). Expression reductions (41 �! 42) are mostly standard. Rule ������� uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule �������, which says that to evaluate J4Kq , we leave 4 as is, and all we need to do is
to evaluate q , which simply evaluates all expressions it binds (rules ��������� and ���������).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

21

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Straightforward evaluation

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:17

value E F 8 | _x : g .4 | ⇤a.4 | J4KqE

splice environment value qE F • | qE,� =̀ B : g = E

[qE]4 inserts splices in qE back into 4 .
[•]4 = 4
[qE,� =̀ B : g = J4 0KqE

0]4 = [qE] (4 [B 7! [qE
0
]4 0])

dgm1 �! dgm2 (Program reduction)
����������

D �! D
0

def D; dgm �! def D 0; dgm

������������

def k : g = E ; dgm �! dgm[k 7! E]

�����������
4 �! 4 0

4 : g �! 4 0 : g
������������

S �! S
0

spdef S; dgm �! spdef S0; dgm

�������������

spdef � `
= B : g = J4KqE ; dgm �! dgm[B 7! ([qE]4)]

D1 �! D2 (De�nition reduction)
������

4 �! 4 0

k : g = 4 �! k : g = 4 0

S1 �! S2 (Splice de�nition reduction)
��������

4 �! 4 0

� `
= B : g = 4 �! � `

= B : g = 4 0

41 �! 42 (Reduction)�������

(_x : g .41) 42 �! 41 [x 7! 42]

��������

(⇤a.4) g �! 4 [a 7! g]
������

41 �! 4 01
41 42 �! 4 01 42

�������
4 �! 4 0

4 g �! 4 0 g

�������
q �! q 0

J4Kq �! J4Kq0

q1 �! q2 (Splice environment reduction)
���������

q �! q 0

q,� `
= B : g = 4 �! q 0,� `

= B : g = 4

���������
4 �! 4 0

qE,� `
= B : g = 4 �! qE,� `

= B : g = 4 0

Fig. 5. Values and dynamic semantics in � JK

Essentially, � =̀ B : g = J4K• corresponds to the expression $J4K in the source level, whose splicing
result is bound to B . The position of B inside dgm indicates where the source program $J4K was
originally found, and by substituting B with 4 we successfully insert the splicing result back into
that position. Rule ������������� deals with the more general case where qE can be non-empty,
which corresponds to nested splices, i.e., the source expression 4 (as in $J4K) may itself contain more
splices, and those splices (of the corresponding level, in this case �1) are re�ected as the splice
environment qE associated to J4KqE . In this case, we need to �rst insert those splice de�nitions back
into the expression, i.e., as [qE]4 , and then we conclude by substituting B with [qE]4 .

After we evaluate all de�nitions and splice de�nitions, we can then start evaluating the expression
(rule �����������). Expression reductions (41 �! 42) are mostly standard. Rule ������� uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule �������, which says that to evaluate J4Kq , we leave 4 as is, and all we need to do is
to evaluate q , which simply evaluates all expressions it binds (rules ��������� and ���������).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

21

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Straightforward evaluation

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Opaque quotations

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:17

value E F 8 | _x : g .4 | ⇤a.4 | J4KqE

splice environment value qE F • | qE,� =̀ B : g = E

[qE]4 inserts splices in qE back into 4 .
[•]4 = 4
[qE,� =̀ B : g = J4 0KqE

0]4 = [qE] (4 [B 7! [qE
0
]4 0])

dgm1 �! dgm2 (Program reduction)
����������

D �! D
0

def D; dgm �! def D 0; dgm

������������

def k : g = E ; dgm �! dgm[k 7! E]

�����������
4 �! 4 0

4 : g �! 4 0 : g
������������

S �! S
0

spdef S; dgm �! spdef S0; dgm

�������������

spdef � `
= B : g = J4KqE ; dgm �! dgm[B 7! ([qE]4)]

D1 �! D2 (De�nition reduction)
������

4 �! 4 0

k : g = 4 �! k : g = 4 0

S1 �! S2 (Splice de�nition reduction)
��������

4 �! 4 0

� `
= B : g = 4 �! � `

= B : g = 4 0

41 �! 42 (Reduction)�������

(_x : g .41) 42 �! 41 [x 7! 42]

��������

(⇤a.4) g �! 4 [a 7! g]
������

41 �! 4 01
41 42 �! 4 01 42

�������
4 �! 4 0

4 g �! 4 0 g

�������
q �! q 0

J4Kq �! J4Kq0

q1 �! q2 (Splice environment reduction)
���������

q �! q 0

q,� `
= B : g = 4 �! q 0,� `

= B : g = 4

���������
4 �! 4 0

qE,� `
= B : g = 4 �! qE,� `

= B : g = 4 0

Fig. 5. Values and dynamic semantics in � JK

Essentially, � =̀ B : g = J4K• corresponds to the expression $J4K in the source level, whose splicing
result is bound to B . The position of B inside dgm indicates where the source program $J4K was
originally found, and by substituting B with 4 we successfully insert the splicing result back into
that position. Rule ������������� deals with the more general case where qE can be non-empty,
which corresponds to nested splices, i.e., the source expression 4 (as in $J4K) may itself contain more
splices, and those splices (of the corresponding level, in this case �1) are re�ected as the splice
environment qE associated to J4KqE . In this case, we need to �rst insert those splice de�nitions back
into the expression, i.e., as [qE]4 , and then we conclude by substituting B with [qE]4 .

After we evaluate all de�nitions and splice de�nitions, we can then start evaluating the expression
(rule �����������). Expression reductions (41 �! 42) are mostly standard. Rule ������� uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule �������, which says that to evaluate J4Kq , we leave 4 as is, and all we need to do is
to evaluate q , which simply evaluates all expressions it binds (rules ��������� and ���������).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

21

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

22

Key idea: splice environments

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

23

Negative levels and top-level splice definitions

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

23

Negative levels and top-level splice definitions

;

61:10 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

top-level splices. Since splices of negative levels are exactly those expressions that are evaluated at
compile-time, we lift the corresponding splice environments to top-level as splice de�nitions

spdef • `
�1 B : g = 43

and put them before the rest of the program. This also gives meaning to compile-time evaluation in
our formalism, where it is modeled using top-level splice de�nitions, whose evaluation happens
before the rest of the program. We might also imagine a post-elaboration process which partially
evaluates a program to a residual by computing and removing these splice de�nitions. Such a
process can be easily implemented separately, so we do not include it in the formalism.

3 _J)K: MULTI-STAGE PROGRAMMINGWITH TYPE CLASSES
We present _J)K, which has been designed to incorporate the essential features of a language with
staging and quali�ed types, with the key novelty in the formalism of staged type class constraints.

3.1 Syntax
Figure 1 presents the syntax of our source calculus _J)K. The syntax of type classes follows closely
that of Bottu et al. [2017]; Chakravarty et al. [2005]; Jones [1994].
A source program pgm is a sequence of top-level de�nitions D, type class declarations C, and

instance de�nitions I, followed by an expression 4 . Top-level de�nitions D (k = 4) model path-
based cross-stage persistence: only variables previously de�ned in a top-level de�nition can be
referenced at arbitrary levels. The syntax of type class declarations C is largely simpli�ed to avoid
clutter in the presentation. In particular, type class de�nitions TC awhere {k : d} have precisely
one method and no superclasses. Instance de�nitions ⇠i

i
) TCg where {k = 4} are permitted

to have an instance context, which is interpreted that g is an instance of the type class TC with
the method implementation k = 4 , if ⇠i

8
holds. The expression language 4 is a standard _-calculus

extended with multi-stage annotations, and includes literals 8 , top-level variables k, variables x,
lambdas _x : g .4 , applications 41 42, as well as quotations h4i and splicing �4 .
Following Jones [1994], the type language distinguishes between monotypes g , quali�ed types

d , and polymorphic types f . Monotypes g include type variables a, the integer type Int, function
types g1 ! g2 and code representation Codeg . Quali�ed types d qualify over monotypes with a list
of constraints (⇠) d). Polymorphic types f are quali�ed types with universal quanti�ers (8a.f).
Finally, type class constraints are normal constraints TCg , or staged constraints CodeC⇠ .
The program theory ⇥ is a context of type information for names introduced by top-level

de�nitions k : f , and the type class axioms introduced by instance declarations 8ai i .⇠j
j
) ⇠ .

The context � is used for locally introduced information, including value variables x : (g,=), type
variables a, and local type class axioms (⇠,=). The context keeps track of the (integer) level = that
value and constraint variables are introduced at; the typing rules will ensure that the variables are
only used at the current level.

3.2 Typing Expressions
Figure 1 also presents the typing rules for expressions. The judgment ⇥; � =̀ 4 : f says that under
the program theory ⇥, the context �, and the current level =, the expression 4 has type f . The
gray parts are for elaboration (§5) and can be ignored until then.
Most typing rules are standard [Bottu et al. 2017; Chakravarty et al. 2005], except that rules are

indexed by a level. As emphasized before, level-indexed typing rules ensure that variables and
constraint can only be used at the level they are introduced. Literals and top-level variables can
be used at any level (rules ����� and ������), as they can be persisted. Importantly, rule �����

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

compile-time evaluation

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43)

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

()

24

Type-directed elaboration

24

Type-directed elaboration

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
� =̀ _J)K { � JK

| q
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

24

Type-directed elaboration

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
� =̀ _J)K { � JK

| q
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:11

program pgm F def D; pgm | classC; pgm | instI; pgm | 4
de�nition D F k = 4
class C F TC awhere {k : d}
instance I F ⇠i

i
) TCg where {k = 4}

expression 4 F 8 | k | x | _x : g .4 | 41 42 | h4i | $4

monotype g F a | Int | g1 ! g2 | Codeg
quali�ed type d F ⇠) d | g
polymorphic type f F 8a.f | d
constraint ⇠ F TCg | CodeC⇠

program context ⇥ F • | ⇥, k : f | ⇥,8ai i .⇠j
j
) ⇠

context � F • | �, x : (g,=) | �, a | �, (⇠,=)

� =̀ 4 : f{ 4 | q (Typing expressions)

�����

� `
= 8 : Int{ 8 | •

������
k : f 2 ⇥

� `
= k : f{ k | •

�����
x : (g,=) 2 �

� `
= x : g{ x | •

�����
�, x : (g1,=) `= 4 : g2{ 4 | q1

� ` g1{ g 01 q1 ++ x : (g 01,=) { q2

� `
= _x : g1 .4 : g1 ! g2{ _x : g 01.4 | q2

�����
� `

= 41 : g1 ! g2{ 41 | q1
� `

= 42 : g1{ 42 | q2

� `
= 41 42 : g2{ 41 42 | q1,q2

������
�, a `

= 4 : f{ 4 | q1 q1 ++ a { q2

� `
= 4 : 8a.f{ ⇤a.4 | q2

������
� `

= 4 : 8a.f{ 4 | q � ` g{ g 0

� `
= 4 : f [a 7! g]{ 4 g 0 | q

������
�, 4E :(⇠,=) `= 4 : d{ 4 | q1 � ` ⇠{ g q1 ++ 4E : (g,=) { q2 fresh 4E

� `
= 4 : ⇠) d{ _4E : g .4 | q2

������
� `

= 4 : ⇠) d{ 41 | q1 ⇥; � |== ⇠{ 42 | q2

� `
= 4 : d{ 41 42 | q1,q2

������
� `

=+1 4 : g{ 4 0 | q

� `
=
h4i : Codeg{ h4 0iq .= | bqc=

��������
� `

=�1 4 : Codeg{ 4 0 | q � ` g{ g 0 fresh B

� `
= $4 : g{ B | q, (• `

=�1 B : g 0 = 4 0)

Fig. 1. Syntax and typing rules of _J)K

says that if a variable x is introduced at level =, then it is well-typed at level =. Rules ������ and
������ handle generalization and instantiation of type class constraints. If an expression 4 can be
type-checked under a local type class assumption ⇠ , then 4 has a quali�ed type ⇠) d . Otherwise,
if a constraint ⇠ can be resolved (§3.3), then an expression of type ⇠) d can be typed d .

Rules ������ and �������� type-check staging annotations. In particular, rule ������ increases
the level by one and gives h4i type Codeg when 4 has type g , while rule �������� decreases the
level by one and gives 4 type g when $4 has type Codeg .

Well-formed types and constraints. Typing rules (e.g., rule �����) refer to well-formed rules for
types and for constraints as given in Figure 2. The type well-formedness judgment � ` f simply

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:11

program pgm F def D; pgm | classC; pgm | instI; pgm | 4
de�nition D F k = 4
class C F TC awhere {k : d}
instance I F ⇠i

i
) TCg where {k = 4}

expression 4 F 8 | k | x | _x : g .4 | 41 42 | h4i | $4

monotype g F a | Int | g1 ! g2 | Codeg
quali�ed type d F ⇠) d | g
polymorphic type f F 8a.f | d
constraint ⇠ F TCg | CodeC⇠

program context ⇥ F • | ⇥, k : f | ⇥,8ai i .⇠j
j
) ⇠

context � F • | �, x : (g,=) | �, a | �, (⇠,=)

� =̀ 4 : f{ 4 | q (Typing expressions)

�����

� `
= 8 : Int{ 8 | •

������
k : f 2 ⇥

� `
= k : f{ k | •

�����
x : (g,=) 2 �

� `
= x : g{ x | •

�����
�, x : (g1,=) `= 4 : g2{ 4 | q1

� ` g1{ g 01 q1 ++ x : (g 01,=) { q2

� `
= _x : g1 .4 : g1 ! g2{ _x : g 01.4 | q2

�����
� `

= 41 : g1 ! g2{ 41 | q1
� `

= 42 : g1{ 42 | q2

� `
= 41 42 : g2{ 41 42 | q1,q2

������
�, a `

= 4 : f{ 4 | q1 q1 ++ a { q2

� `
= 4 : 8a.f{ ⇤a.4 | q2

������
� `

= 4 : 8a.f{ 4 | q � ` g{ g 0

� `
= 4 : f [a 7! g]{ 4 g 0 | q

������
�, 4E :(⇠,=) `= 4 : d{ 4 | q1 � ` ⇠{ g q1 ++ 4E : (g,=) { q2 fresh 4E

� `
= 4 : ⇠) d{ _4E : g .4 | q2

������
� `

= 4 : ⇠) d{ 41 | q1 ⇥; � |== ⇠{ 42 | q2

� `
= 4 : d{ 41 42 | q1,q2

������
� `

=+1 4 : g{ 4 0 | q

� `
=
h4i : Codeg{ h4 0iq .= | bqc=

��������
� `

=�1 4 : Codeg{ 4 0 | q � ` g{ g 0 fresh B

� `
= $4 : g{ B | q, (• `

=�1 B : g 0 = 4 0)

Fig. 1. Syntax and typing rules of _J)K

says that if a variable x is introduced at level =, then it is well-typed at level =. Rules ������ and
������ handle generalization and instantiation of type class constraints. If an expression 4 can be
type-checked under a local type class assumption ⇠ , then 4 has a quali�ed type ⇠) d . Otherwise,
if a constraint ⇠ can be resolved (§3.3), then an expression of type ⇠) d can be typed d .

Rules ������ and �������� type-check staging annotations. In particular, rule ������ increases
the level by one and gives h4i type Codeg when 4 has type g , while rule �������� decreases the
level by one and gives 4 type g when $4 has type Codeg .

Well-formed types and constraints. Typing rules (e.g., rule �����) refer to well-formed rules for
types and for constraints as given in Figure 2. The type well-formedness judgment � ` f simply

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

25

Type soundness

61:18 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

(1) A splice de�nition � =̀ B : g = 4 requires � §> = as in rule ������� (similarly, rule ��������).
That is, all splice variables in the local type context captured by a splice variable must have a
level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation ⇥;� =̀
h4iq requires � =̀ q , as in rule ������, which implies q ⌘ =,.

That is, all splice variables that bind level = are introduced at level =.4

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.
(a) • 0̀

h4ix:(Code Int,0) 0̀B :Int=x : Codeg breaks (1) as x : (Code Int, 0) 6 §> 0
(b) • 0̀

hh4i• 0̀B :Int=(_y:Code Int.y) (h2i•)i• : Code (Codeg) breaks (2) as •
0̀ B : Int 6⌘ 1

Essentially, the �rst restriction applies the level restriction of variables described in §2.1 to splice
de�nition and environments; and the second lifts the level restriction to splice variables. In particular,
consider the counterexample (a). What happens is that in the splice environment x is used at level
0, but inside 4 we can never introduce x at level 0 (recall that during typing the level monotonically
increases)! So such an example is rejected because x is not well-staged.5
The level restriction to splice variables requires that a splice variable that binds level = is

introduced at level =. The splice variable level restriction ensures that splice variables are evaluated
at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because
the splice environment is a value and we do not inspect inside the quotations, we will conclude that
it is a value. But note that B is bound at level 0, which means the expression (_y : Code Int.y) (h2i•)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject
this example as B is not well-staged.

4.4.2 Type Soundness. With well-staged splice de�nitions and environments, we can now prove
that � JK enjoys type soundness, by proving type preservation and progress.
First, we show that any reduction preserves the type information. For space reasons, we only

present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) If • =̀ 4 : g , then either 4 is a value, or 4 �! 4 0 for some 4 0.
(2) If • ` dgm, then either dgm is E : g , or dgm �! dgm0 for some dgm0.

Nowwe show that well-typed programs cannot gowrong, by proving that a well-typed expression
(and de�nition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If � =̀ 4 : g , and 4 �! 4 0, then � =̀ 4 0 : g .
(2) If ⇥ ` dgm, and dgm �! dgm0, then ⇥ ` dgm0.

5 ELABORATION FROM _J)K TO � JK

In this section we describe the process of type-directed elaboration from the source language _J)K

into the core language � JK. There are three key aspects of the elaboration procedure:
(1) Splices are removed in favour of a splice environment. The elaboration process returns a

splice environment which is attached to the quotation form (§5.1).
4An alternative is to represent a splice environment entry as � ` B : g = 4 (i.e. without levels), and then rule ������, just
like rule �����, could directly take the current level from the typing judgment (which also means q� would need to take a
level as input). However, that representation does not work for global splice variables (i.e. in rule ������� where typing is
not level-indexed). Moreover, the representation of q is also used during elaboration, where it is important to track the
levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.
5It may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of
the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope
of the splice environment (i.e. is not local). For example, the well-typed source program _x : Code Int. h$x i elaborates to
_x : Code Int. hB i

• 0̀B :Int=x , while the source program h_x : Int.$hx ii elaborates to h_x : Code Int.B ix:(Int,1) 0̀B :Int=hxi• .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:18 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

(1) A splice de�nition � =̀ B : g = 4 requires � §> = as in rule ������� (similarly, rule ��������).
That is, all splice variables in the local type context captured by a splice variable must have a
level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation ⇥;� =̀
h4iq requires � =̀ q , as in rule ������, which implies q ⌘ =,.

That is, all splice variables that bind level = are introduced at level =.4

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.
(a) • 0̀

h4ix:(Code Int,0) 0̀B :Int=x : Codeg breaks (1) as x : (Code Int, 0) 6 §> 0
(b) • 0̀

hh4i• 0̀B :Int=(_y:Code Int.y) (h2i•)i• : Code (Codeg) breaks (2) as •
0̀ B : Int 6⌘ 1

Essentially, the �rst restriction applies the level restriction of variables described in §2.1 to splice
de�nition and environments; and the second lifts the level restriction to splice variables. In particular,
consider the counterexample (a). What happens is that in the splice environment x is used at level
0, but inside 4 we can never introduce x at level 0 (recall that during typing the level monotonically
increases)! So such an example is rejected because x is not well-staged.5
The level restriction to splice variables requires that a splice variable that binds level = is

introduced at level =. The splice variable level restriction ensures that splice variables are evaluated
at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because
the splice environment is a value and we do not inspect inside the quotations, we will conclude that
it is a value. But note that B is bound at level 0, which means the expression (_y : Code Int.y) (h2i•)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject
this example as B is not well-staged.

4.4.2 Type Soundness. With well-staged splice de�nitions and environments, we can now prove
that � JK enjoys type soundness, by proving type preservation and progress.
First, we show that any reduction preserves the type information. For space reasons, we only

present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) If • =̀ 4 : g , then either 4 is a value, or 4 �! 4 0 for some 4 0.
(2) If • ` dgm, then either dgm is E : g , or dgm �! dgm0 for some dgm0.

Nowwe show that well-typed programs cannot gowrong, by proving that a well-typed expression
(and de�nition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If � =̀ 4 : g , and 4 �! 4 0, then � =̀ 4 0 : g .
(2) If ⇥ ` dgm, and dgm �! dgm0, then ⇥ ` dgm0.

5 ELABORATION FROM _J)K TO � JK

In this section we describe the process of type-directed elaboration from the source language _J)K

into the core language � JK. There are three key aspects of the elaboration procedure:
(1) Splices are removed in favour of a splice environment. The elaboration process returns a

splice environment which is attached to the quotation form (§5.1).
4An alternative is to represent a splice environment entry as � ` B : g = 4 (i.e. without levels), and then rule ������, just
like rule �����, could directly take the current level from the typing judgment (which also means q� would need to take a
level as input). However, that representation does not work for global splice variables (i.e. in rule ������� where typing is
not level-indexed). Moreover, the representation of q is also used during elaboration, where it is important to track the
levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.
5It may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of
the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope
of the splice environment (i.e. is not local). For example, the well-typed source program _x : Code Int. h$x i elaborates to
_x : Code Int. hB i

• 0̀B :Int=x , while the source program h_x : Int.$hx ii elaborates to h_x : Code Int.B ix:(Int,1) 0̀B :Int=hxi• .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:18 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

(1) A splice de�nition � =̀ B : g = 4 requires � §> = as in rule ������� (similarly, rule ��������).
That is, all splice variables in the local type context captured by a splice variable must have a
level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation ⇥;� =̀
h4iq requires � =̀ q , as in rule ������, which implies q ⌘ =,.

That is, all splice variables that bind level = are introduced at level =.4

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.
(a) • 0̀

h4ix:(Code Int,0) 0̀B :Int=x : Codeg breaks (1) as x : (Code Int, 0) 6 §> 0
(b) • 0̀

hh4i• 0̀B :Int=(_y:Code Int.y) (h2i•)i• : Code (Codeg) breaks (2) as •
0̀ B : Int 6⌘ 1

Essentially, the �rst restriction applies the level restriction of variables described in §2.1 to splice
de�nition and environments; and the second lifts the level restriction to splice variables. In particular,
consider the counterexample (a). What happens is that in the splice environment x is used at level
0, but inside 4 we can never introduce x at level 0 (recall that during typing the level monotonically
increases)! So such an example is rejected because x is not well-staged.5
The level restriction to splice variables requires that a splice variable that binds level = is

introduced at level =. The splice variable level restriction ensures that splice variables are evaluated
at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because
the splice environment is a value and we do not inspect inside the quotations, we will conclude that
it is a value. But note that B is bound at level 0, which means the expression (_y : Code Int.y) (h2i•)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject
this example as B is not well-staged.

4.4.2 Type Soundness. With well-staged splice de�nitions and environments, we can now prove
that � JK enjoys type soundness, by proving type preservation and progress.
First, we show that any reduction preserves the type information. For space reasons, we only

present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) If • =̀ 4 : g , then either 4 is a value, or 4 �! 4 0 for some 4 0.
(2) If • ` dgm, then either dgm is E : g , or dgm �! dgm0 for some dgm0.

Nowwe show that well-typed programs cannot gowrong, by proving that a well-typed expression
(and de�nition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If � =̀ 4 : g , and 4 �! 4 0, then � =̀ 4 0 : g .
(2) If ⇥ ` dgm, and dgm �! dgm0, then ⇥ ` dgm0.

5 ELABORATION FROM _J)K TO � JK

In this section we describe the process of type-directed elaboration from the source language _J)K

into the core language � JK. There are three key aspects of the elaboration procedure:
(1) Splices are removed in favour of a splice environment. The elaboration process returns a

splice environment which is attached to the quotation form (§5.1).
4An alternative is to represent a splice environment entry as � ` B : g = 4 (i.e. without levels), and then rule ������, just
like rule �����, could directly take the current level from the typing judgment (which also means q� would need to take a
level as input). However, that representation does not work for global splice variables (i.e. in rule ������� where typing is
not level-indexed). Moreover, the representation of q is also used during elaboration, where it is important to track the
levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.
5It may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of
the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope
of the splice environment (i.e. is not local). For example, the well-typed source program _x : Code Int. h$x i elaborates to
_x : Code Int. hB i

• 0̀B :Int=x , while the source program h_x : Int.$hx ii elaborates to h_x : Code Int.B ix:(Int,1) 0̀B :Int=hxi• .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

25

Type soundness

61:18 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

(1) A splice de�nition � =̀ B : g = 4 requires � §> = as in rule ������� (similarly, rule ��������).
That is, all splice variables in the local type context captured by a splice variable must have a
level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation ⇥;� =̀
h4iq requires � =̀ q , as in rule ������, which implies q ⌘ =,.

That is, all splice variables that bind level = are introduced at level =.4

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.
(a) • 0̀

h4ix:(Code Int,0) 0̀B :Int=x : Codeg breaks (1) as x : (Code Int, 0) 6 §> 0
(b) • 0̀

hh4i• 0̀B :Int=(_y:Code Int.y) (h2i•)i• : Code (Codeg) breaks (2) as •
0̀ B : Int 6⌘ 1

Essentially, the �rst restriction applies the level restriction of variables described in §2.1 to splice
de�nition and environments; and the second lifts the level restriction to splice variables. In particular,
consider the counterexample (a). What happens is that in the splice environment x is used at level
0, but inside 4 we can never introduce x at level 0 (recall that during typing the level monotonically
increases)! So such an example is rejected because x is not well-staged.5
The level restriction to splice variables requires that a splice variable that binds level = is

introduced at level =. The splice variable level restriction ensures that splice variables are evaluated
at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because
the splice environment is a value and we do not inspect inside the quotations, we will conclude that
it is a value. But note that B is bound at level 0, which means the expression (_y : Code Int.y) (h2i•)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject
this example as B is not well-staged.

4.4.2 Type Soundness. With well-staged splice de�nitions and environments, we can now prove
that � JK enjoys type soundness, by proving type preservation and progress.
First, we show that any reduction preserves the type information. For space reasons, we only

present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) If • =̀ 4 : g , then either 4 is a value, or 4 �! 4 0 for some 4 0.
(2) If • ` dgm, then either dgm is E : g , or dgm �! dgm0 for some dgm0.

Nowwe show that well-typed programs cannot gowrong, by proving that a well-typed expression
(and de�nition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If � =̀ 4 : g , and 4 �! 4 0, then � =̀ 4 0 : g .
(2) If ⇥ ` dgm, and dgm �! dgm0, then ⇥ ` dgm0.

5 ELABORATION FROM _J)K TO � JK

In this section we describe the process of type-directed elaboration from the source language _J)K

into the core language � JK. There are three key aspects of the elaboration procedure:
(1) Splices are removed in favour of a splice environment. The elaboration process returns a

splice environment which is attached to the quotation form (§5.1).
4An alternative is to represent a splice environment entry as � ` B : g = 4 (i.e. without levels), and then rule ������, just
like rule �����, could directly take the current level from the typing judgment (which also means q� would need to take a
level as input). However, that representation does not work for global splice variables (i.e. in rule ������� where typing is
not level-indexed). Moreover, the representation of q is also used during elaboration, where it is important to track the
levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.
5It may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of
the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope
of the splice environment (i.e. is not local). For example, the well-typed source program _x : Code Int. h$x i elaborates to
_x : Code Int. hB i

• 0̀B :Int=x , while the source program h_x : Int.$hx ii elaborates to h_x : Code Int.B ix:(Int,1) 0̀B :Int=hxi• .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:18 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

(1) A splice de�nition � =̀ B : g = 4 requires � §> = as in rule ������� (similarly, rule ��������).
That is, all splice variables in the local type context captured by a splice variable must have a
level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation ⇥;� =̀
h4iq requires � =̀ q , as in rule ������, which implies q ⌘ =,.

That is, all splice variables that bind level = are introduced at level =.4

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.
(a) • 0̀

h4ix:(Code Int,0) 0̀B :Int=x : Codeg breaks (1) as x : (Code Int, 0) 6 §> 0
(b) • 0̀

hh4i• 0̀B :Int=(_y:Code Int.y) (h2i•)i• : Code (Codeg) breaks (2) as •
0̀ B : Int 6⌘ 1

Essentially, the �rst restriction applies the level restriction of variables described in §2.1 to splice
de�nition and environments; and the second lifts the level restriction to splice variables. In particular,
consider the counterexample (a). What happens is that in the splice environment x is used at level
0, but inside 4 we can never introduce x at level 0 (recall that during typing the level monotonically
increases)! So such an example is rejected because x is not well-staged.5
The level restriction to splice variables requires that a splice variable that binds level = is

introduced at level =. The splice variable level restriction ensures that splice variables are evaluated
at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because
the splice environment is a value and we do not inspect inside the quotations, we will conclude that
it is a value. But note that B is bound at level 0, which means the expression (_y : Code Int.y) (h2i•)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject
this example as B is not well-staged.

4.4.2 Type Soundness. With well-staged splice de�nitions and environments, we can now prove
that � JK enjoys type soundness, by proving type preservation and progress.
First, we show that any reduction preserves the type information. For space reasons, we only

present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) If • =̀ 4 : g , then either 4 is a value, or 4 �! 4 0 for some 4 0.
(2) If • ` dgm, then either dgm is E : g , or dgm �! dgm0 for some dgm0.

Nowwe show that well-typed programs cannot gowrong, by proving that a well-typed expression
(and de�nition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If � =̀ 4 : g , and 4 �! 4 0, then � =̀ 4 0 : g .
(2) If ⇥ ` dgm, and dgm �! dgm0, then ⇥ ` dgm0.

5 ELABORATION FROM _J)K TO � JK

In this section we describe the process of type-directed elaboration from the source language _J)K

into the core language � JK. There are three key aspects of the elaboration procedure:
(1) Splices are removed in favour of a splice environment. The elaboration process returns a

splice environment which is attached to the quotation form (§5.1).
4An alternative is to represent a splice environment entry as � ` B : g = 4 (i.e. without levels), and then rule ������, just
like rule �����, could directly take the current level from the typing judgment (which also means q� would need to take a
level as input). However, that representation does not work for global splice variables (i.e. in rule ������� where typing is
not level-indexed). Moreover, the representation of q is also used during elaboration, where it is important to track the
levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.
5It may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of
the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope
of the splice environment (i.e. is not local). For example, the well-typed source program _x : Code Int. h$x i elaborates to
_x : Code Int. hB i

• 0̀B :Int=x , while the source program h_x : Int.$hx ii elaborates to h_x : Code Int.B ix:(Int,1) 0̀B :Int=hxi• .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:18 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

(1) A splice de�nition � =̀ B : g = 4 requires � §> = as in rule ������� (similarly, rule ��������).
That is, all splice variables in the local type context captured by a splice variable must have a
level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation ⇥;� =̀
h4iq requires � =̀ q , as in rule ������, which implies q ⌘ =,.

That is, all splice variables that bind level = are introduced at level =.4

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.
(a) • 0̀

h4ix:(Code Int,0) 0̀B :Int=x : Codeg breaks (1) as x : (Code Int, 0) 6 §> 0
(b) • 0̀

hh4i• 0̀B :Int=(_y:Code Int.y) (h2i•)i• : Code (Codeg) breaks (2) as •
0̀ B : Int 6⌘ 1

Essentially, the �rst restriction applies the level restriction of variables described in §2.1 to splice
de�nition and environments; and the second lifts the level restriction to splice variables. In particular,
consider the counterexample (a). What happens is that in the splice environment x is used at level
0, but inside 4 we can never introduce x at level 0 (recall that during typing the level monotonically
increases)! So such an example is rejected because x is not well-staged.5
The level restriction to splice variables requires that a splice variable that binds level = is

introduced at level =. The splice variable level restriction ensures that splice variables are evaluated
at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because
the splice environment is a value and we do not inspect inside the quotations, we will conclude that
it is a value. But note that B is bound at level 0, which means the expression (_y : Code Int.y) (h2i•)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject
this example as B is not well-staged.

4.4.2 Type Soundness. With well-staged splice de�nitions and environments, we can now prove
that � JK enjoys type soundness, by proving type preservation and progress.
First, we show that any reduction preserves the type information. For space reasons, we only

present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) If • =̀ 4 : g , then either 4 is a value, or 4 �! 4 0 for some 4 0.
(2) If • ` dgm, then either dgm is E : g , or dgm �! dgm0 for some dgm0.

Nowwe show that well-typed programs cannot gowrong, by proving that a well-typed expression
(and de�nition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If � =̀ 4 : g , and 4 �! 4 0, then � =̀ 4 0 : g .
(2) If ⇥ ` dgm, and dgm �! dgm0, then ⇥ ` dgm0.

5 ELABORATION FROM _J)K TO � JK

In this section we describe the process of type-directed elaboration from the source language _J)K

into the core language � JK. There are three key aspects of the elaboration procedure:
(1) Splices are removed in favour of a splice environment. The elaboration process returns a

splice environment which is attached to the quotation form (§5.1).
4An alternative is to represent a splice environment entry as � ` B : g = 4 (i.e. without levels), and then rule ������, just
like rule �����, could directly take the current level from the typing judgment (which also means q� would need to take a
level as input). However, that representation does not work for global splice variables (i.e. in rule ������� where typing is
not level-indexed). Moreover, the representation of q is also used during elaboration, where it is important to track the
levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.
5It may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of
the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope
of the splice environment (i.e. is not local). For example, the well-typed source program _x : Code Int. h$x i elaborates to
_x : Code Int. hB i

• 0̀B :Int=x , while the source program h_x : Int.$hx ii elaborates to h_x : Code Int.B ix:(Int,1) 0̀B :Int=hxi• .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:22 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

h$4i =0G 4
$h4i =0G 4

(a) Axioms

� `
= 4 : Codeg{ 4 | q

� `
=+1 $4 : g{ B | q, • `

= B : g = 4

� `
=
h$4 i : Codeg{ hB i•=̀B :g=4 | q

(b) �ote splices

� `
= 4 : g{ 4 | q

� `
=�1

h4 i : Codeg{ h4 iq .=�1 | bq c=�1

� `
= $h4 i : g{ B | bq c=�1, • `

=�1 B : g = h4 iq .=�1

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in _J)K

The second restriction requires that an elaborated quotation ⇥;� =̀
h4iq has � =̀ q . We generate

quotations at rule ������. As the rule binds q .= which by construction has level =, we only need
to show � ` q , which can be proved making use of Lemma 5.3. In the following lemma statement,
the notations ⇥ { ⇥ and � { � elaborate contexts in a unsurprising way; their de�nitions can
be found in the appendix.

Lemma 5.4 (Well-staged q). If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , then � ` q .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that _J)K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , and � ` g { g , then �,q� =̀ 4 : g .
(2) If ⇥ ` pgm : f { dgm , and ⇥ { ⇥ , then ⇥ ` dgm.

6 AXIOMATIC SEMANTICS
Our goal in designing _J)K and � JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of _J)K and � JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The de�nitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) _J)K has elaboration-based
semantics, and thus the correctness of its axioms are built on that of � JK, and this indirection poses
extra complexities in the proofs; and (2) for � JK, we de�ne the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice de�nitions.

6.1 Duality of Splices and�otations in _J)K

The property we seek to establish is captured by the two axioms of _J)K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of _J)K; they can be thought of as context-independent pattern-based rewriting rules.
Consider an axiomatic equivalence relation between _J)K programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm1 =0G pgm2. Our goal now is to prove
axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the
same result and thus can be used in an interchangeable way. As the dynamic semantics of _J)K is
de�ned based on elaboration to � JK, we build the proofs based on the axiomatic semantics of � JK.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:22 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

h$4i =0G 4
$h4i =0G 4

(a) Axioms

� `
= 4 : Codeg{ 4 | q

� `
=+1 $4 : g{ B | q, • `

= B : g = 4

� `
=
h$4 i : Codeg{ hB i•=̀B :g=4 | q

(b)�ote splices

� `
= 4 : g{ 4 | q

� `
=�1

h4 i : Codeg{ h4 iq .=�1 | bq c=�1

� `
= $h4 i : g{ B | bq c=�1, • `

=�1 B : g = h4 iq .=�1

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in _J)K

The second restriction requires that an elaborated quotation ⇥;� =̀
h4iq has � =̀ q . We generate

quotations at rule ������. As the rule binds q .= which by construction has level =, we only need
to show � ` q , which can be proved making use of Lemma 5.3. In the following lemma statement,
the notations ⇥ { ⇥ and � { � elaborate contexts in a unsurprising way; their de�nitions can
be found in the appendix.

Lemma 5.4 (Well-staged q). If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , then � ` q .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that _J)K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , and � ` g { g , then �,q� =̀ 4 : g .
(2) If ⇥ ` pgm : f { dgm , and ⇥ { ⇥ , then ⇥ ` dgm.

6 AXIOMATIC SEMANTICS
Our goal in designing _J)K and � JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of _J)K and � JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The de�nitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) _J)K has elaboration-based
semantics, and thus the correctness of its axioms are built on that of � JK, and this indirection poses
extra complexities in the proofs; and (2) for � JK, we de�ne the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice de�nitions.

6.1 Duality of Splices and�otations in _J)K

The property we seek to establish is captured by the two axioms of _J)K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of _J)K; they can be thought of as context-independent pattern-based rewriting rules.
Consider an axiomatic equivalence relation between _J)K programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm1 =0G pgm2. Our goal now is to prove
axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the
same result and thus can be used in an interchangeable way. As the dynamic semantics of _J)K is
de�ned based on elaboration to � JK, we build the proofs based on the axiomatic semantics of � JK.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:22 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

h$4i =0G 4
$h4i =0G 4

(a) Axioms

� `
= 4 : Codeg{ 4 | q

� `
=+1 $4 : g{ B | q, • `

= B : g = 4

� `
=
h$4 i : Codeg{ hB i•=̀B :g=4 | q

(b)�ote splices

� `
= 4 : g{ 4 | q

� `
=�1

h4 i : Codeg{ h4 iq .=�1 | bq c=�1

� `
= $h4 i : g{ B | bq c=�1, • `

=�1 B : g = h4 iq .=�1

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in _J)K

The second restriction requires that an elaborated quotation ⇥;� =̀
h4iq has � =̀ q . We generate

quotations at rule ������. As the rule binds q .= which by construction has level =, we only need
to show � ` q , which can be proved making use of Lemma 5.3. In the following lemma statement,
the notations ⇥ { ⇥ and � { � elaborate contexts in a unsurprising way; their de�nitions can
be found in the appendix.

Lemma 5.4 (Well-staged q). If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , then � ` q .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that _J)K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , and � ` g { g , then �,q� =̀ 4 : g .
(2) If ⇥ ` pgm : f { dgm , and ⇥ { ⇥ , then ⇥ ` dgm.

6 AXIOMATIC SEMANTICS
Our goal in designing _J)K and � JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of _J)K and � JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The de�nitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) _J)K has elaboration-based
semantics, and thus the correctness of its axioms are built on that of � JK, and this indirection poses
extra complexities in the proofs; and (2) for � JK, we de�ne the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice de�nitions.

6.1 Duality of Splices and�otations in _J)K

The property we seek to establish is captured by the two axioms of _J)K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of _J)K; they can be thought of as context-independent pattern-based rewriting rules.
Consider an axiomatic equivalence relation between _J)K programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm1 =0G pgm2. Our goal now is to prove
axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the
same result and thus can be used in an interchangeable way. As the dynamic semantics of _J)K is
de�ned based on elaboration to � JK, we build the proofs based on the axiomatic semantics of � JK.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

26

Duality
61:22 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

h$4i =0G 4
$h4i =0G 4

(a) Axioms

� `
= 4 : Codeg { 4 | q

� `
=+1 $4 : g { B | q, • `

= B : g = 4
��������

� `
=
h$4 i : Codeg { hB i•=̀B :g=4 | q

������

(b) �ote splices

� `
= 4 : g { 4 | q

� `
=�1

h4 i : Codeg { h4 iq .=�1 | bq c=�1
������

� `
= $h4 i : g { B | bq c=�1, • `

=�1 B : g = h4 iq .=�1

��������

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in _J)K

The second restriction requires that an elaborated quotation ⇥;� =̀
h4iq has � =̀ q . We generate

quotations at rule ������. As the rule binds q .= which by construction has level =, we only need
to show � ` q , which can be proved making use of Lemma 5.3. In the following lemma statement,
the notations ⇥ { ⇥ and � { � elaborate contexts in a unsurprising way; their de�nitions can
be found in the appendix.

Lemma 5.4 (Well-staged q). If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , then � ` q .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that _J)K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , and � ` g { g , then �,q� =̀ 4 : g .
(2) If ⇥ ` pgm : f { dgm , and ⇥ { ⇥ , then ⇥ ` dgm.

6 AXIOMATIC SEMANTICS
Our goal in designing _J)K and � JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of _J)K and � JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The de�nitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) _J)K has elaboration-based
semantics, and thus the correctness of its axioms are built on that of � JK, and this indirection poses
extra complexities in the proofs; and (2) for � JK, we de�ne the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice de�nitions.

6.1 Duality of Splices and �otations in _J)K

The property we seek to establish is captured by the two axioms of _J)K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of _J)K; they can be thought of as context-independent pattern-based rewriting rules.
Consider an axiomatic equivalence relation between _J)K programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm1 =0G pgm2. Our goal now is to prove
axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

26

Duality
61:22 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

h$4i =0G 4
$h4i =0G 4

(a) Axioms

� `
= 4 : Codeg { 4 | q

� `
=+1 $4 : g { B | q, • `

= B : g = 4
��������

� `
=
h$4 i : Codeg { hB i•=̀B :g=4 | q

������

(b) �ote splices

� `
= 4 : g { 4 | q

� `
=�1

h4 i : Codeg { h4 iq .=�1 | bq c=�1
������

� `
= $h4 i : g { B | bq c=�1, • `

=�1 B : g = h4 iq .=�1

��������

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in _J)K

The second restriction requires that an elaborated quotation ⇥;� =̀
h4iq has � =̀ q . We generate

quotations at rule ������. As the rule binds q .= which by construction has level =, we only need
to show � ` q , which can be proved making use of Lemma 5.3. In the following lemma statement,
the notations ⇥ { ⇥ and � { � elaborate contexts in a unsurprising way; their de�nitions can
be found in the appendix.

Lemma 5.4 (Well-staged q). If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , then � ` q .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that _J)K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , and � ` g { g , then �,q� =̀ 4 : g .
(2) If ⇥ ` pgm : f { dgm , and ⇥ { ⇥ , then ⇥ ` dgm.

6 AXIOMATIC SEMANTICS
Our goal in designing _J)K and � JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of _J)K and � JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The de�nitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) _J)K has elaboration-based
semantics, and thus the correctness of its axioms are built on that of � JK, and this indirection poses
extra complexities in the proofs; and (2) for � JK, we de�ne the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice de�nitions.

6.1 Duality of Splices and �otations in _J)K

The property we seek to establish is captured by the two axioms of _J)K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of _J)K; they can be thought of as context-independent pattern-based rewriting rules.
Consider an axiomatic equivalence relation between _J)K programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm1 =0G pgm2. Our goal now is to prove
axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:23

6.2 Axiomatic Semantics of � JK

The axiomatic semantics of � JK is guided by the elaboration of the _J)K axioms. Supposing source
4 elaborates to core 4 with q , Figures 7b and 7c present elaboration derivations of h$4i and h$4i
respectively. Looking �rst at Figure 7b, what is needed to show the �rst _J)K axiom is a � JK axiom
that models the equivalence between expression hBi• =̀B :g=4 with q (the elaboration result of h$4i)
and 4 with q (the elaboration result of 4). Since the two qs are the same, it is su�cient to introduce
a core axiom hBi• =̀B :g=4 =0G 4 .

The case for splicing quotations (Figure 7c) is more challenging: in this case we cannot directly
compare the elaborated expressions, as the generated splice environments are di�erent. Instead,
we need to consider equivalence between two core quotations where the splice environments
are bound. To derive the axiom, let us �rst consider the case where both expressions are bound
immediately to a quotation. That leads to hBibq c=�1,• =̀�1B :g=h4 iq .=�1 =0G h4ibq c=�1,q .=�1. Abstracting
over the speci�c shape of splice environments gives us hBiq1,•

=̀B :g=h4 iq =0G h4iq1,q . In the case when
B is not immediately bound, we then have h41iq1,•

=̀B :g=h4 iq =0G h41 [B 7! 4]iq1,q . However, there are
still some wrinkles to this axiom. First, B could have a non-empty splice environment q2 to its right,
as until B is bound there can be more splices. Second, B could have a non-empty local context �,
as until B is bound it may have got out of some scopes and so have applied the injection process.
Finally, if B has a non-empty local context, then after it is substituted away on the right hand side,
we cannot directly discard its local context � and leave q , since q now becomes ill-typed as it loses
the scope of the variables from �. Therefore, we need to inject � into q .
Summarizing our discussion, we end up with the axiomatic semantic of � JK as de�ned below.

Note that splicing quotations also leads to the equivalence axiom between spdef .

De�nition 6.1 (Axiomatic Semantics of � JK). Axiomatic semantics of � JK models V-equivalence, as
well as the following axioms.

hBi• =̀B :g=4 =0G 4
h41iq1,�

=̀B :g=h4 iq ,q2
=0G h41 [B 7! 4]iq1,q

0,q2
where q ++� { q 0

spdef � =̀ B : g = h4iq ; dgm =0G spdef q 0; dgm[B 7! 4] where q ++� { q 0

Now consider an axiomatic equivalence relation between � JK programs that is the contextual
and equivalence closure of the axioms, denoted as:

⇥ ` dgm1 w0G dgm2 , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ dgm1 =0G dgm2

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ ` pgm2 :
f{ dgm2, and ⇥{ ⇥, then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

26

Duality
61:22 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

h$4i =0G 4
$h4i =0G 4

(a) Axioms

� `
= 4 : Codeg { 4 | q

� `
=+1 $4 : g { B | q, • `

= B : g = 4
��������

� `
=
h$4 i : Codeg { hB i•=̀B :g=4 | q

������

(b) �ote splices

� `
= 4 : g { 4 | q

� `
=�1

h4 i : Codeg { h4 iq .=�1 | bq c=�1
������

� `
= $h4 i : g { B | bq c=�1, • `

=�1 B : g = h4 iq .=�1

��������

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in _J)K

The second restriction requires that an elaborated quotation ⇥;� =̀
h4iq has � =̀ q . We generate

quotations at rule ������. As the rule binds q .= which by construction has level =, we only need
to show � ` q , which can be proved making use of Lemma 5.3. In the following lemma statement,
the notations ⇥ { ⇥ and � { � elaborate contexts in a unsurprising way; their de�nitions can
be found in the appendix.

Lemma 5.4 (Well-staged q). If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , then � ` q .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that _J)K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , and � ` g { g , then �,q� =̀ 4 : g .
(2) If ⇥ ` pgm : f { dgm , and ⇥ { ⇥ , then ⇥ ` dgm.

6 AXIOMATIC SEMANTICS
Our goal in designing _J)K and � JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of _J)K and � JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The de�nitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) _J)K has elaboration-based
semantics, and thus the correctness of its axioms are built on that of � JK, and this indirection poses
extra complexities in the proofs; and (2) for � JK, we de�ne the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice de�nitions.

6.1 Duality of Splices and �otations in _J)K

The property we seek to establish is captured by the two axioms of _J)K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of _J)K; they can be thought of as context-independent pattern-based rewriting rules.
Consider an axiomatic equivalence relation between _J)K programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm1 =0G pgm2. Our goal now is to prove
axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:23

6.2 Axiomatic Semantics of � JK

The axiomatic semantics of � JK is guided by the elaboration of the _J)K axioms. Supposing source
4 elaborates to core 4 with q , Figures 7b and 7c present elaboration derivations of h$4i and h$4i
respectively. Looking �rst at Figure 7b, what is needed to show the �rst _J)K axiom is a � JK axiom
that models the equivalence between expression hBi• =̀B :g=4 with q (the elaboration result of h$4i)
and 4 with q (the elaboration result of 4). Since the two qs are the same, it is su�cient to introduce
a core axiom hBi• =̀B :g=4 =0G 4 .

The case for splicing quotations (Figure 7c) is more challenging: in this case we cannot directly
compare the elaborated expressions, as the generated splice environments are di�erent. Instead,
we need to consider equivalence between two core quotations where the splice environments
are bound. To derive the axiom, let us �rst consider the case where both expressions are bound
immediately to a quotation. That leads to hBibq c=�1,• =̀�1B :g=h4 iq .=�1 =0G h4ibq c=�1,q .=�1. Abstracting
over the speci�c shape of splice environments gives us hBiq1,•

=̀B :g=h4 iq =0G h4iq1,q . In the case when
B is not immediately bound, we then have h41iq1,•

=̀B :g=h4 iq =0G h41 [B 7! 4]iq1,q . However, there are
still some wrinkles to this axiom. First, B could have a non-empty splice environment q2 to its right,
as until B is bound there can be more splices. Second, B could have a non-empty local context �,
as until B is bound it may have got out of some scopes and so have applied the injection process.
Finally, if B has a non-empty local context, then after it is substituted away on the right hand side,
we cannot directly discard its local context � and leave q , since q now becomes ill-typed as it loses
the scope of the variables from �. Therefore, we need to inject � into q .
Summarizing our discussion, we end up with the axiomatic semantic of � JK as de�ned below.

Note that splicing quotations also leads to the equivalence axiom between spdef .

De�nition 6.1 (Axiomatic Semantics of � JK). Axiomatic semantics of � JK models V-equivalence, as
well as the following axioms.

hBi• =̀B :g=4 =0G 4
h41iq1,�

=̀B :g=h4 iq ,q2
=0G h41 [B 7! 4]iq1,q

0,q2
where q ++� { q 0

spdef � =̀ B : g = h4iq ; dgm =0G spdef q 0; dgm[B 7! 4] where q ++� { q 0

Now consider an axiomatic equivalence relation between � JK programs that is the contextual
and equivalence closure of the axioms, denoted as:

⇥ ` dgm1 w0G dgm2 , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ dgm1 =0G dgm2

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ ` pgm2 :
f{ dgm2, and ⇥{ ⇥, then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

•; � =̀ 41 w2CG 42 : g , � =̀ 41 : g ^ � =̀ 42 : g
^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the ex-
pression 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if � =̀ 4 : g then
•

=̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ `

pgm2 : f{ dgm2, and ⇥{ ⇥, and • ` f{ g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

ev : (⇠,=) 2 �

� |== ⇠ { ev

ev : (⇠,=) 2 �

� |== ⇠ { ev

dShow : (Show a, 0) 2 �

� |=0 Show a { dShow

dShow : Show a 2 �

� |= Show a { dShow

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

26

Duality
61:22 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

h$4i =0G 4
$h4i =0G 4

(a) Axioms

� `
= 4 : Codeg { 4 | q

� `
=+1 $4 : g { B | q, • `

= B : g = 4
��������

� `
=
h$4 i : Codeg { hB i•=̀B :g=4 | q

������

(b) �ote splices

� `
= 4 : g { 4 | q

� `
=�1

h4 i : Codeg { h4 iq .=�1 | bq c=�1
������

� `
= $h4 i : g { B | bq c=�1, • `

=�1 B : g = h4 iq .=�1

��������

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in _J)K

The second restriction requires that an elaborated quotation ⇥;� =̀
h4iq has � =̀ q . We generate

quotations at rule ������. As the rule binds q .= which by construction has level =, we only need
to show � ` q , which can be proved making use of Lemma 5.3. In the following lemma statement,
the notations ⇥ { ⇥ and � { � elaborate contexts in a unsurprising way; their de�nitions can
be found in the appendix.

Lemma 5.4 (Well-staged q). If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , then � ` q .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that _J)K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , and � ` g { g , then �,q� =̀ 4 : g .
(2) If ⇥ ` pgm : f { dgm , and ⇥ { ⇥ , then ⇥ ` dgm.

6 AXIOMATIC SEMANTICS
Our goal in designing _J)K and � JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of _J)K and � JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The de�nitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) _J)K has elaboration-based
semantics, and thus the correctness of its axioms are built on that of � JK, and this indirection poses
extra complexities in the proofs; and (2) for � JK, we de�ne the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice de�nitions.

6.1 Duality of Splices and �otations in _J)K

The property we seek to establish is captured by the two axioms of _J)K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of _J)K; they can be thought of as context-independent pattern-based rewriting rules.
Consider an axiomatic equivalence relation between _J)K programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm1 =0G pgm2. Our goal now is to prove
axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:23

6.2 Axiomatic Semantics of � JK

The axiomatic semantics of � JK is guided by the elaboration of the _J)K axioms. Supposing source
4 elaborates to core 4 with q , Figures 7b and 7c present elaboration derivations of h$4i and h$4i
respectively. Looking �rst at Figure 7b, what is needed to show the �rst _J)K axiom is a � JK axiom
that models the equivalence between expression hBi• =̀B :g=4 with q (the elaboration result of h$4i)
and 4 with q (the elaboration result of 4). Since the two qs are the same, it is su�cient to introduce
a core axiom hBi• =̀B :g=4 =0G 4 .

The case for splicing quotations (Figure 7c) is more challenging: in this case we cannot directly
compare the elaborated expressions, as the generated splice environments are di�erent. Instead,
we need to consider equivalence between two core quotations where the splice environments
are bound. To derive the axiom, let us �rst consider the case where both expressions are bound
immediately to a quotation. That leads to hBibq c=�1,• =̀�1B :g=h4 iq .=�1 =0G h4ibq c=�1,q .=�1. Abstracting
over the speci�c shape of splice environments gives us hBiq1,•

=̀B :g=h4 iq =0G h4iq1,q . In the case when
B is not immediately bound, we then have h41iq1,•

=̀B :g=h4 iq =0G h41 [B 7! 4]iq1,q . However, there are
still some wrinkles to this axiom. First, B could have a non-empty splice environment q2 to its right,
as until B is bound there can be more splices. Second, B could have a non-empty local context �,
as until B is bound it may have got out of some scopes and so have applied the injection process.
Finally, if B has a non-empty local context, then after it is substituted away on the right hand side,
we cannot directly discard its local context � and leave q , since q now becomes ill-typed as it loses
the scope of the variables from �. Therefore, we need to inject � into q .
Summarizing our discussion, we end up with the axiomatic semantic of � JK as de�ned below.

Note that splicing quotations also leads to the equivalence axiom between spdef .

De�nition 6.1 (Axiomatic Semantics of � JK). Axiomatic semantics of � JK models V-equivalence, as
well as the following axioms.

hBi• =̀B :g=4 =0G 4
h41iq1,�

=̀B :g=h4 iq ,q2
=0G h41 [B 7! 4]iq1,q

0,q2
where q ++� { q 0

spdef � =̀ B : g = h4iq ; dgm =0G spdef q 0; dgm[B 7! 4] where q ++� { q 0

Now consider an axiomatic equivalence relation between � JK programs that is the contextual
and equivalence closure of the axioms, denoted as:

⇥ ` dgm1 w0G dgm2 , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ dgm1 =0G dgm2

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ ` pgm2 :
f{ dgm2, and ⇥{ ⇥, then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

•; � =̀ 41 w2CG 42 : g , � =̀ 41 : g ^ � =̀ 42 : g
^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the ex-
pression 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if � =̀ 4 : g then
•

=̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ `

pgm2 : f{ dgm2, and ⇥{ ⇥, and • ` f{ g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

ev : (⇠,=) 2 �

� |== ⇠ { ev

ev : (⇠,=) 2 �

� |== ⇠ { ev

dShow : (Show a, 0) 2 �

� |=0 Show a { dShow

dShow : Show a 2 �

� |= Show a { dShow

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

26

Duality
61:22 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

h$4i =0G 4
$h4i =0G 4

(a) Axioms

� `
= 4 : Codeg { 4 | q

� `
=+1 $4 : g { B | q, • `

= B : g = 4
��������

� `
=
h$4 i : Codeg { hB i•=̀B :g=4 | q

������

(b) �ote splices

� `
= 4 : g { 4 | q

� `
=�1

h4 i : Codeg { h4 iq .=�1 | bq c=�1
������

� `
= $h4 i : g { B | bq c=�1, • `

=�1 B : g = h4 iq .=�1

��������

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in _J)K

The second restriction requires that an elaborated quotation ⇥;� =̀
h4iq has � =̀ q . We generate

quotations at rule ������. As the rule binds q .= which by construction has level =, we only need
to show � ` q , which can be proved making use of Lemma 5.3. In the following lemma statement,
the notations ⇥ { ⇥ and � { � elaborate contexts in a unsurprising way; their de�nitions can
be found in the appendix.

Lemma 5.4 (Well-staged q). If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , then � ` q .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that _J)K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If � =̀ 4 : g { 4 | q , and ⇥ { ⇥ , and � { � , and � ` g { g , then �,q� =̀ 4 : g .
(2) If ⇥ ` pgm : f { dgm , and ⇥ { ⇥ , then ⇥ ` dgm.

6 AXIOMATIC SEMANTICS
Our goal in designing _J)K and � JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of _J)K and � JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The de�nitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) _J)K has elaboration-based
semantics, and thus the correctness of its axioms are built on that of � JK, and this indirection poses
extra complexities in the proofs; and (2) for � JK, we de�ne the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice de�nitions.

6.1 Duality of Splices and �otations in _J)K

The property we seek to establish is captured by the two axioms of _J)K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of _J)K; they can be thought of as context-independent pattern-based rewriting rules.
Consider an axiomatic equivalence relation between _J)K programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm1 =0G pgm2. Our goal now is to prove
axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:23

6.2 Axiomatic Semantics of � JK

The axiomatic semantics of � JK is guided by the elaboration of the _J)K axioms. Supposing source
4 elaborates to core 4 with q , Figures 7b and 7c present elaboration derivations of h$4i and h$4i
respectively. Looking �rst at Figure 7b, what is needed to show the �rst _J)K axiom is a � JK axiom
that models the equivalence between expression hBi• =̀B :g=4 with q (the elaboration result of h$4i)
and 4 with q (the elaboration result of 4). Since the two qs are the same, it is su�cient to introduce
a core axiom hBi• =̀B :g=4 =0G 4 .

The case for splicing quotations (Figure 7c) is more challenging: in this case we cannot directly
compare the elaborated expressions, as the generated splice environments are di�erent. Instead,
we need to consider equivalence between two core quotations where the splice environments
are bound. To derive the axiom, let us �rst consider the case where both expressions are bound
immediately to a quotation. That leads to hBibq c=�1,• =̀�1B :g=h4 iq .=�1 =0G h4ibq c=�1,q .=�1. Abstracting
over the speci�c shape of splice environments gives us hBiq1,•

=̀B :g=h4 iq =0G h4iq1,q . In the case when
B is not immediately bound, we then have h41iq1,•

=̀B :g=h4 iq =0G h41 [B 7! 4]iq1,q . However, there are
still some wrinkles to this axiom. First, B could have a non-empty splice environment q2 to its right,
as until B is bound there can be more splices. Second, B could have a non-empty local context �,
as until B is bound it may have got out of some scopes and so have applied the injection process.
Finally, if B has a non-empty local context, then after it is substituted away on the right hand side,
we cannot directly discard its local context � and leave q , since q now becomes ill-typed as it loses
the scope of the variables from �. Therefore, we need to inject � into q .
Summarizing our discussion, we end up with the axiomatic semantic of � JK as de�ned below.

Note that splicing quotations also leads to the equivalence axiom between spdef .

De�nition 6.1 (Axiomatic Semantics of � JK). Axiomatic semantics of � JK models V-equivalence, as
well as the following axioms.

hBi• =̀B :g=4 =0G 4
h41iq1,�

=̀B :g=h4 iq ,q2
=0G h41 [B 7! 4]iq1,q

0,q2
where q ++� { q 0

spdef � =̀ B : g = h4iq ; dgm =0G spdef q 0; dgm[B 7! 4] where q ++� { q 0

Now consider an axiomatic equivalence relation between � JK programs that is the contextual
and equivalence closure of the axioms, denoted as:

⇥ ` dgm1 w0G dgm2 , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ dgm1 =0G dgm2

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ ` pgm2 :
f{ dgm2, and ⇥{ ⇥, then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

•; � =̀ 41 w2CG 42 : g , � =̀ 41 : g ^ � =̀ 42 : g
^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the ex-
pression 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if � =̀ 4 : g then
•

=̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f{ dgm1, and ⇥ `

pgm2 : f{ dgm2, and ⇥{ ⇥, and • ` f{ g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg

ev : (⇠,=) 2 �

� |== ⇠ { ev

ev : (⇠,=) 2 �

� |== ⇠ { ev

dShow : (Show a, 0) 2 �

� |=0 Show a { dShow

dShow : Show a 2 �

� |= Show a { dShow

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

27

More in paper

• Full typing rules

• Metatheory development

• Comparison between GHC and

• Challenges of integration into GHC

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

28

This talk

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraints

inspire type-directed

• Quotations
• Splice environments

unsound

A solid theoretical foundation for integrating type classes into multi-
stage programs

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

easy to implement and stay close to existing implementations

29

I am on the academic job market!
https://xnning.github.io/

Thank you!

https://xnning.github.io/

