
Perceus
Garbage Free Reference Counting with Reuse

Ningning Xie

Joint work with Alex Reinking,
Leonardo de Moura, and Daan Leijen

Reference Counting 101

Resource 1

Reference Counting 101

Resource 1 Resource n

Reference Counting 101

Resource Resource n2

Reference Counting 101

Resource Resource n2

Resource Resource n2

Reference Counting 101

Resource Resource n2

Resource 2

Reference Counting 101

Resource Resource n2

Resource 1

Reference Counting 101

Resource Resource n2

Resource 0

Resource 1

Reference Counting 101

Resource Resource n2

Resource 0

free

Resource 1

Reference Counting 101

Resource Resource n2

Resource 0

free
ü Low memory overhead

Resource 1

Reference Counting 101

Resource Resource n2

Resource 0

free
ü Low memory overhead
ü Easy to implement

Resource 1

Reference Counting 101

Resource Resource n2

Resource 0

free
ü Low memory overhead
ü Easy to implement

Resource 1

(shared_ptr⟨T⟩)

Reference Counting 101

Resource Resource n2

Resource 0

free
ü Low memory overhead
ü Easy to implement

§ Precision

Resource 1

(shared_ptr⟨T⟩)

Reference Counting 101

Resource Resource n2

Resource 0

free
ü Low memory overhead
ü Easy to implement

§ Precision
§ Concurrency

Resource 1

(shared_ptr⟨T⟩)

Reference Counting 101

Resource Resource n2

Resource 0

free
ü Low memory overhead
ü Easy to implement

§ Precision
§ Concurrency
§ Cycles

Resource 1

(shared_ptr⟨T⟩)

Reference Counting 101

Resource Resource n2

Resource 0

free
ü Low memory overhead
ü Easy to implement

§ Precision
§ Concurrency
§ Cycles

Resource 1

(shared_ptr⟨T⟩)

Research Contributions

A programming language design that gives strong compile-time guarantees
in order to enable efficient reference counting at run-time.

Koka

Research Contributions

A programming language design that gives strong compile-time guarantees
in order to enable efficient reference counting at run-time.

Koka
§ Precision
§ Concurrency
§ Cycles

this work

Agenda

①

Koka 101

②

Perceus FBIP Linear Resource Calculus

!1

③ ④

Functional But In-Place

Agenda

①

Koka 101

②

Perceus FBIP Linear Resource Calculus

!1

③ ④

PrEcise Reference Counting
with rEUse and Specialization

Functional But In-Place

Agenda

①

Koka 101

②

Perceus FBIP Linear Resource Calculus

!1

③ ④

PrEcise Reference Counting
with rEUse and Specialization

Functional But In-Place

Common reference counting implementations might retain
memory longer than needed

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Common reference counting implementations might retain
memory longer than needed

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

}

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

// create large list

}

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

// create large list
// increment elements

}

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler

// create large list
// increment elements

}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler

// create large list
// increment elements

drop(ys)
}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
C ++ (shared_ptr⟨T⟩)}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
C ++ (shared_ptr⟨T⟩)
Rust (Rc⟨T⟩)}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
C ++ (shared_ptr⟨T⟩)
Rust (Rc⟨T⟩)
Nim (finally)

}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
C ++ (shared_ptr⟨T⟩)
Rust (Rc⟨T⟩)
Nim (finally)
Swift

}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
C ++ (shared_ptr⟨T⟩)
Rust (Rc⟨T⟩)
Nim (finally)
Swift

xs

}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
C ++ (shared_ptr⟨T⟩)
Rust (Rc⟨T⟩)
Nim (finally)
Swift

xs
xs ys

}

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
C ++ (shared_ptr⟨T⟩)
Rust (Rc⟨T⟩)
Nim (finally)
Swift

xs
xs ys

}

ys

drop(xs)

Common reference counting implementations might retain
memory longer than needed

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)
print(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)
C ++ (shared_ptr⟨T⟩)
Rust (Rc⟨T⟩)
Nim (finally)
Swift

xs
xs ys

}

Can we do
better?

ys

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)

Precise reference counting

drop(xs) Compiler
liveness of a reference is
tied to its lexical scope

// create large list
// increment elements

drop(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

}

print(ys)

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)

Precise reference counting

drop(xs)
Compiler

// create large list
// increment elements

drop(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

}

print(ys)
drop resources as soon as
possible

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)

Perceus passes ownership of references

ownershipdrop(xs)
Compiler

// create large list
// increment elements

drop(ys)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

}

print(ys)

fun foo() {
val xs = list(1, 1000000)
val ys = map(xs, inc)

Perceus passes ownership of references

ownership Compiler

// create large list
// increment elements

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

}
print(ys)

Perceus passes ownership of references

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) -> Cons(f(x), map(xx, f))
Nil -> Nil

}
}

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

Cons(f(x), map(xx, f))
}
Nil {

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

Cons(f(x), map(xx, f))
}
Nil {

1. dup/drop insertion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion

returns itself

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion

the memory
usage is halved!

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion
the list xs is deallocated
while the new list is
being allocated.

the memory
usage is halved!

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion

2. drop specialization

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion

2. drop specialization

fun drop(x) {
if (is-unique(x))
then drop children of x;

free(x)
else decref(x)

}

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f); 1. dup/drop insertion

2. drop specialization

fun drop(x) {
if (is-unique(x))
then drop children of x;

free(x)
else decref(x)

}

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

dup(x); dup(xx);

Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

1. dup/drop insertion

2. drop specialization

fun drop(x) {
if (is-unique(x))
then drop children of x;

free(x)
else decref(x)

}

if (is-unique(xs)）
then
else

drop(x); drop(xx); free(xs);
decref(xs);

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

dup(x); dup(xx);

Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

1. dup/drop insertion

2. drop specialization

if (is-unique(xs)）
then
else

drop(x); drop(xx); free(xs);
decref(xs);

3. push down dup and fusion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

dup(x); dup(xx);

Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

1. dup/drop insertion

2. drop specialization

if (is-unique(xs)）
then
else

drop(x); drop(xx); free(xs);
decref(xs);

3. push down dup and fusion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

dup(x); dup(xx);

Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

1. dup/drop insertion

2. drop specialization

if (is-unique(xs)）
then
else

drop(x); drop(xx); free(xs);
decref(xs);

3. push down dup and fusion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

dup(x); dup(xx);

Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

1. dup/drop insertion

2. drop specialization

if (is-unique(xs)）
then
else

drop(x); drop(xx); free(xs);
decref(xs);

3. push down dup and fusion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

dup(x); dup(xx);

Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

1. dup/drop insertion

2. drop specialization

if (is-unique(xs)）
then
else

free(xs);
decref(xs);

3. push down dup and fusion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

dup(x); dup(xx);

Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

1. dup/drop insertion
dup(x); dup(xx);

2. drop specialization

if (is-unique(xs)）
then
else

free(xs);
decref(xs);

3. push down dup and fusion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

1. dup/drop insertion
dup(x); dup(xx);

2. drop specialization

if (is-unique(xs)）
then
else

free(xs);
decref(xs);

3. push down dup and fusion

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs); drop(f);

1. dup/drop insertion

dup(x); dup(xx);

2. drop specialization

free(xs);
decref(xs);

3. push down dup and fusion

Cons((x), map(xx, f)) dup(f)

if (is-unique(xs)）
then
else

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs); drop(f);

1. dup/drop insertion

dup(x); dup(xx);

2. drop specialization

free(xs);
decref(xs);

3. push down dup and fusion

fast path

Cons((x), map(xx, f)) dup(f)

if (is-unique(xs)）
then
else

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs); drop(f);

1. dup/drop insertion

dup(x); dup(xx);

2. drop specialization

free(xs);
decref(xs);

3. push down dup and fusion

fast path

Cons((x), map(xx, f)) dup(f)

if (is-unique(xs)）
then
else

free xs and
immediately
allocate a fresh
Cons node

Precise reference counting

Compiler

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs); drop(f);

1. dup/drop insertion

dup(x); dup(xx);
free(xs);

decref(xs);

fast path

Cons((x), map(xx, f)) dup(f)

if (is-unique(xs)）
then
else

free xs and
immediately
allocate a fresh
Cons node

Precise reference counting

Compiler

1. dup/drop insertion
Nil

}
}

}

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

drop(xs); drop(f);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

}
Nil {

Precise reference counting with reuse

Compiler

1. dup/drop insertion

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

Precise reference counting with reuse

Compiler

1. dup/drop insertion

drop(xs);dup(x); dup(xx);
Cons((x), map(xx, f)) dup(f)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

/reuse analysis

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

Cons((x), map(xx, f)) dup(f)

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil { /reuse analysis

val ru = drop-reuse(xs);

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil { /reuse analysis

val ru = drop-reuse(xs);
Cons ((x), map(xx, f)) dup(f)@ru

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil { /reuse analysis

val ru = drop-reuse(xs);
Cons ((x), map(xx, f)) dup(f)@ru

try to reuse
xs directly

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil { /reuse analysis

val ru = drop-reuse(xs);
Cons ((x), map(xx, f)) dup(f)@ru

try to reuse
xs directly

2. drop-reuse specialization

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil { /reuse analysis

val ru = drop-reuse(xs);
Cons ((x), map(xx, f)) dup(f)@ru

try to reuse
xs directly

fun drop(x) {
if (is-unique(x))
then drop children of x;

free(x)
else decref(x)

}

2. drop-reuse specialization

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil { /reuse analysis

val ru = drop-reuse(xs);
Cons ((x), map(xx, f)) dup(f)@ru

try to reuse
xs directly

fun drop-reuse(x) {
if (is-unique(x))
then drop children of x;

& x
else decref(x) ; Null

}

2. drop-reuse specialization

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil { /reuse analysis

val ru = drop-reuse(xs);
Cons ((x), map(xx, f)) dup(f)@ru

try to reuse
xs directly

fun drop-reuse(x) {
if (is-unique(x))
then drop children of x;

& x
else decref(x) ; Null

}

2. drop-reuse specialization

// returns the address of x

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

/reuse analysis

val ru =

Cons ((x), map(xx, f)) dup(f)@ru

fun drop-reuse(x) {
if (is-unique(x))
then drop children of x;

& x
else decref(x) ; Null

}

2. drop-reuse specialization

if (is-unique(xs))
then
else Nulldecref(xs);

drop(x); drop(xx); &xs

// returns the address of x

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

/reuse analysis

val ru =

Cons ((x), map(xx, f)) dup(f)@ru

fun drop-reuse(x) {
if (is-unique(x))
then drop children of x;

& x
else decref(x) ; Null

}

2. drop-reuse specialization

if (is-unique(xs))
then
else Nulldecref(xs);

drop(x); drop(xx); &xs

// returns the address of x

3. push down dup and fusion

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

/reuse analysis

val ru =

Cons ((x), map(xx, f)) dup(f)@ru
2. drop-reuse specialization

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

3. push down dup and fusion

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

/reuse analysis

val ru =

Cons ((x), map(xx, f)) dup(f)@ru
2. drop-reuse specialization

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

3. push down dup and fusion

fast path

Precise reference counting with reuse

Compiler

1. dup/drop insertion

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

/reuse analysis

val ru =

Cons ((x), map(xx, f)) dup(f)@ru
2. drop-reuse specialization

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

3. push down dup and fusion

fast path

reuse

Precise reference counting with reuse

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

}
Nil {

drop(xs); drop(f);

Cons((x), map(xx, f)) dup(f)

drop(xs);dup(x); dup(xx); fast path

reuse

Agenda

①

Koka 101

②

Perceus Functional But In-Place
(FBIP)

Linear Resource Calculus

!1

③ ④

Agenda

①

Koka 101

②

Perceus Functional But In-Place
(FBIP)

Linear Resource Calculus

!1

③ ④

Koka tracks all (side) effects using algebraic effects

Koka tracks all (side) effects using algebraic effects

div(m : int, n : int) : exn int {
m / n

}

Koka tracks all (side) effects using algebraic effects

div(m : int, n : int) : exn int {
m / n

} div by zero!

Koka tracks all (side) effects using algebraic effects

div(m : int, n : int) : exn int {
m / n

}

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

effect

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

operation
effect

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

operation
effect

perform an
operation

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

operation
effect

perform an
operation

track effects in
types

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

operation
effect

perform an
operation

track effects in
types

effect type system

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

fun div1(m, n) {
with handler {

fail() { Nothing }
}
Just(div(m, n))

}

fun div2(m, n){
with handler {

fail() { resume(0) }
}
div(m, n)

}

fun div3(m, n){
with handler {

fail() { resume (0) + (resume (0) }
}
div(m, n)

}

operation
effect

perform an
operation

track effects in
types

effect type system

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

fun div1(m, n) {
with handler {

fail() { Nothing }
}
Just(div(m, n))

}

fun div2(m, n){
with handler {

fail() { resume(0) }
}
div(m, n)

}

fun div3(m, n){
with handler {

fail() { resume (0) + (resume (0) }
}
div(m, n)

}

operation
effect

perform an
operation

track effects in
types

effect type system

effect handler

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

fun div1(m, n) {
with handler {

fail() { Nothing }
}
Just(div(m, n))

}

fun div2(m, n){
with handler {

fail() { resume(0) }
}
div(m, n)

}

fun div3(m, n){
with handler {

fail() { resume (0) + (resume (0) }
}
div(m, n)

}

operation
effect

perform an
operation

track effects in
types

effect type system

effect handler

resume with
default value

Koka tracks all (side) effects using algebraic effects

effect exn {
fail() : int

}

div(m : Int, n : int) : exn int {
if (n == 0) then fail ()
else m / n

}

div(m : int, n : int) : exn int {
m / n

}

fun div1(m, n) {
with handler {

fail() { Nothing }
}
Just(div(m, n))

}

fun div2(m, n){
with handler {

fail() { resume(0) }
}
div(m, n)

}

fun div3(m, n){
with handler {

fail() { resume (0) + (resume (0) }
}
div(m, n)

}

operation
effect

perform an
operation

track effects in
types

effect type system

effect handler

resume with
default value

resume
multiple times

Reference counting with strong static guarantees

1 Non-linear control flow

2 Concurrency

3 Mutation / cycles

With such a strong effect type system …

Reference counting with strong static guarantees

1 Non-linear control flow

2 Concurrency

3 Mutation / cycles

Goal: mitigate the impact of concurrency and cycles.

With such a strong effect type system …

Reference counting with strong static guarantees

1 Non-linear control flow

2 Concurrency

3 Mutation / cycles

Non-goal: a general solution to all problems with reference counting.

Goal: mitigate the impact of concurrency and cycles.

With such a strong effect type system …

Non-linear control flow1

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

Non-linear control flow1

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

f raises an
exception!

Non-linear control flow1

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

f raises an
exception!

xx and f would leak
and never be dropped

Non-linear control flow1

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

f raises an
exception!

xx and f would leak
and never be dropped

f : a -> exn b

Non-linear control flow1

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

val ru = if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

f : a -> exn b

match((x)) {
Error(err) { Error(err); }
Ok(y) { match(map(xx, f)) {

Error(err) -> Error(err);
Ok(ys) -> Cons(y, ys);

}
}

drop(xx); drop(f);

drop(y);

dup(f)

Non-linear control flow1

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

val ru = if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

f : a -> exn b

match((x)) {
Error(err) { Error(err); }
Ok(y) { match(map(xx, f)) {

Error(err) -> Error(err);
Ok(ys) -> Cons(y, ys);

}
}

drop(xx); drop(f);

drop(y);

dup(f)

all control-flow is
compiled to
explicit control-flow

Non-linear control flow1

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

val ru = if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

f : a -> exn b effects can also be
polymorphic

match((x)) {
Error(err) { Error(err); }
Ok(y) { match(map(xx, f)) {

Error(err) -> Error(err);
Ok(ys) -> Cons(y, ys);

}
}

drop(xx); drop(f);

drop(y);

dup(f)

all control-flow is
compiled to
explicit control-flow

Concurrency

Resource

2

Concurrency

Resource

thread 1 thread 2

2

Concurrency

Resource

thread 1 thread 2

2

Concurrency

Resource

thread 1 thread 2

atomic
operations

2

Concurrency

Resource

thread 1 thread 2

atomic
operations

thread_shared?

2

Concurrency

Resource

thread 1 thread 2

atomic
operations

thread_shared?

Resource

2

Concurrency

Resource

thread 1 thread 2

atomic
operations

thread_shared?

Resource
tshare : forall a. a -> io ()

2

Concurrency

Resource

thread 1 thread 2

atomic
operations

thread_shared?

Resource
tshare : forall a. a -> io ()

void drop(block_t* b) {
if (b->header.thread_shared) {
if (atomic_dec(&b->header.rc) == 1)
drop_free(b);

}
else if (b->header.rc-- == 1)
drop_free(b); // fast path

}

2

Concurrency

Resource

thread 1 thread 2

atomic
operations

thread_shared?

Resource
tshare : forall a. a -> io ()

void drop(block_t* b) {
if (b->header.thread_shared) {
if (atomic_dec(&b->header.rc) == 1)
drop_free(b);

}
else if (b->header.rc-- == 1)
drop_free(b); // fast path

}

2

negative rc

Concurrency

Resource

thread 1 thread 2

atomic
operations

thread_shared?

Resource
tshare : forall a. a -> io ()

2

negative rc

void drop(block_t* b) {
if (b->header.rc <= 1)
drop_check(b);

else
b->header.rc--;

}

Mutation and cycles3

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect first-class value

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect first-class value

fun (!)(r : ref⟨h,a⟩) : st⟨h⟩ a
{
val x = r->value
dup(x)
x

}

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect first-class value

fun (!)(r : ref⟨h,a⟩) : st⟨h⟩ a
{
val x = r->value
dup(x)
x

}

fun (:=)(r : ref⟨h,a⟩, x : a) : st⟨h⟩ ()
{
val y = r->value
r->value := x
drop(y)

}

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect first-class value

fun (!)(r : ref⟨h,a⟩) : st⟨h⟩ a
{
val x = r->value
dup(x)
x

}

fun (:=)(r : ref⟨h,a⟩, x : a) : st⟨h⟩ ()
{
val y = r->value
r->value := x
drop(y)

}

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect first-class value

fun (!)(r : ref⟨h,a⟩) : st⟨h⟩ a
{
val x = r->value
dup(x)
x

}

fun (:=)(r : ref⟨h,a⟩, x : a) : st⟨h⟩ ()
{
val y = r->value
r->value := x
drop(y)

}
s

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect first-class value

fun (!)(r : ref⟨h,a⟩) : st⟨h⟩ a
{
val x = r->value
dup(x)
x

}

fun (:=)(r : ref⟨h,a⟩, x : a) : st⟨h⟩ ()
{
val y = r->value
r->value := x
drop(y)

}
sdup a freed

object!

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect first-class value

fun (!)(r : ref⟨h,a⟩) : st⟨h⟩ a
{
val x = r->value
dup(x)
x

}

§ FBIP: Functional but in-place

fun (:=)(r : ref⟨h,a⟩, x : a) : st⟨h⟩ ()
{
val y = r->value
r->value := x
drop(y)

}
sdup a freed

object!

Mutation and cycles3

fun ref(init : a) : st⟨h⟩ ref⟨h,a⟩

create a mutable
reference cell

stateful effect first-class value

fun (!)(r : ref⟨h,a⟩) : st⟨h⟩ a
{
val x = r->value
dup(x)
x

}

§ FBIP: Functional but in-place
§ Thread-shared? to avoid the atomic code

path almost all the time.

fun (:=)(r : ref⟨h,a⟩, x : a) : st⟨h⟩ ()
{
val y = r->value
r->value := x
drop(y)

}
sdup a freed

object!

Mutation and cycles3

Resource

cycle collection

Mutation and cycles3

Resource

Resource

cycle collection

Mutation and cycles3

Resource

Resource

cycle collection

Mutation and cycles3

cycle
s

Resource

Resource

cycle collection

Mutation and cycles3

cycle
s

Resource

Resource We leave the responsibility to the programmer
to break cycles

cycle collection

Mutation and cycles3

cycle
s

Resource

Resource We leave the responsibility to the programmer
to break cycles (Swift)

cycle collection

Mutation and cycles3

cycle
s

Resource

Resource

Future improvements: generate code that
tracks mutable data types at run time

We leave the responsibility to the programmer
to break cycles (Swift)

cycle collection

Koka references

• Koka: https://koka-lang.github.io/

• Type Directed Compilation of Row-Typed Algebraic Effects. Daan Leijen,
POPL’17

• Effect Handlers, Evidently. Ningning Xie, Jonathan Brachthäuser, Daniel
Hillerström, Philipp Schuster, Daan Leijen, ICFP’20

• Generalized Evidence Passing for Effect Handlers. Ningning Xie, Daan Leijen,
under submission, Technical report MSR-TR-2021-5

https://koka-lang.github.io/koka/doc/index.html

Agenda

①

Koka 101

②

Perceus Functional But In-Place
(FBIP)

Linear Resource Calculus

!1

③ ④

Agenda

①

Koka 101

②

Perceus Functional But In-Place
(FBIP)

Linear Resource Calculus

!1

③ ④

Reuse specialization

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {
val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

1. dup/drop insertion /reuse analysis

2. drop-reuse specialization

3. push down dup and fusion

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

Reuse specialization

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {
val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

1. dup/drop insertion /reuse analysis

2. drop-reuse specialization

3. push down dup and fusion

specialize

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

Reuse specialization

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {
val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

1. dup/drop insertion /reuse analysis

2. drop-reuse specialization

3. push down dup and fusion

4. reuse specialization

specialize

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

Reuse specialization

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {
val ru =

Cons ((x), map(xx, f)) dup(f)@ru

if (is-unique(xs))
then
else

Nulldecref(xs);

&xs;

1. dup/drop insertion /reuse analysis

2. drop-reuse specialization

3. push down dup and fusion

4. reuse specialization

specialize
fun Cons@ru(x, xx) {

if (ru != NULL) {
then {

ru -> head := x;
ru -> tail := xs;
ru

}
else Cons(x, xx)

}

Nil
}

}
}

drop(xs); drop(f);

}
Nil {

Reuse specialization

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {
val ru = if (is-unique(xs))

then
else

Nulldecref(xs);

&xs;

1. dup/drop insertion /reuse analysis

2. drop-reuse specialization

3. push down dup and fusion

4. reuse specialization

fun Cons@ru(x, xx) {
if (ru != NULL) {
then {

ru -> head := x;
ru -> tail := xs;
ru

}
else Cons(x, xx)

}
Nil

}
}

}

drop(xs); drop(f);

}
Nil {

if (ru != NULL) {
then {

ru -> head := x;
ru -> tail := xs;
ru

}
else Cons(x, xx)

Reuse specialization

dup(x); dup(xx);

fun map(xs : list⟨a⟩, f : a -> b) : list⟨b⟩ {
match(xs) {

Cons(x, xx) {
val ru = if (is-unique(xs))

then
else

Nulldecref(xs);

&xs;

1. dup/drop insertion /reuse analysis

2. drop-reuse specialization

3. push down dup and fusion

4. reuse specialization

fun Cons@ru(x, xx) {
if (ru != NULL) {
then {

ru -> head := x;
ru -> tail := xs;
ru

}
else Cons(x, xx)

}
Nil

}
}

}

drop(xs); drop(f);

}
Nil {

if (ru != NULL) {
then {

ru -> head := x;
ru -> tail := xs;
ru

}
else Cons(x, xx)

For partial updates,
we can further reuse
unchanged fields of a
construct

Red-black tree

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NILNIL

Red-black tree

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NILNIL

Each node is either red or black
- The root is black
- All leaves are black
- If a node is red, then its children are black

Red-black tree

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NILNIL

Each node is either red or black
- The root is black
- All leaves are black
- If a node is red, then its children are black

Every path from the root to any of the NIL leaves
goes through the same number of black nodes.

Red-black tree

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NILNIL

Each node is either red or black
- The root is black
- All leaves are black
- If a node is red, then its children are black

Every path from the root to any of the NIL leaves
goes through the same number of black nodes.

Search, delete and insert in !(log &)

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NILNIL

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

19

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

19

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->
if (k < kx)
then Node(Red, ins(l, k, v), kx, vx, r)

19

elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r) ->
if (k < kx && is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
...

}

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->
if (k < kx)
then Node(Red, ins(l, k, v), kx, vx, r)

19

elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r) ->
if (k < kx && is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
...

}

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->
if (k < kx)
then Node(Red, ins(l, k, v), kx, vx, r)

19

elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r) ->
if (k < kx && is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
...

}

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->
if (k < kx)
then Node(Red, ins(l, k, v), kx, vx, r)

19

elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r) ->
if (k < kx && is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
...

}

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->
if (k < kx)
then Node(Red, ins(l, k, v), kx, vx, r)

19

elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r) ->
if (k < kx && is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
...

}

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->
if (k < kx)
then Node(Red, ins(l, k, v), kx, vx, r)

19

elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r) ->
if (k < kx && is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
...

}

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->
if (k < kx)
then Node(Red, ins(l, k, v), kx, vx, r)

19

elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r) ->
if (k < kx && is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
...

}

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->
if (k < kx)
then Node(Red, ins(l, k, v), kx, vx, r)

19

elif (k == kx) then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))

Node(Black, l, kx, vx, r) ->
if (k < kx && is-red(l))
then bal-left(ins(l,k,v), kx, vx, r)
...

}

reuse analysis

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx);

dup(vx); dup(r); NULL }
if (dup(k) < dup(kx)) {
Node @ru (Red, ins(l, k, v), kx, vx, r)

}

19

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx);

dup(vx); dup(r); NULL }
if (dup(k) < dup(kx)) {
Node @ru (Red, ins(l, k, v), kx, vx, r)

}

19
partial update

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx);

dup(vx); dup(r); NULL }
if (dup(k) < dup(kx)) {
Node @ru (Red, ins(l, k, v), kx, vx, r)

}

19
reuse specialize partial update

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx);

dup(vx); dup(r); NULL }

val y = ins(l, k ,v)
if (ru != NULL)
then { ru ->left := y;

ru
}
else Node(Red, y, kx, vx, r)

}

19

Red-black tree insertion

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL

NILNIL

fun ins(t : tree, k : int, v : bool): tree {
match(t) {
Leaf -> Node(Red, Leaf, k, v, Leaf)
Node(Red, l, kx, vx, r) ->

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx);

dup(vx); dup(r); NULL }

val y = ins(l, k ,v)
if (ru != NULL)
then { ru ->left := y;

ru
}
else Node(Red, y, kx, vx, r)

}

19
reuse unchanged
fields of a construct

FBIP: Functional but in-place

For a unique resource, the purely functional algorithm
adapts at runtime to an in-place mutating algorithm

FBIP Application

Challenge: visiting a tree in-order while using
no extra stack- or heap space

Morris in-order tree traversal algorithm in CPerceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Morris in-order tree traversal algorithm in CPerceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Initialize the root as the current node

Morris in-order tree traversal algorithm in CPerceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Initialize the root as the current node

apply f
visit right tree

Morris in-order tree traversal algorithm in CPerceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Initialize the root as the current node

apply f
visit right tree

make cursor the right child of the
rightmost node in cursor’s left subtree

Morris in-order tree traversal algorithm in CPerceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Initialize the root as the current node

apply f
visit right tree

make cursor the right child of the
rightmost node in cursor’s left subtree

visit left tree

Morris in-order tree traversal algorithm in CPerceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Initialize the root as the current node

apply f
visit right tree

make cursor the right child of the
rightmost node in cursor’s left subtree

visit left tree

apply f
visit right tree

Morris in-order tree traversal algorithm in CPerceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

in-place mutating algorithm
that swaps pointers in the
tree to “remember” which
parts are unvisited.

Initialize the root as the current node

apply f
visit right tree

make cursor the right child of the
rightmost node in cursor’s left subtree

visit left tree

apply f
visit right tree

FBIP in-order tree traversal algorithm in Koka

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

FBIP in-order tree traversal algorithm in Koka

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

an explicit visitor data structure that
keeps track of which parts of the tree we
still need to visit.

FBIP in-order tree traversal algorithm in Koka

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

an explicit visitor data structure that
keeps track of which parts of the tree we
still need to visit.

a direction data structure

FBIP in-order tree traversal algorithm in Koka

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

an explicit visitor data structure that
keeps track of which parts of the tree we
still need to visit.

pattern match on directions, trees, and
visitors

a direction data structure

FBIP in-order tree traversal algorithm in Koka

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

an explicit visitor data structure that
keeps track of which parts of the tree we
still need to visit.

pattern match on directions, trees, and
visitors

reuse analysis

a direction data structure

FBIP in-order tree traversal algorithm in Koka

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

an explicit visitor data structure that
keeps track of which parts of the tree we
still need to visit.

pattern match on directions, trees, and
visitors

tail call

reuse analysis

a direction data structure

FBIP in-order tree traversal algorithm in Koka

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

an explicit visitor data structure that
keeps track of which parts of the tree we
still need to visit.

pattern match on directions, trees, and
visitors

tail call

reuse analysis

a purely functional specification
with in-place updating

a direction data structure

FBIP
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

void inorder(tree* root, void (*f)(tree* t)) {
tree* cursor = root;
while (cursor != NULL /* Tip */) {

if (cursor->left == NULL) {
// no left tree, go down the right
f(cursor->value);
cursor = cursor->right;

} else {
// has a left tree
tree* pre = cursor->left; // find the predecessor
while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;
}
if (pre->right == NULL) {

// first visit, remember to visit right tree
pre->right = cursor;
cursor = cursor->left;

} else {
// already set, restore
f(cursor->value);
pre->right = NULL;
cursor = cursor->right;

} } } }

Fig. 2. Morris in-order tree traversal algorithm in C.

-> if (k < kx) then Node(Red, ins(l, k, v), kx, vx, r)
...

Node(Black, l, kx, vx, r)
-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)
...

}

For this kind of program, reuse specialization is e�ective. For
example, if we look at the second branch in ins we see that
the newly allocated Node has almost all of the same �elds as
t except for the left tree l which becomes ins(l,k,v). After
reuse specialization, this branch becomes:
Node(Red, l, kx, vx, r) { // second branch

val ru = if (is-unique(t)) then &t
else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {
val y = ins(l,k,v)
if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node(Red, y, kx, vx, r)
}

In the fast path, where t is uniquely owned, t is reused
directly, and only its left child is re-assigned as all other
�elds stay unchanged. This applies to many branches in this
example and saves many assignments.
Moreover, the compiler inlines the bal-left function. At

that point, every matched Node constructor has a correspond-
ing Node allocation – if we consider all branches we can see
that we either match one Node and allocate one, or we match
three nodes deep and allocate three. With reuse analysis this
means that every Node is reused in the fast path without
doing any allocations!
Essentially this means that for a unique tree, the purely

functional algorithm above adapts at runtime to an in-place
mutating re-balancing algorithm (without any further allo-
cation). Moreover, if we use the tree persistently [33], and
the tree is shared or has shared parts, the algorithm adapts
to copying exactly the shared spine of the tree (and no more),
while still rebalancing in place for any unshared parts.

type visitor {
Done
BinR(right:tree, value : int, visit : visitor)
BinL(left:tree, value : int, visit : visitor)

}
type direction { Up; Down }

fun tmap(f : int -> int, t : tree,
visit : visitor, d : direction) : tree {

match(d) {
Down -> match(t) { // going down a left spine

Bin(l,x,r) -> tmap(f,l,BinR(r,x,visit),Down) // A
Tip -> tmap(f,Tip,visit,Up) // B

}
Up -> match(visit) { // go up through the visitor

Done -> t // C
BinR(r,x,v) -> tmap(f,r,BinL(t,f(x),v),Down) // D
BinL(l,x,v) -> tmap(f,Bin(l,x,t),v,Up) // E

} } }

Fig. 3. FBIP in-order tree traversal algorithm in Koka.

2.6 A New Paradigm: Functional but In-Place (FBIP)
The previous red-black tree rebalancing showed that with
Perceus we can write algorithms that dynamically adapt
to use in-place mutation when possible (and use copying
when used persistently). Importantly, a programmer can rely
on this optimization happening, e.g. they can see the match
patterns and match them to constructors in each branch.
This style of programming leads to a new paradigm that

we call FBIP: “functional but in place”. Just like tail-call op-
timization lets us describe loops in terms of regular func-
tion calls, reuse analysis lets us describe in-place mutating
imperative algorithms in a purely functional way (and get
persistence as well). Consider mapping a function f over all
elements in a binary tree in-order:
type tree {

Tip
Bin(left: tree, value : int, right: tree)

}
fun tmap(t : tree, f : int -> int) : tree {

match(t) {
Bin(l,x,r) -> Bin(tmap(l,f), f(x), tmap(r,f))
Tip -> Tip

} }

This is already quite e�cient as all the Bin and Tip nodes are
reused in-place when t is unique. However, the tmap function
is not tail-recursive and thus uses as much stack space as the
depth of the tree.
In 1968, Knuth posed the problem of visiting a tree in-

order while using no extra stack- or heap space [19] (For
readers not familiar with the problem it might be fun to try
this in your favorite imperative language �rst and see that
it is not easy to do). Since then, numerous solutions have
appeared in the literature. A particularly elegant solution
was proposed by Morris [32]. This is an in-place mutating
algorithm that swaps pointers in the tree to “remember”
which parts are unvisited. It is beyond this paper to give a
full explanation, but a C implementation is shown in Figure 2.
The traversal essentially uses a right-threaded tree to keep
track of which nodes to visit. The algorithm is subtle, though.

Agenda

①

Koka 101

②

Perceus Functional But In-Place
(FBIP)

Linear Resource Calculus

!1

③ ④

Agenda

①

Koka 101

②

Perceus Functional But In-Place
(FBIP)

Linear Resource Calculus

!1

③ ④

Architecture

Compiler

fun map {
…

}

fun map {
… dup …

}

Architecture

Compiler

fun map {
…

}

fun map {
… dup …

}

Architecture

Perceus

Compiler

fun map {
…

}

fun map {
… dup …

}

Architecture

!1Perceus
syntax-directed algorithm

Compiler

fun map {
…

}

fun map {
… dup …

}

Architecture

!1Perceus
closely based on linear logic

syntax-directed algorithm

Compiler

fun map {
…

}

fun map {
… dup …

}

Architecture

!1Perceus
closely based on linear logic

operational semantics in an explicit
heap with reference counting

syntax-directed algorithm

Compiler

fun map {
…

}

fun map {
… dup …

}

A linear resource calculus

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

!1

No mutable
references

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

Context
resources in scope

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

Context
resources in scope

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

borrowed

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

Context
resources in scope

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

borrowed owned

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

Context
resources in scope

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

borrowed owned

!1

A linear resource calculus
MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

MSR-TR-2020-42, Nov 29, 2020,

In practice, mutable references are the main way to con-
struct cyclic data. Since mutable references are uncommon
in our setting, we leave the responsibility to the programmer
to break cycles by explicitly clearing a reference cell that
may be part of a cycle. Since this strategy is also used by
Swift, a widely used language where most object �elds are
mutable, we believe this is a reasonable approach to take for
now. However, we have plans for future improvements: since
we know statically that only mutable references are able to
form a cycle, we could generate code that tracks those data
types at run time and may perform a more e�cient form of
incremental cycle collection.

2.7.5 Summary. In summary, we have shown how static
guarantees at compile-time can be used to mitigate the per-
formance impact of concurrency and the risk of cycles. This
paper does not yet present a general solution to all prob-
lems with reference counting and future work is required
to explore how cycles can be handled more e�ciently, and
how well Perceus can be used with implicit control �ow.
Yet, we expect that our approach gives new insights in the
general design space of reference counting, and showcase
that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has
good performance, which is discussed in Section 4.

3 A Linear Resource Calculus
In this section we present a novel linear resource calculus,
_1, which is closely based on linear logic. The operational
semantics of _1 is formalized in an explicit heap with refer-
ence counting, and we prove that the operational semantics
is sound. We then formalize Perceus as a sound and precise
syntax-directed algorithm of _1 and thus provide a theoretic
foundation for Perceus.

3.1 Syntax
Figure 4 de�nes the syntax of our linear resource calculus _1.
It is essentially an untyped lambda calculus extended with
explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in match are mutually exclu-
sive, and all pattern binders are distinct. Syntactic constructs
in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and
drop form the basic instructions of reference counting.

Contexts �, � are multisets containing variable names. We
use the compact comma notation for summing (or splitting)
multisets. For example, (�, x) adds x to �, and (�1, �2) ap-
pends two multisets �1 and �2. The set of free variables of
an expression e is denoted by fv(e), and the set of bound
variables of a pattern p by bv(p).
3.2 The Linear Resource Calculus
The derivation � | � ` e e

0 in Figure 5 reads as follows:
given a borrowed environment �, a linear environment �, an
expression e is translated into an expression e

0 with explicit

Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi ! ei } (match)
| dup x ; e (duplicate)
| drop x ; e (drop)
| match e { pi ! ei } (match expr)

v ::= x | _x . e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . .bn (pattern)
b ::= x | _ (binder or wildcard)
Values
v ::= x (variables, f , y , z)

| _x . e (abstraction)
| C v1 . . . vn (constructor of arity n)

Patterns:
p ::= C b1 . . .bn (constructor of arity n)
b ::= x | _ (binder or wildcard)
Contexts �, � : := ? | � [x

Syntactic shorthands
e1; e2 , val x = e1; e2 sequence, x 62 fv(e2)
__. e , _x . e x 62 fv(e)
_x . e , _ysx . e ys = fv(e)

Fig. 4. Syntax of the linear resource calculus _1.

reference counting instructions. We call variables in the lin-
ear environment owned.
The key idea of _1 is that each resource (i.e., owned vari-

able) is consumed exactly once. That is, a resource needs
to be explicitly duplicated (in rule ���) if it is needed more
than once; or be explicitly dropped (in rule ����) if it is not
needed. The rules are closely related to linear typing.
Following the key idea, the variable rule ��� consumes a

resource when we own and only own x exactly once in the
owned environment. For example, to derive the K combinator,
_x y . x , we need to apply ���� to be able to discard y , which
gives _x y . drop y ; x .

The ��� rule splits the owned environment � into two sep-
arate contexts �1 and �2 for expression e1 and e2 respectively.
Each expression then consumes its corresponding owned
environment. Since �2 is consumed in the e2 derivation, we
know that resources in �2 are surely alive when deriving
e1, and thus we can borrow �2 in the e1 derivation. The rule
is quite similar to the [���!] rule of Wadler’s linear type
rules [44,pg.14] where a linear type can be “borrowed” as a
regular type during evaluation of a binding.
Borrowing is important as it allows us to conduct a dup

as late as possible, or otherwise we will need to duplicate
enough resources before we can divide the owned envi-
ronment. Consider _f g x . (f x) (g x). Without borrowing,
we have to duplicate x before the application, resulting

Context
resources in scope

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

!1

Declarative linear resource rules

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

Declarative linear resource rules

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

borrowed owned

Declarative linear resource rules

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

consume a
resource

borrowed owned

Declarative linear resource rules

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

consume a
resource

own and only own it
exactly once

borrowed owned

Declarative linear resource rules

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

consume a
resource

own and only own it
exactly once

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

borrowed owned

Declarative linear resource rules

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

consume a
resource

own and only own it
exactly once

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

borrowed owned

own all free variables

Declarative linear resource rules
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

Declarative linear resource rules
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

explicit dup

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

Declarative linear resource rules
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

borrowed or
owned

explicit dup

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

Declarative linear resource rules
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

borrowed or
owned

explicit dup

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

Declarative linear resource rules
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

borrowed or
owned

explicit dup

explicit drop

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

Declarative linear resource rules
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

borrowed or
owned

explicit dup

explicit drop

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

Declarative linear resource rules

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

Declarative linear resource rules

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

split the owned
context

Declarative linear resource rules

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

split the owned
context

Declarative linear resource rules

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

Context

input

� | � ` e e0

<latexit sha1_base64="iVze/ZDuD2TVsSLyN8qUSgaBuTw=">AAACGHicbZA9SwNBEIb3/DZ+RS1tFoNoFe8koqWooGUEo0IuhLm9SbK4e3fuzikh+DNs/Cs2ForYpvPfuIkp/Hph4eGdGWbnjTIlLfn+hzc2PjE5NT0zW5ibX1hcKi6vXNg0NwJrIlWpuYrAopIJ1kiSwqvMIOhI4WV0fTSoX96isTJNzqmbYUNDO5EtKYCc1Sxuh8eoCHioZczDE9Da8W0MtsORh0a2O2RvctkGY9I7jpvNYskv+0PxvxCMoMRGqjaL/TBORa4xIaHA2nrgZ9TogSEpFN4XwtxiBuIa2lh3mIBG2+gND7vnG86JeSs17iXEh+73iR5oa7s6cp0aqGN/1wbmf7V6Tq39Rk8mWU6YiK9FrVxxSvkgJR5Lg4JU1wEII91fueiAAUEuy4ILIfh98l+42CkHlfLuWaV0cDiKY4atsXW2xQK2xw7YKauyGhPsgT2xF/bqPXrP3pv3/tU65o1mVtkPef1PsQyflQ==</latexit>

output
borrowed owned

split the owned
context

Perceus as syntax-directed linear resource rules

Context

input output
borrowed owned

� | � `s e e0

<latexit sha1_base64="kQ89UUpwb4BXwFWIVkM0Z57e4bU=">AAACGnicbZDLSgNBEEV7fBtfUZduGoPoKsxIRJeigi4jGBUyIdT0VJLG7pmxu0YJwe9w46+4caGIO3Hj39h5LHxdaDjcqqK6bpQpacn3P72x8YnJqemZ2cLc/MLiUnF55dymuRFYE6lKzWUEFpVMsEaSFF5mBkFHCi+iq8N+/eIGjZVpckbdDBsa2olsSQHkrGYxCI9QEfBQy5iHx6C145sYbKdpOfLQyHaH7HUu22BMestxs1ks+WV/IP4XghGU2EjVZvE9jFORa0xIKLC2HvgZNXpgSAqFd4Uwt5iBuII21h0moNE2eoPT7viGc2LeSo17CfGB+32iB9raro5cpwbq2N+1vvlfrZ5Ta6/Rk0mWEyZiuKiVK04p7+fEY2lQkOo6AGGk+ysXHTAgyKVZcCEEv0/+C+fb5aBS3jmtlPYPRnHMsDW2zrZYwHbZPjthVVZjgt2zR/bMXrwH78l79d6GrWPeaGaV/ZD38QVed6B7</latexit>

Perceus as syntax-directed linear resource rules

invariants
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Context

input output
borrowed owned

� | � `s e e0

<latexit sha1_base64="kQ89UUpwb4BXwFWIVkM0Z57e4bU=">AAACGnicbZDLSgNBEEV7fBtfUZduGoPoKsxIRJeigi4jGBUyIdT0VJLG7pmxu0YJwe9w46+4caGIO3Hj39h5LHxdaDjcqqK6bpQpacn3P72x8YnJqemZ2cLc/MLiUnF55dymuRFYE6lKzWUEFpVMsEaSFF5mBkFHCi+iq8N+/eIGjZVpckbdDBsa2olsSQHkrGYxCI9QEfBQy5iHx6C145sYbKdpOfLQyHaH7HUu22BMestxs1ks+WV/IP4XghGU2EjVZvE9jFORa0xIKLC2HvgZNXpgSAqFd4Uwt5iBuII21h0moNE2eoPT7viGc2LeSo17CfGB+32iB9raro5cpwbq2N+1vvlfrZ5Ta6/Rk0mWEyZiuKiVK04p7+fEY2lQkOo6AGGk+ysXHTAgyKVZcCEEv0/+C+fb5aBS3jmtlPYPRnHMsDW2zrZYwHbZPjthVVZjgt2zR/bMXrwH78l79d6GrWPeaGaV/ZD38QVed6B7</latexit>

Perceus as syntax-directed linear resource rules

invariants
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Context

input output
borrowed owned

� | � `s e e0

<latexit sha1_base64="kQ89UUpwb4BXwFWIVkM0Z57e4bU=">AAACGnicbZDLSgNBEEV7fBtfUZduGoPoKsxIRJeigi4jGBUyIdT0VJLG7pmxu0YJwe9w46+4caGIO3Hj39h5LHxdaDjcqqK6bpQpacn3P72x8YnJqemZ2cLc/MLiUnF55dymuRFYE6lKzWUEFpVMsEaSFF5mBkFHCi+iq8N+/eIGjZVpckbdDBsa2olsSQHkrGYxCI9QEfBQy5iHx6C145sYbKdpOfLQyHaH7HUu22BMestxs1ks+WV/IP4XghGU2EjVZvE9jFORa0xIKLC2HvgZNXpgSAqFd4Uwt5iBuII21h0moNE2eoPT7viGc2LeSo17CfGB+32iB9raro5cpwbq2N+1vvlfrZ5Ta6/Rk0mWEyZiuKiVK04p7+fEY2lQkOo6AGGk+ysXHTAgyKVZcCEEv0/+C+fb5aBS3jmtlPYPRnHMsDW2zrZYwHbZPjthVVZjgt2zR/bMXrwH78l79d6GrWPeaGaV/ZD38QVed6B7</latexit>

split the owned
context

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
"
` e

"
 e

0
#

� | x ` x x
[���]

� | �, x ` e e
0

x 2 �, �

� | � ` e dup x ; e 0
[���]

� | � ` e e
0

� | �, x ` e drop x ; e 0
[����]

�, �2 | �1 ` e1 e
0
1 � | �2 ` e2 e

0
2

� | �1, �2 ` e1 e2 e
0
1 e

0
2

[���]

? | ys, x ` e e
0

ys = fv(_x . e)
� | ys ` _x . e _ys x . e 0

[���]

x 62 �, �1, �2
�, �2 | �1 ` e1 e

0
1 � | �2, x ` e2 e

0
2

� | �1, �2 ` val x = e1; e2 val x = e
0
1; e

0
2

[����]

� | �, bv(pi) ` ei e
0
i

� | �, x ` match x { pi 7! ei } match x { pi 7! e
0
i }

[�����]

�, �i+1, . . ., �n | �i ` vi v
0
i 1 6 i 6 n

� | �1, . . ., �n ` C v1 . . . vn C v
0
1 . . . v 0

n

[���]

Fig. 5. Declarative linear resource rules of _1.

E ::= ⇤ | E e | v E

| val x = E; e

e �! e
0

E[e] 7�! E[e 0]
[����]

(app) (_x . e) v �! e [x :=v]
(bind) val x = v ; e �! e [x :=v]
(match) match (C v1 . . . vn) {pi ! ei }

�! ei [x1:=v1, . . ., xn :=vn]
with pi = C x1 . . . xn

Fig. 6. Standard strict semantics for _1.

in _f g x . dup x ; (f x) (g x). With the borrowing environ-
ment it is now possible to derive a translation with the dup

right before passing x to f : _f g x . (f (dup x ; x)) (g x)).
Notice rule ��� allows dup from the borrowing environment,
where ���� only applies to the owned environment.
The ��� rule is interesting as it essentially derives the body
of the lambda independently. The premise ys = fv(_x .e)
requires that exactly the free variables in the lambda are
owned – this corresponds to the notion that a lambda is
allocated as a closure at runtime that holds all free variables
of the lambda (and thus the lambda expression consumes the
free variables). The body of a lambda is evaluated only when

applied, so it is derived under an empty borrowed environ-
ment only owning the argument and the free variables (in
the closure). The translated lambda is also annotated with ys ,
as _ysx . e , so we know precisely the resources the lambda
should own when evaluated in a heap semantics. We often
omit the annotation when it is irrelevant.
The ���� rule is similar to application and borrows �2 in

the derivation for the bound expression. This is the main
reason to not consider val x = e1; e2 as syntactic sugar
for (_x . e2) e1. The ����� rule consumes the scrutinee and
owns the bound variables in each pattern for each branch. For
constructors (rule ���), we divide the owned environment
into n parts for each component, and allow each compo-
nent derivation to borrow the owned environment of the
components derived later.
We use the notation dee to erase all drop and dup in the

expression e . We can now state that derivations leave expres-
sions unchanged except for inserting dup/drop operations:
if � | � ` e e

0 then e = de 0e.
Lemma 1. (Translation only inserts dup/drop)
If � | � ` e e

0 then e = de 0e.

3.3 Semantics
Figure 6 de�nes standard semantics for _1 using strict evalu-
ation contexts [45]. The evaluation contexts uniquely deter-
mine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation con-
text of a stack and program counter. Rule (match) replies on
the internal form of expression match e { pi ! ei }: after
substitution (app), values may appear in positions where
only variables were allowed, and this is exactly what enables
us to do pattern match on a data constructor.
In Figure 7 we de�ne our target semantics of a reference

counted heap, so sharing of values becomes explicit and sub-
stitution only substitutes variables. Here, each heap entry
x 7!n

v points to a value v with a reference count of n (with
n > 1). In these semantics, values other than variables are
allocated in the heap with rule (lamr) and rule (conr). The
evaluation rules discard entries from the heap when the refer-
ence count drops to zero. Any allocated lambda is annotated
as _ysx . e to clarify that these are essentially closures hold-
ing an environment ys and a code pointer _x . e . Note that it
is important that the environment ys is a multi-set. After the
initial translation, ys will be equivalent to the free variables
in the body (see rule ���), but during evaluation substitution
may substitute several variables with the same reference. To
keep reference counts correct, we need to keep considering
each one as a separate entry in the closure environment.
When applying an abstraction, rule (appr) needs to sat-

isfy the assumptions made when deriving the abstraction
in rule ���. First, the (appr) rule inserts dup to duplicate
variables ys , as these are owned in rule ���. It then drops the
reference to the closure itself. Rule (matchr) is similar to

Perceus as syntax-directed linear resource rules

invariants
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Context

input output
borrowed owned

� | � `s e e0

<latexit sha1_base64="kQ89UUpwb4BXwFWIVkM0Z57e4bU=">AAACGnicbZDLSgNBEEV7fBtfUZduGoPoKsxIRJeigi4jGBUyIdT0VJLG7pmxu0YJwe9w46+4caGIO3Hj39h5LHxdaDjcqqK6bpQpacn3P72x8YnJqemZ2cLc/MLiUnF55dymuRFYE6lKzWUEFpVMsEaSFF5mBkFHCi+iq8N+/eIGjZVpckbdDBsa2olsSQHkrGYxCI9QEfBQy5iHx6C145sYbKdpOfLQyHaH7HUu22BMestxs1ks+WV/IP4XghGU2EjVZvE9jFORa0xIKLC2HvgZNXpgSAqFd4Uwt5iBuII21h0moNE2eoPT7viGc2LeSo17CfGB+32iB9raro5cpwbq2N+1vvlfrZ5Ta6/Rk0mWEyZiuKiVK04p7+fEY2lQkOo6AGGk+ysXHTAgyKVZcCEEv0/+C+fb5aBS3jmtlPYPRnHMsDW2zrZYwHbZPjthVVZjgt2zR/bMXrwH78l79d6GrWPeaGaV/ZD38QVed6B7</latexit>

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

split the owned
context

Perceus as syntax-directed linear resource rules

invariants
Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Context

input output
borrowed owned

� | � `s e e0

<latexit sha1_base64="kQ89UUpwb4BXwFWIVkM0Z57e4bU=">AAACGnicbZDLSgNBEEV7fBtfUZduGoPoKsxIRJeigi4jGBUyIdT0VJLG7pmxu0YJwe9w46+4caGIO3Hj39h5LHxdaDjcqqK6bpQpacn3P72x8YnJqemZ2cLc/MLiUnF55dymuRFYE6lKzWUEFpVMsEaSFF5mBkFHCi+iq8N+/eIGjZVpckbdDBsa2olsSQHkrGYxCI9QEfBQy5iHx6C145sYbKdpOfLQyHaH7HUu22BMestxs1ks+WV/IP4XghGU2EjVZvE9jFORa0xIKLC2HvgZNXpgSAqFd4Uwt5iBuII21h0moNE2eoPT7viGc2LeSo17CfGB+32iB9raro5cpwbq2N+1vvlfrZ5Ta6/Rk0mWEyZiuKiVK04p7+fEY2lQkOo6AGGk+ysXHTAgyKVZcCEEv0/+C+fb5aBS3jmtlPYPRnHMsDW2zrZYwHbZPjthVVZjgt2zR/bMXrwH78l79d6GrWPeaGaV/ZD38QVed6B7</latexit>

not used

Perceus: Garbage Free Reference Counting with Reuse MSR-TR-2020-42, Nov 29, 2020,

�
"
| �
" s̀ e

"
 e

0
#

� \ � = ? � ✓ fv(e) fv(e) ✓ �, � multiplicity of each member in �, � is 1

� | x s̀ x x
[����]

�, x | ? s̀ x dup x ; x
[��������]

�, �2 | � � �2 s̀ e1 e
0
1 � | �2 s̀ e2 e

0
2 �2 = � \ fv(e2)

� | � s̀ e1 e2 e
0
1 e

0
2

[����]

x 2 fv(e) ? | ys, x s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . e 0
[����]

x 62 fv(e) ? | ys s̀ e e
0

ys = fv(_x . e) �1 = ys � �

�,�1 | � s̀ _x . e dup �1; _ys x . (drop x ; e 0)
[���������]

x 2 fv(e2) x 62 �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2, x s̀ e2 e
0
2 �2 = � \ (fv(e2) � x)

� | � s̀ val x = e1; e2 val x = e
0
1; e

0
2

[�����]

x 62 fv(e2), �, �
�, �2 | � � �2 s̀ e1 e

0
1

� | �2 s̀ e2 e
0
2 �2 = � \ fv(e2)

� | � s̀ val x = e1; e2 val x = e
0
1; drop x ; e 02

[����������]

� | �i s̀ ei e
0
i �i = (�, bv(pi)) \ fv(ei) �0i = (�, bv(pi)) � �i

� | �, x s̀ match x { pi 7! ei } match x { pi 7! drop �0i ; e
0
i }

[������]

�, �i+1, . . ., �n | �i ` s vi v
0
i 1 6 i 6 n �i = (� � �i+1 � . . . � �n) \ fv(vi)

� | � ` s C v1 . . . vn C v
0
1 . . . v 0

n

[����]

Fig. 8. Syntax-directed linear resource rules of _1.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and
one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

Reference-counted heap semantics

H | e �!r H
0 | e0

<latexit sha1_base64="g51fX5sGWitAzKBDWGvXM64PHE0=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyHEKuxKRMugTcoI5gHZEGYnk82QeSwzs0pY8gU2/oqNhSK21nb+jZNkC008cOFwzr3ce08YM6qN5307ubX1jc2t/HZhZ3dv/8A9PGppmShMmlgyqToh0oRRQZqGGkY6sSKIh4y0w/HNzG/fE6WpFHdmEpMeR5GgQ4qRsVLfLdVhwOkAEhgwKSJFo5FBSsmHvoL1cuaV+27Rq3hzwFXiZ6QIMjT67lcwkDjhRBjMkNZd34tNL0XKUMzItBAkmsQIj1FEupYKxInupfN3prBklQEcSmVLGDhXf0+kiGs94aHt5MiM9LI3E//zuokZXvVSKuLEEIEXi4YJg0bCWTZwQBXBhk0sQVhReyvEI6QQNjbBgg3BX355lbTOK361cnFbLdauszjy4AScgjPgg0tQA3XQAE2AwSN4Bq/gzXlyXpx352PRmnOymWPwB87nDxcpmt8=</latexit>

input

Reference-counted heap semantics

H | e �!r H
0 | e0

<latexit sha1_base64="g51fX5sGWitAzKBDWGvXM64PHE0=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyHEKuxKRMugTcoI5gHZEGYnk82QeSwzs0pY8gU2/oqNhSK21nb+jZNkC008cOFwzr3ce08YM6qN5307ubX1jc2t/HZhZ3dv/8A9PGppmShMmlgyqToh0oRRQZqGGkY6sSKIh4y0w/HNzG/fE6WpFHdmEpMeR5GgQ4qRsVLfLdVhwOkAEhgwKSJFo5FBSsmHvoL1cuaV+27Rq3hzwFXiZ6QIMjT67lcwkDjhRBjMkNZd34tNL0XKUMzItBAkmsQIj1FEupYKxInupfN3prBklQEcSmVLGDhXf0+kiGs94aHt5MiM9LI3E//zuokZXvVSKuLEEIEXi4YJg0bCWTZwQBXBhk0sQVhReyvEI6QQNjbBgg3BX355lbTOK361cnFbLdauszjy4AScgjPgg0tQA3XQAE2AwSN4Bq/gzXlyXpx352PRmnOymWPwB87nDxcpmt8=</latexit>

input

output

Reference-counted heap semantics

H | e �!r H
0 | e0

<latexit sha1_base64="g51fX5sGWitAzKBDWGvXM64PHE0=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyHEKuxKRMugTcoI5gHZEGYnk82QeSwzs0pY8gU2/oqNhSK21nb+jZNkC008cOFwzr3ce08YM6qN5307ubX1jc2t/HZhZ3dv/8A9PGppmShMmlgyqToh0oRRQZqGGkY6sSKIh4y0w/HNzG/fE6WpFHdmEpMeR5GgQ4qRsVLfLdVhwOkAEhgwKSJFo5FBSsmHvoL1cuaV+27Rq3hzwFXiZ6QIMjT67lcwkDjhRBjMkNZd34tNL0XKUMzItBAkmsQIj1FEupYKxInupfN3prBklQEcSmVLGDhXf0+kiGs94aHt5MiM9LI3E//zuokZXvVSKuLEEIEXi4YJg0bCWTZwQBXBhk0sQVhReyvEI6QQNjbBgg3BX355lbTOK361cnFbLdauszjy4AScgjPgg0tQA3XQAE2AwSN4Bq/gzXlyXpx352PRmnOymWPwB87nDxcpmt8=</latexit>

input

output

Reference-counted heap semantics
MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

Resources allocated in heap

H | e �!r H
0 | e0

<latexit sha1_base64="g51fX5sGWitAzKBDWGvXM64PHE0=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyHEKuxKRMugTcoI5gHZEGYnk82QeSwzs0pY8gU2/oqNhSK21nb+jZNkC008cOFwzr3ce08YM6qN5307ubX1jc2t/HZhZ3dv/8A9PGppmShMmlgyqToh0oRRQZqGGkY6sSKIh4y0w/HNzG/fE6WpFHdmEpMeR5GgQ4qRsVLfLdVhwOkAEhgwKSJFo5FBSsmHvoL1cuaV+27Rq3hzwFXiZ6QIMjT67lcwkDjhRBjMkNZd34tNL0XKUMzItBAkmsQIj1FEupYKxInupfN3prBklQEcSmVLGDhXf0+kiGs94aHt5MiM9LI3E//zuokZXvVSKuLEEIEXi4YJg0bCWTZwQBXBhk0sQVhReyvEI6QQNjbBgg3BX355lbTOK361cnFbLdauszjy4AScgjPgg0tQA3XQAE2AwSN4Bq/gzXlyXpx352PRmnOymWPwB87nDxcpmt8=</latexit>

input

output

Reference-counted heap semantics
MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

Resources allocated in heap

Beta rules

H | e �!r H
0 | e0

<latexit sha1_base64="g51fX5sGWitAzKBDWGvXM64PHE0=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyHEKuxKRMugTcoI5gHZEGYnk82QeSwzs0pY8gU2/oqNhSK21nb+jZNkC008cOFwzr3ce08YM6qN5307ubX1jc2t/HZhZ3dv/8A9PGppmShMmlgyqToh0oRRQZqGGkY6sSKIh4y0w/HNzG/fE6WpFHdmEpMeR5GgQ4qRsVLfLdVhwOkAEhgwKSJFo5FBSsmHvoL1cuaV+27Rq3hzwFXiZ6QIMjT67lcwkDjhRBjMkNZd34tNL0XKUMzItBAkmsQIj1FEupYKxInupfN3prBklQEcSmVLGDhXf0+kiGs94aHt5MiM9LI3E//zuokZXvVSKuLEEIEXi4YJg0bCWTZwQBXBhk0sQVhReyvEI6QQNjbBgg3BX355lbTOK361cnFbLdauszjy4AScgjPgg0tQA3XQAE2AwSN4Bq/gzXlyXpx352PRmnOymWPwB87nDxcpmt8=</latexit>

input

output

Reference-counted heap semantics
MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

Resources allocated in heap

Beta rules

Reference counting instructions

H | e �!r H
0 | e0

<latexit sha1_base64="g51fX5sGWitAzKBDWGvXM64PHE0=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyHEKuxKRMugTcoI5gHZEGYnk82QeSwzs0pY8gU2/oqNhSK21nb+jZNkC008cOFwzr3ce08YM6qN5307ubX1jc2t/HZhZ3dv/8A9PGppmShMmlgyqToh0oRRQZqGGkY6sSKIh4y0w/HNzG/fE6WpFHdmEpMeR5GgQ4qRsVLfLdVhwOkAEhgwKSJFo5FBSsmHvoL1cuaV+27Rq3hzwFXiZ6QIMjT67lcwkDjhRBjMkNZd34tNL0XKUMzItBAkmsQIj1FEupYKxInupfN3prBklQEcSmVLGDhXf0+kiGs94aHt5MiM9LI3E//zuokZXvVSKuLEEIEXi4YJg0bCWTZwQBXBhk0sQVhReyvEI6QQNjbBgg3BX355lbTOK361cnFbLdauszjy4AScgjPgg0tQA3XQAE2AwSN4Bq/gzXlyXpx352PRmnOymWPwB87nDxcpmt8=</latexit>

Perceus is precise and garbage free

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

-

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Then

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

for every intermediate state

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Then

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

for every intermediate state

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Then

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

which is not at a rc operation,

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

for every intermediate state

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Then

for all

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

which is not at a rc operation,

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

for every intermediate state

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

reach

Then

for all

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

which is not at a rc operation,

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

Perceus is precise and garbage free

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

for every intermediate state

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

reach

Then

for all

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

which is not at a rc operation,

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

erase rc
operations

Perceus is precise and garbage free

MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

for every intermediate state

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

reach

Then

for all

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

which is not at a rc operation,

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

erase rc
operations

Perceus is precise and garbage free

MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

MSR-TR-2020-42, Nov 29, 2020,

H : x ! (N+, v)
E ::= ⇤ | E e | x E | val x = E; e

| C x1 . . . xi E vj . . . vn

H | e �!r | H0
e
0

H | E[e] 7�!r H
0 | E[e 0]

[����]

(lamr) H | (_ys x . e) �!r H, f 7!1 _ysx . e | f fresh f

(conr) H | C x1 . . . xn �!r H, z 7!1
C x1 . . . xn | z fresh z

(appr) H | f z �!r H | dup ys; drop f ; e [x :=z] (f 7!n _ysx . e) 2 H

(matchr) H | match x {pi ! ei } �!r H | dup ys; drop x ; ei [xs:=ys] with pi = C xs and (x 7!n
C ys) 2 H

(bindr) H | val x = y ; e �!r H | e [x :=y]

(dupr) H, x 7!n
v | dup x ; e �!r H, x 7!n+1

v | e

(dropr) H, x 7!n+1
v | drop x ; e �!r H, x 7!n

v | e if n > 1
(dlamr) H, x 7!1 _ysz .e | drop x ; e �!r H | drop ys; e
(dconr) H, x 7!1

C ys | drop x ; e �!r H | drop ys; e

Fig. 7. Reference-counted heap semantics for _1.

rule (appr), which duplicates the newly bound pattern bind-
ings and drops the scrutinee. Rule (bindr) simply substitutes
the bound variable x with the resource y .

Duping a resource is straightforward as rule (dupr)merely
increments the reference count of the resource. Dropping is
more involved. Rule (dropr) just decrements the reference
count when there are still multiple copies of it. But when
the reference count would drop to zero, rule (dlamr) and
rule (dconr) actually free a heap entry and then dynamically
insert drop operations to drop their �elds recursively.
The tricky part of the reference counting semantics is

showing correctness. We prove this in two parts. First, we
prove that the reference counting semantics is sound and
corresponds to the standard semantics. Below we use heaps
as substitutions on expressions. We write [H]e to mean H

applied as a substitution to expression e .
Theorem 1. (Reference-counted heap semantics is sound)
If? | ? ` e e

0 and e 7�!⇤
v , then also? | e 0 7�!⇤

r H | x
with [H]x = v .
To prove this theorem we need to maintain strong invariants
at each evaluation step to ensure a variable is still alive if
it is going to be referred later. The proof can be found in
Appendix D.2. Second, we prove that the reference counting
semantics never hold on to unused variables. We �rst de�ne
the notion of reachability.
De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:

Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

reach (x,H | e)

<latexit sha1_base64="acUksh66fM6xEMTsbr3A5pe8P3U=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3U3i7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc5C2tRMc9qJJcXC47Ttje5mfntMpWJR+KAnMXUFHoQsYARrI7nlpwtURz3BfETP+8WSXbHnQKvEyUgJMjT6xa+eH5FE0FATjpXqOnas3RRLzQin00IvUTTGZIQHtGtoiAVVbjo/eorOjOKjIJKmQo3m6u+JFAulJsIznQLroVr2ZuJ/XjfRwY2bsjBONA3JYlGQcKQjNEsA+UxSovnEEEwkM7ciMsQSE21yKpgQnOWXV0nrsuJUK1f31VLtNosjDydwCmVw4BpqUIcGNIHAIzzDK7xZY+vFerc+Fq05K5s5hj+wPn8AdayQnA==</latexit>

x 2 fv(e)

<latexit sha1_base64="TBecqnzDdZjonlqUdV0vhRvrA6A=">AAAB/XicbVDLSgMxFM3UV62v+ti5CRahbsqMVHRZdOOygn1AZyiZ9E4bmskMSaZYh+KvuHGhiFv/w51/YzrtQlsPBA7n3Ms9OX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsnCjgT0NBMc2jHEkjoc2j5w5up3xqBVCwS93ocgxeSvmABo0QbqVs8esAuE9gNiR6oIA1GkzKcdYslu2JnwMvEmZMSmqPeLX65vYgmIQhNOVGq49ix9lIiNaMcJgU3URATOiR96BgqSAjKS7P0E3xqlB4OImme0DhTf2+kJFRqHPpmMku56E3F/7xOooMrL2UiTjQIOjsUJBzrCE+rwD0mgWo+NoRQyUxWTAdEEqpNYQVTgrP45WXSPK841crFXbVUu57XkUfH6ASVkYMuUQ3dojpqIIoe0TN6RW/Wk/VivVsfs9GcNd85RH9gff4AyxSUzw==</latexit>

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

(x,H | v)

<latexit sha1_base64="c4PSKqYnNNSKckhjN7+a/IIpUZs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREKnoseumxgv2ANpTNZtMu3Wzi7qZYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58WcKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7HhYUc4EbWqmOe3EkuLQ47Ttje5mfntMpWKReNCTmLohHggWMIK1kdzy0wWqo17IfDQ+7xdLdsWeA60SJyMlyNDoF796fkSSkApNOFaq69ixdlMsNSOcTgu9RNEYkxEe0K6hAodUuen86Ck6M4qPgkiaEhrN1d8TKQ6VmoSe6QyxHqplbyb+53UTHdy4KRNxoqkgi0VBwpGO0CwB5DNJieYTQzCRzNyKyBBLTLTJqWBCcJZfXiWty4pTrVzdV0u12yyOPJzAKZTBgWuoQR0a0AQCj/AMr/Bmja0X6936WLTmrGzmGP7A+vwBj4GQrQ==</latexit>

reach(y,H | e)

<latexit sha1_base64="YFNZohpqT4+8984CHU5AyRLXU8A=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJIRY9FLz1WsB/QhrLZbNqlu0nc3RRC6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzvJgzpW3721pb39jc2i7sFHf39g8OS0fHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO144/uZ35lQqVgUPuo0pq7Aw5AFjGBtJLeSXqIG6gvmI3oxKJXtqj0HWiVOTsqQozkoffX9iCSChppwrFTPsWPtZlhqRjidFvuJojEmYzykPUNDLKhys/nRU3RuFB8FkTQVajRXf09kWCiVCs90CqxHatmbif95vUQHt27GwjjRNCSLRUHCkY7QLAHkM0mJ5qkhmEhmbkVkhCUm2uRUNCE4yy+vkvZV1alVrx9q5fpdHkcBTuEMKuDADdShAU1oAYEneIZXeLMm1ov1bn0sWtesfOYE/sD6/AF3O5Cd</latexit>

reach
-
-

Given

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

for every intermediate state

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

reach

Then

for all

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

which is not at a rc operation,

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Perceus: Garbage Free Reference Counting with Reuse PLDI ’21, June 1, 2021, US

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

De�nition 1. (Reachability)
We say a variable x is reachable in terms of a heap H and an
expression e , denoted as reach(x , H | e), if (1) x 2 fv(e);
or (2) for some y , we have reach(y, H | e) ^ y 7!n

v 2 H

^ reach(x , H | v).
With reachability, we can formally show:
Theorem 2. (Reference counting leaves no garbage)
Given ?;? ` e e

0, and ? | e 0 7�!⇤
r H | x , then for ev-

ery intermediate stateHi | ei , we have that for all y 2 dom(Hi),
reach(y, Hi | ei).
In Appendix D.3, we further show that the reference counts
are exactly equal to the number of actual references to the
resource. Notably, to capture the essence of precise reference
counting, _1 does not modelmutable references (Section 2.7.3).
From Theorem 2 we see that mutable references are indeed
the only source of cycles. A natural extension of the system
is to include mutable references and thus cycles. In that case,
we could generalize Theorem 2, where the conclusion would
be that for all resource in the heap, it is either reachable from
the expression, or it is part of a cycle.

The above theorems establish the correctness of the reference-
counted heap semantics. However, correctness does not im-
ply precision, ie. that the heap is garbage free. Eventually all
live data is discarded but it may well hold on to live data
too long by delaying drop operations. As an example, con-
sider y 7!1 () | (_x . x) (drop y ; ()), where y is reachable
but dropped too late: it is only dropped after the lambda gets
allocated. In contrast, a garbage free algorithm would pro-
duce y 7!1 () | drop y ; (_x . x) (). In the next section we
present Perceus as a syntax directed algorithm of the linear
resource calculus and show that it is garbage free.

3.4 Perceus
Figure 8 de�nes syntax directed derivation s̀ for our resource
calculus and as such speci�es our Perceus algorithm. Like
before, � | � s̀ e e

0 translates an expression e to e 0 un-
der an borrowed environment � and an owned environment
�. During the derivation, we maintain the following invari-
ants: (1) � \ � = ?; (2) � ✓ fv(e); (3) fv(e) ✓ �, �; and (4)
multiplicity of each member in �, � is 1. We ensure these
properties hold by construction at any step in a derivation.

The Perceus rules are set up to do precise reference count-
ing: we delay a dup operation to come as late as possible,
pushing them out to the leaves of a derivation; and we gener-
ate a drop operation as soon as possible, right after a binding
or at the start of a branch.

Rule �������� borrows x by inserting a dup. The ���� rule
now deterministically �nds a good split of the environment
�. We pass the intersection of � with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as
in the declarative system. For abstraction and binding we
have two variants: one where the binding is actually in the
free variables of the expression (rule ���� and �����), and

one where the binding can be immediately dropped as it is
unused (rule ��������� and ����������). In the abstraction
rule, we know that � ✓ fv(_x .e) and thus � ✓ ys . If there
are any free variables not in �, they must be part of the
borrowed environment (as �1) and these must be duplicated
to ensure ownership. The bind rules are similarly constructed
as a mixture of ���� and ����.

The ������ rule is interesting as in each branch there may
be variables that can to be dropped as they no longer occur
as free variables in that branch. The owned environment
�i in the i th branch is the intersection of (�, bv(pi)) and
the free variables in that branch; any other owned variables
(as �0i) are dropped at the start of the branch. Rule ����
deterministically splits the environment � as in rule ����.

We show that the Perceus algorithm is sound by showing
that for each rule there exists a derivation in the declarative
linear resource calculus. The proof is given in Appendix D.4.
Theorem 3. (Syntax directed translation is sound.)
If � | � s̀ e e

0 then also � | � ` e e
0.

More importantly, we prove that any translation resulting
from the Perceus algorithm is precise, where any intermedi-
ate state in the evaluation is garbage free (Appendix D.5):
Theorem 4. (Perceus is precise and garbage free)
If ? | ? s̀ e e

0 and ? | e 0 7�!⇤
r H | x , then for every

intermediate state Hi | ei that is not at a dup/drop operation
(ei < E[drop x ; e 0i] and ei < E[dup x ; e 0i]), we have that
for all y 2 dom(Hi), reach(y, Hi | dei e).
This theorem states that after evaluating any immediate ref-
erence counting instructions, every variable in the heap is
reachable from the erased expression. This rules out, for ex-
ample, y 7!1 () | (_x . x) (drop y ; ()) as y is not in the free
variables of the erased expression. Just like Theorem 2, if
the system is extended with mutable references, then Theo-
rem 4 could be generalized such that every resource is either
reachable from the erased expression, or it is part of a cycle.
The implementation of Perceus is further extended with

the optimizations described in Section 2. As the component
transformations, including inlining and dup/drop fusion, are
standard, the soundness of those optimizations follows natu-
rally and a proof is beyond the scope of this paper.

4 Benchmarks
In this section we discuss initial benchmarks of Perceus as
implemented in Koka, versus state-of-the-art memory recla-
mation implementations in various other languages. Since
we compare across languages we need to interpret the results
with care – the results depend not only on memory recla-
mation but also on the di�erent optimizations performed by
each compiler and how well we can translate each bench-
mark to that particular language.We view these results there-
fore mostly as evidence that the Perceus reference counting

11

erase rc
operations

Summary

①
Koka 101

②

Perceus

Functional But In-Place (FBIP)

Linear Resource Calculus !1

③

④

Summary

①
Koka 101

②

Perceus

Functional But In-Place (FBIP)

Linear Resource Calculus !1

③

④

Summary

①
Koka 101

②

Perceus

Functional But In-Place (FBIP)

Linear Resource Calculus !1

③

④

Summary

①
Koka 101

②

Perceus

Functional But In-Place (FBIP)

Linear Resource Calculus !1

③

④

Summary

①
Koka 101

②

Perceus

Functional But In-Place (FBIP)

Linear Resource Calculus !1

③

④

Benchmarks

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PLDI ’21, June 1, 2021, US

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

2.
45

1.
86

1.
05

1.
05

1.
54

1.
26

1.
69

1.
43 1.
45

··
·5
.0
5

2.
40 ··
·9
.5
2

2.
08

··
·1
0.
27

··
·4
.5
2

··
·7
.8
5

··
·3
.8
4

2.
23

··
·3
.9
6

··
·7
.8
7

1.
67 1.
69

0.
86

1.
33

··
·3
.1
8

0.
92

N
A

1.
33

0.
79

··
·3
.3
3

re
la
tiv

e
tim

e
(lo

w
er

is
be
�e

r)

Koka Koka,no-opt OCaml Haskell
Swi� Java C++

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
89

1.
22

1.
20

0.
92

1.
79

0.
97

1.
68

··
·9
.8
1

1.
07

··
·3
.5
4

1.
09

1.
61

1.
59

1.
99

··
·3
.1
5

1.
71

··
·1
0.
25

2.
33

1.
89

··
·3
.2
7

··
·3
.1
2

1.
19

N
A

2.
25

··
·3
.0
1

··
·2
.9
4

re
la
tiv

e
rs
s

(lo
w
er

is
be
�e

r)

Fig. 9. Relative execution time and peak working set with
respect to Koka. Using a 6-core 64-bit AMD 3600XT 3.8Ghz
with 64GiB 3600Mhz memory, Ubuntu 20.04.

technique is viable and can be competitive and not as a direct
comparison of absolute performance between systems.

As such, we selected only benchmarks that stress memory
allocation, and we tried to select mature comparison systems
that use a range of memory reclamation techniques and are
considered best-in-class. The systems we compare are:
• Koka 2.0.3, compiling the generated C code with gcc 9.3.0
using a customized version of the mimalloc allocator [27].
We also runKoka “no-opt” with reuse analysis and drop/reuse
specialization disabled to measure the impact of those op-
timizations.

• OCaml 4.08.1. This has a stop-the-world generational col-
lector with a minor and major heap. The minor heap uses
a copying collector, while a tracing collector is used for
the major heap [11, 34,Chap.22]. The Koka benchmarks
correspond essentially one-to-one to the OCaml versions.

• Haskell, GHC 8.6.5. A highly optimizing compiler with
a multi generational garbage collector. The benchmark

sources again correspond very closely, but since Haskell
has lazy semantics, we used strictness annotations in the
data structures to speed up the benchmarks, as well as to
ensure that the same amount of work is done.

• Swift 5.3. The only other language in this comparison
where the compiler uses reference counting [6, 46]. The
benchmarks are directly translated to Swift in a functional
style without using direct mutation. However, we trans-
lated tail-recursive de�nitions to explicit loops with local
variables.

• Java SE 15.0.1. Uses the HotSpot JVM and the G1 con-
current, low-latency, generational garbage collector. The
benchmarks are directly translated from Swift.

• C++, gcc 9.3.0 using the standard libc allocator. A highly
optimizing compiler with manual memory management.
Without automatic memory management, many bench-
marks are di�cult to express directly in C++ as they use
persistent and partially shared data structures. To imple-
ment these faithfully would essentially require manual
reference counting. Instead, we use C++ as our perfor-
mance baseline: if provided, we either use in-place updates
without supporting persistence (as in rbtree which uses
std::map) or we do not reclaim memory at all (as in deriv,
nqueens, and cfold).

The benchmarks are all chosen to be medium sized and non-
trivial, and all stress memory allocation with little compu-
tation. Most of these are based on the benchmark suite of
Lean [45] and all are available in the Koka repository [1].
The execution times and peak working set as the median
over 10 runs and normalized to Koka are given in Figure 9
(each benchmark runs between 1 to 5 seconds for Koka, and
uses up to 300MiB). When a benchmark is not available for
a particular language, it is marked as “NA” in the �gures.
• rbtree: this benchmark performs 42 million insertions
into a red-black balanced tree and after that folds over
the tree counting the true elements. Here the reuse anal-
ysis of Koka (as shown in Section 2.4) is doing well com-
pared to the other systems. OCaml is close in performance
– rebalancing generates lots of short-lived object alloca-
tion which are a great �t a minor heap copying-collector
with fast aggregated bump-pointer allocation. The C++
benchmark is implemented using the in-place updating
std::map implementation, which internally uses an op-
timized red-black tree implementation [13]. Surprisingly,
the purely functional Koka implementation is within 10%
of the C++ performance. Since the insertion operations
are the same, we believe this is partly because C++ alloca-
tions must be 16-byte aligned while the Koka allocator can
use 8-byte alignment in the allocations and thus allocate
a bit less (as apparent in Figure 9) (and similarly, bump
pointer allocation in OCaml can be faster than general
malloc/free). Java performs close to C++ here but also
uses almost 10⇥ the memory of Koka (1.7GiB vs. 170MiB,

12

Benchmarks

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PLDI ’21, June 1, 2021, US

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

2.
45

1.
86

1.
05

1.
05

1.
54

1.
26

1.
69

1.
43 1.
45

··
·5
.0
5

2.
40 ··
·9
.5
2

2.
08

··
·1
0.
27

··
·4
.5
2

··
·7
.8
5

··
·3
.8
4

2.
23

··
·3
.9
6

··
·7
.8
7

1.
67 1.
69

0.
86

1.
33

··
·3
.1
8

0.
92

N
A

1.
33

0.
79

··
·3
.3
3

re
la
tiv

e
tim

e
(lo

w
er

is
be
�e

r)

Koka Koka,no-opt OCaml Haskell
Swi� Java C++

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
89

1.
22

1.
20

0.
92

1.
79

0.
97

1.
68

··
·9
.8
1

1.
07

··
·3
.5
4

1.
09

1.
61

1.
59

1.
99

··
·3
.1
5

1.
71

··
·1
0.
25

2.
33

1.
89

··
·3
.2
7

··
·3
.1
2

1.
19

N
A

2.
25

··
·3
.0
1

··
·2
.9
4

re
la
tiv

e
rs
s

(lo
w
er

is
be
�e

r)

Fig. 9. Relative execution time and peak working set with
respect to Koka. Using a 6-core 64-bit AMD 3600XT 3.8Ghz
with 64GiB 3600Mhz memory, Ubuntu 20.04.

technique is viable and can be competitive and not as a direct
comparison of absolute performance between systems.

As such, we selected only benchmarks that stress memory
allocation, and we tried to select mature comparison systems
that use a range of memory reclamation techniques and are
considered best-in-class. The systems we compare are:
• Koka 2.0.3, compiling the generated C code with gcc 9.3.0
using a customized version of the mimalloc allocator [27].
We also runKoka “no-opt” with reuse analysis and drop/reuse
specialization disabled to measure the impact of those op-
timizations.

• OCaml 4.08.1. This has a stop-the-world generational col-
lector with a minor and major heap. The minor heap uses
a copying collector, while a tracing collector is used for
the major heap [11, 34,Chap.22]. The Koka benchmarks
correspond essentially one-to-one to the OCaml versions.

• Haskell, GHC 8.6.5. A highly optimizing compiler with
a multi generational garbage collector. The benchmark

sources again correspond very closely, but since Haskell
has lazy semantics, we used strictness annotations in the
data structures to speed up the benchmarks, as well as to
ensure that the same amount of work is done.

• Swift 5.3. The only other language in this comparison
where the compiler uses reference counting [6, 46]. The
benchmarks are directly translated to Swift in a functional
style without using direct mutation. However, we trans-
lated tail-recursive de�nitions to explicit loops with local
variables.

• Java SE 15.0.1. Uses the HotSpot JVM and the G1 con-
current, low-latency, generational garbage collector. The
benchmarks are directly translated from Swift.

• C++, gcc 9.3.0 using the standard libc allocator. A highly
optimizing compiler with manual memory management.
Without automatic memory management, many bench-
marks are di�cult to express directly in C++ as they use
persistent and partially shared data structures. To imple-
ment these faithfully would essentially require manual
reference counting. Instead, we use C++ as our perfor-
mance baseline: if provided, we either use in-place updates
without supporting persistence (as in rbtree which uses
std::map) or we do not reclaim memory at all (as in deriv,
nqueens, and cfold).

The benchmarks are all chosen to be medium sized and non-
trivial, and all stress memory allocation with little compu-
tation. Most of these are based on the benchmark suite of
Lean [45] and all are available in the Koka repository [1].
The execution times and peak working set as the median
over 10 runs and normalized to Koka are given in Figure 9
(each benchmark runs between 1 to 5 seconds for Koka, and
uses up to 300MiB). When a benchmark is not available for
a particular language, it is marked as “NA” in the �gures.
• rbtree: this benchmark performs 42 million insertions
into a red-black balanced tree and after that folds over
the tree counting the true elements. Here the reuse anal-
ysis of Koka (as shown in Section 2.4) is doing well com-
pared to the other systems. OCaml is close in performance
– rebalancing generates lots of short-lived object alloca-
tion which are a great �t a minor heap copying-collector
with fast aggregated bump-pointer allocation. The C++
benchmark is implemented using the in-place updating
std::map implementation, which internally uses an op-
timized red-black tree implementation [13]. Surprisingly,
the purely functional Koka implementation is within 10%
of the C++ performance. Since the insertion operations
are the same, we believe this is partly because C++ alloca-
tions must be 16-byte aligned while the Koka allocator can
use 8-byte alignment in the allocations and thus allocate
a bit less (as apparent in Figure 9) (and similarly, bump
pointer allocation in OCaml can be faster than general
malloc/free). Java performs close to C++ here but also
uses almost 10⇥ the memory of Koka (1.7GiB vs. 170MiB,

12

Goal: Perceus is viable and can be competitive.

Benchmarks

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PLDI ’21, June 1, 2021, US

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

2.
45

1.
86

1.
05

1.
05

1.
54

1.
26

1.
69

1.
43 1.
45

··
·5
.0
5

2.
40 ··
·9
.5
2

2.
08

··
·1
0.
27

··
·4
.5
2

··
·7
.8
5

··
·3
.8
4

2.
23

··
·3
.9
6

··
·7
.8
7

1.
67 1.
69

0.
86

1.
33

··
·3
.1
8

0.
92

N
A

1.
33

0.
79

··
·3
.3
3

re
la
tiv

e
tim

e
(lo

w
er

is
be
�e

r)

Koka Koka,no-opt OCaml Haskell
Swi� Java C++

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
89

1.
22

1.
20

0.
92

1.
79

0.
97

1.
68

··
·9
.8
1

1.
07

··
·3
.5
4

1.
09

1.
61

1.
59

1.
99

··
·3
.1
5

1.
71

··
·1
0.
25

2.
33

1.
89

··
·3
.2
7

··
·3
.1
2

1.
19

N
A

2.
25

··
·3
.0
1

··
·2
.9
4

re
la
tiv

e
rs
s

(lo
w
er

is
be
�e

r)

Fig. 9. Relative execution time and peak working set with
respect to Koka. Using a 6-core 64-bit AMD 3600XT 3.8Ghz
with 64GiB 3600Mhz memory, Ubuntu 20.04.

technique is viable and can be competitive and not as a direct
comparison of absolute performance between systems.

As such, we selected only benchmarks that stress memory
allocation, and we tried to select mature comparison systems
that use a range of memory reclamation techniques and are
considered best-in-class. The systems we compare are:
• Koka 2.0.3, compiling the generated C code with gcc 9.3.0
using a customized version of the mimalloc allocator [27].
We also runKoka “no-opt” with reuse analysis and drop/reuse
specialization disabled to measure the impact of those op-
timizations.

• OCaml 4.08.1. This has a stop-the-world generational col-
lector with a minor and major heap. The minor heap uses
a copying collector, while a tracing collector is used for
the major heap [11, 34,Chap.22]. The Koka benchmarks
correspond essentially one-to-one to the OCaml versions.

• Haskell, GHC 8.6.5. A highly optimizing compiler with
a multi generational garbage collector. The benchmark

sources again correspond very closely, but since Haskell
has lazy semantics, we used strictness annotations in the
data structures to speed up the benchmarks, as well as to
ensure that the same amount of work is done.

• Swift 5.3. The only other language in this comparison
where the compiler uses reference counting [6, 46]. The
benchmarks are directly translated to Swift in a functional
style without using direct mutation. However, we trans-
lated tail-recursive de�nitions to explicit loops with local
variables.

• Java SE 15.0.1. Uses the HotSpot JVM and the G1 con-
current, low-latency, generational garbage collector. The
benchmarks are directly translated from Swift.

• C++, gcc 9.3.0 using the standard libc allocator. A highly
optimizing compiler with manual memory management.
Without automatic memory management, many bench-
marks are di�cult to express directly in C++ as they use
persistent and partially shared data structures. To imple-
ment these faithfully would essentially require manual
reference counting. Instead, we use C++ as our perfor-
mance baseline: if provided, we either use in-place updates
without supporting persistence (as in rbtree which uses
std::map) or we do not reclaim memory at all (as in deriv,
nqueens, and cfold).

The benchmarks are all chosen to be medium sized and non-
trivial, and all stress memory allocation with little compu-
tation. Most of these are based on the benchmark suite of
Lean [45] and all are available in the Koka repository [1].
The execution times and peak working set as the median
over 10 runs and normalized to Koka are given in Figure 9
(each benchmark runs between 1 to 5 seconds for Koka, and
uses up to 300MiB). When a benchmark is not available for
a particular language, it is marked as “NA” in the �gures.
• rbtree: this benchmark performs 42 million insertions
into a red-black balanced tree and after that folds over
the tree counting the true elements. Here the reuse anal-
ysis of Koka (as shown in Section 2.4) is doing well com-
pared to the other systems. OCaml is close in performance
– rebalancing generates lots of short-lived object alloca-
tion which are a great �t a minor heap copying-collector
with fast aggregated bump-pointer allocation. The C++
benchmark is implemented using the in-place updating
std::map implementation, which internally uses an op-
timized red-black tree implementation [13]. Surprisingly,
the purely functional Koka implementation is within 10%
of the C++ performance. Since the insertion operations
are the same, we believe this is partly because C++ alloca-
tions must be 16-byte aligned while the Koka allocator can
use 8-byte alignment in the allocations and thus allocate
a bit less (as apparent in Figure 9) (and similarly, bump
pointer allocation in OCaml can be faster than general
malloc/free). Java performs close to C++ here but also
uses almost 10⇥ the memory of Koka (1.7GiB vs. 170MiB,

12

Non-goal: Perceus/Koka is the best!

Goal: Perceus is viable and can be competitive.

Benchmarks

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PLDI ’21, June 1, 2021, US

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

2.
45

1.
86

1.
05

1.
05

1.
54

1.
26

1.
69

1.
43 1.
45

··
·5
.0
5

2.
40 ··
·9
.5
2

2.
08

··
·1
0.
27

··
·4
.5
2

··
·7
.8
5

··
·3
.8
4

2.
23

··
·3
.9
6

··
·7
.8
7

1.
67 1.
69

0.
86

1.
33

··
·3
.1
8

0.
92

N
A

1.
33

0.
79

··
·3
.3
3

re
la
tiv

e
tim

e
(lo

w
er

is
be
�e

r)

Koka Koka,no-opt OCaml Haskell
Swi� Java C++

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
89

1.
22

1.
20

0.
92

1.
79

0.
97

1.
68

··
·9
.8
1

1.
07

··
·3
.5
4

1.
09

1.
61

1.
59

1.
99

··
·3
.1
5

1.
71

··
·1
0.
25

2.
33

1.
89

··
·3
.2
7

··
·3
.1
2

1.
19

N
A

2.
25

··
·3
.0
1

··
·2
.9
4

re
la
tiv

e
rs
s

(lo
w
er

is
be
�e

r)

Fig. 9. Relative execution time and peak working set with
respect to Koka. Using a 6-core 64-bit AMD 3600XT 3.8Ghz
with 64GiB 3600Mhz memory, Ubuntu 20.04.

technique is viable and can be competitive and not as a direct
comparison of absolute performance between systems.

As such, we selected only benchmarks that stress memory
allocation, and we tried to select mature comparison systems
that use a range of memory reclamation techniques and are
considered best-in-class. The systems we compare are:
• Koka 2.0.3, compiling the generated C code with gcc 9.3.0
using a customized version of the mimalloc allocator [27].
We also runKoka “no-opt” with reuse analysis and drop/reuse
specialization disabled to measure the impact of those op-
timizations.

• OCaml 4.08.1. This has a stop-the-world generational col-
lector with a minor and major heap. The minor heap uses
a copying collector, while a tracing collector is used for
the major heap [11, 34,Chap.22]. The Koka benchmarks
correspond essentially one-to-one to the OCaml versions.

• Haskell, GHC 8.6.5. A highly optimizing compiler with
a multi generational garbage collector. The benchmark

sources again correspond very closely, but since Haskell
has lazy semantics, we used strictness annotations in the
data structures to speed up the benchmarks, as well as to
ensure that the same amount of work is done.

• Swift 5.3. The only other language in this comparison
where the compiler uses reference counting [6, 46]. The
benchmarks are directly translated to Swift in a functional
style without using direct mutation. However, we trans-
lated tail-recursive de�nitions to explicit loops with local
variables.

• Java SE 15.0.1. Uses the HotSpot JVM and the G1 con-
current, low-latency, generational garbage collector. The
benchmarks are directly translated from Swift.

• C++, gcc 9.3.0 using the standard libc allocator. A highly
optimizing compiler with manual memory management.
Without automatic memory management, many bench-
marks are di�cult to express directly in C++ as they use
persistent and partially shared data structures. To imple-
ment these faithfully would essentially require manual
reference counting. Instead, we use C++ as our perfor-
mance baseline: if provided, we either use in-place updates
without supporting persistence (as in rbtree which uses
std::map) or we do not reclaim memory at all (as in deriv,
nqueens, and cfold).

The benchmarks are all chosen to be medium sized and non-
trivial, and all stress memory allocation with little compu-
tation. Most of these are based on the benchmark suite of
Lean [45] and all are available in the Koka repository [1].
The execution times and peak working set as the median
over 10 runs and normalized to Koka are given in Figure 9
(each benchmark runs between 1 to 5 seconds for Koka, and
uses up to 300MiB). When a benchmark is not available for
a particular language, it is marked as “NA” in the �gures.
• rbtree: this benchmark performs 42 million insertions
into a red-black balanced tree and after that folds over
the tree counting the true elements. Here the reuse anal-
ysis of Koka (as shown in Section 2.4) is doing well com-
pared to the other systems. OCaml is close in performance
– rebalancing generates lots of short-lived object alloca-
tion which are a great �t a minor heap copying-collector
with fast aggregated bump-pointer allocation. The C++
benchmark is implemented using the in-place updating
std::map implementation, which internally uses an op-
timized red-black tree implementation [13]. Surprisingly,
the purely functional Koka implementation is within 10%
of the C++ performance. Since the insertion operations
are the same, we believe this is partly because C++ alloca-
tions must be 16-byte aligned while the Koka allocator can
use 8-byte alignment in the allocations and thus allocate
a bit less (as apparent in Figure 9) (and similarly, bump
pointer allocation in OCaml can be faster than general
malloc/free). Java performs close to C++ here but also
uses almost 10⇥ the memory of Koka (1.7GiB vs. 170MiB,

12

Non-goal: Perceus/Koka is the best!

Goal: Perceus is viable and can be competitive.

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PLDI ’21, June 1, 2021, US

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

2.
45

1.
86

1.
05

1.
05

1.
54

1.
26

1.
69

1.
43 1.
45

··
·5
.0
5

2.
40 ··
·9
.5
2

2.
08

··
·1
0.
27

··
·4
.5
2

··
·7
.8
5

··
·3
.8
4

2.
23

··
·3
.9
6

··
·7
.8
7

1.
67 1.
69

0.
86

1.
33

··
·3
.1
8

0.
92

N
A

1.
33

0.
79

··
·3
.3
3

re
la
tiv

e
tim

e
(lo

w
er

is
be
�e

r)

Koka Koka,no-opt OCaml Haskell
Swi� Java C++

rbtree rbtree-ck deriv nqueens cfold
0x

0.5x

1.0x

1.5x

2.0x

2.5x

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
89

1.
22

1.
20

0.
92

1.
79

0.
97

1.
68

··
·9
.8
1

1.
07

··
·3
.5
4

1.
09

1.
61

1.
59

1.
99

··
·3
.1
5

1.
71

··
·1
0.
25

2.
33

1.
89

··
·3
.2
7

··
·3
.1
2

1.
19

N
A

2.
25

··
·3
.0
1

··
·2
.9
4

re
la
tiv

e
rs
s

(lo
w
er

is
be
�e

r)

Fig. 9. Relative execution time and peak working set with
respect to Koka. Using a 6-core 64-bit AMD 3600XT 3.8Ghz
with 64GiB 3600Mhz memory, Ubuntu 20.04.

technique is viable and can be competitive and not as a direct
comparison of absolute performance between systems.

As such, we selected only benchmarks that stress memory
allocation, and we tried to select mature comparison systems
that use a range of memory reclamation techniques and are
considered best-in-class. The systems we compare are:
• Koka 2.0.3, compiling the generated C code with gcc 9.3.0
using a customized version of the mimalloc allocator [27].
We also runKoka “no-opt” with reuse analysis and drop/reuse
specialization disabled to measure the impact of those op-
timizations.

• OCaml 4.08.1. This has a stop-the-world generational col-
lector with a minor and major heap. The minor heap uses
a copying collector, while a tracing collector is used for
the major heap [11, 34,Chap.22]. The Koka benchmarks
correspond essentially one-to-one to the OCaml versions.

• Haskell, GHC 8.6.5. A highly optimizing compiler with
a multi generational garbage collector. The benchmark

sources again correspond very closely, but since Haskell
has lazy semantics, we used strictness annotations in the
data structures to speed up the benchmarks, as well as to
ensure that the same amount of work is done.

• Swift 5.3. The only other language in this comparison
where the compiler uses reference counting [6, 46]. The
benchmarks are directly translated to Swift in a functional
style without using direct mutation. However, we trans-
lated tail-recursive de�nitions to explicit loops with local
variables.

• Java SE 15.0.1. Uses the HotSpot JVM and the G1 con-
current, low-latency, generational garbage collector. The
benchmarks are directly translated from Swift.

• C++, gcc 9.3.0 using the standard libc allocator. A highly
optimizing compiler with manual memory management.
Without automatic memory management, many bench-
marks are di�cult to express directly in C++ as they use
persistent and partially shared data structures. To imple-
ment these faithfully would essentially require manual
reference counting. Instead, we use C++ as our perfor-
mance baseline: if provided, we either use in-place updates
without supporting persistence (as in rbtree which uses
std::map) or we do not reclaim memory at all (as in deriv,
nqueens, and cfold).

The benchmarks are all chosen to be medium sized and non-
trivial, and all stress memory allocation with little compu-
tation. Most of these are based on the benchmark suite of
Lean [45] and all are available in the Koka repository [1].
The execution times and peak working set as the median
over 10 runs and normalized to Koka are given in Figure 9
(each benchmark runs between 1 to 5 seconds for Koka, and
uses up to 300MiB). When a benchmark is not available for
a particular language, it is marked as “NA” in the �gures.
• rbtree: this benchmark performs 42 million insertions
into a red-black balanced tree and after that folds over
the tree counting the true elements. Here the reuse anal-
ysis of Koka (as shown in Section 2.4) is doing well com-
pared to the other systems. OCaml is close in performance
– rebalancing generates lots of short-lived object alloca-
tion which are a great �t a minor heap copying-collector
with fast aggregated bump-pointer allocation. The C++
benchmark is implemented using the in-place updating
std::map implementation, which internally uses an op-
timized red-black tree implementation [13]. Surprisingly,
the purely functional Koka implementation is within 10%
of the C++ performance. Since the insertion operations
are the same, we believe this is partly because C++ alloca-
tions must be 16-byte aligned while the Koka allocator can
use 8-byte alignment in the allocations and thus allocate
a bit less (as apparent in Figure 9) (and similarly, bump
pointer allocation in OCaml can be faster than general
malloc/free). Java performs close to C++ here but also
uses almost 10⇥ the memory of Koka (1.7GiB vs. 170MiB,

12

Perceus
Garbage Free Reference Counting with Reuse

Ningning Xie

Joint work with Alex Reinking,
Leonardo de Moura, and Daan Leijen

