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Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. k1
h . +
andler hl (\ . perform ask () perform ask ()) hl = ask o> f
prompt ml hl (perform ask () + perform ask ())
searching
prompt ml hl (yield ml (\k. £ () k) + perform ask ())
capturing
f () (\x. prompt ml hl (x + perform ask ())
Multi-prompt Evidence-passing
delimited control semantics Bubbling
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Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad
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Compiling to C
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Compiling to C

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

int expr( unit_t u, context_t* ctx) {
int x = perform_ask( ctx—w[0@], unit, ctx );
if (ctx—is_yielding) { yield_extend(&joiny,ctx); return 0; }
int y = perform_ask( ctx—w[0], unit, ctx );
if (ctx—is_yielding) { yield_extend(alloc_closure_joini(x,ctx),ctx); return 0; }
return (x+y); }
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