
Generalized Evidence Passing for
Effect Handlers

Efficient Compilation of Effect Handlers to C

Ningning Xie Daan Leijen

ICFP 2021

Research contributions

1

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

Algebraic effects

Efficient C (with no special runtime support)

1

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

Algebraic effects

Multi-prompt delimited control [Forster et al. 2019; Gunter et al. 1995]

Efficient C (with no special runtime support)

1

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

Algebraic effects

Multi-prompt delimited control [Forster et al. 2019; Gunter et al. 1995]

Efficient C (with no special runtime support)

Evidence-passing semantics

1

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

Algebraic effects

Multi-prompt delimited control [Forster et al. 2019; Gunter et al. 1995]

Efficient C (with no special runtime support)

Evidence-passing semantics

Bubbling Yields [Pretnar 2015]

1

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

Algebraic effects

Multi-prompt delimited control [Forster et al. 2019; Gunter et al. 1995]

Efficient C (with no special runtime support)

Evidence-passing semantics

Bubbling Yields [Pretnar 2015]

Monadic translation

1

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

Algebraic effects

Multi-prompt delimited control [Forster et al. 2019; Gunter et al. 1995]

Efficient C (with no special runtime support)

Evidence-passing semantics

Bubbling Yields [Pretnar 2015]

Monadic translation

short-cut resumption [Kiselyov and Ishii 2015]

bind-inlining and join-point sharing

optimization of tail-resumptive operations
insertion- versus canonical ordered evidence vector

1

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

Algebraic effects

Multi-prompt delimited control [Forster et al. 2019; Gunter et al. 1995]

Efficient C (with no special runtime support)

Evidence-passing semantics

Bubbling Yields [Pretnar 2015]

Monadic translation

short-cut resumption [Kiselyov and Ishii 2015]

bind-inlining and join-point sharing

optimization of tail-resumptive operations
insertion- versus canonical ordered evidence vector

1

https://koka-lang.github.io/

Perceus: Garbage Free Reference Counting with Reuse
Alex Reinking∗
Microsoft Research
Redmond, WA, USA

alex_reinking@berkeley.edu

Ningning Xie∗
University of Hong Kong

Hong Kong, China
nnxie@cs.hku.hk

Leonardo de Moura
Microsoft Research
Redmond, WA, USA

leonardo@microso�.com

Daan Leijen
Microsoft Research
Redmond, WA, USA
daan@microso�.com

Abstract
We introduce Perceus, an algorithm for precise reference
counting with reuse and specialization. Starting from a func-
tional core language with explicit control-�ow, Perceus emits
precise reference counting instructions such that (cycle-free)
programs are garbage free, where only live references are re-
tained. This enables further optimizations, like reuse analysis
that allows for guaranteed in-place updates at runtime. This
in turn enables a novel programming paradigm that we call
functional but in-place (FBIP). Much like tail-call optimiza-
tion enables writing loops with regular function calls, reuse
analysis enables writing in-place mutating algorithms in a
purely functional way. We give a novel formalization of ref-
erence counting in a linear resource calculus, and prove that
Perceus is sound and garbage free. We show evidence that
Perceus, as implemented in Koka, has good performance and
is competitive with other state-of-the-art memory collectors.

CCS Concepts: • Software and its engineering ! Run-
time environments; Garbage collection; • Theory of
computation ! Linear logic.

Keywords: Reference Counting, Algebraic E�ects, Handlers

ACM Reference Format:
Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen.
2021. Perceus: Garbage Free Reference Counting with Reuse. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI ’21), June
20–25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.
h�ps://doi.org/10.1145/3453483.3454032

∗The �rst two authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
h�ps://doi.org/10.1145/3453483.3454032

1 Introduction
Reference counting [7], with its low memory overhead and
ease of implementation, used to be a popular technique for
automatic memory management. However, the �eld has
broadlymoved in favor of generational tracing collectors [31],
partly due to various limitations of reference counting, in-
cluding cycle collection, multi-threaded operations, and ex-
pensive in-place updates.

In this work we take a fresh look at reference counting. We
consider a programming language design that gives strong
compile-time guarantees in order to enable e�cient refer-
ence counting at run-time. In particular, we build on the
pioneering reference counting work in the Lean theorem
prover [46], but we view it through the lens of language
design, rather than purely as an implementation technique.
We demonstrate our approach in the Koka language [23,

25]: a functional language with mostly immutable data types
together with a strong type and e�ect system. In contrast
to the dependently typed Lean language, Koka is general-
purpose, with support for exceptions, side e�ects, and muta-
ble references via general algebraic e�ects and handlers [39,
40]. Using recent work on evidence translation [50–52], all
these control e�ects are compiled into an internal core lan-
guage with explicit control �ow. Starting from this functional
core, we can statically transform the code to enable e�cient
reference counting at runtime. In particular:
• Due to explicit control �ow, the compiler can emit precise
reference counting instructions where a (non-cyclic) ref-
erence is dropped as soon as possible. We call this garbage
free reference counting as only live data is retained (§ 2.2).

• We show that precise reference counting enables many
optimizations, in particular drop specialization which re-
moves many reference count operations in the fast path
(Section 2.3), reuse analysis which updates (immutable)
data in-place when possible (Section 2.4), and reuse spe-
cialization which removes many in-place �eld updates
(Section 2.5). The reuse analysis shows the bene�t of a
holistic approach: even though the surface language has
immutable data types with strong guarantees, we can use
dynamic run-time information, e.g. whether a reference is
unique, to update in-place when possible.

PLDI 2021

https://koka-lang.github.io/

Research contributions

Algebraic effects

Multi-prompt delimited control [Forster et al. 2019; Gunter et al. 1995]

Efficient C (with no special runtime support)

Evidence-passing semantics

Bubbling Yields [Pretnar 2015]

Monadic translation

short-cut resumption [Kiselyov and Ishii 2015]

bind-inlining and join-point sharing

optimization of tail-resumptive operations
insertion- versus canonical ordered evidence vector

1

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

https://koka-lang.github.io/

Perceus: Garbage Free Reference Counting with Reuse
Alex Reinking∗
Microsoft Research
Redmond, WA, USA

alex_reinking@berkeley.edu

Ningning Xie∗
University of Hong Kong

Hong Kong, China
nnxie@cs.hku.hk

Leonardo de Moura
Microsoft Research
Redmond, WA, USA

leonardo@microso�.com

Daan Leijen
Microsoft Research
Redmond, WA, USA
daan@microso�.com

Abstract
We introduce Perceus, an algorithm for precise reference
counting with reuse and specialization. Starting from a func-
tional core language with explicit control-�ow, Perceus emits
precise reference counting instructions such that (cycle-free)
programs are garbage free, where only live references are re-
tained. This enables further optimizations, like reuse analysis
that allows for guaranteed in-place updates at runtime. This
in turn enables a novel programming paradigm that we call
functional but in-place (FBIP). Much like tail-call optimiza-
tion enables writing loops with regular function calls, reuse
analysis enables writing in-place mutating algorithms in a
purely functional way. We give a novel formalization of ref-
erence counting in a linear resource calculus, and prove that
Perceus is sound and garbage free. We show evidence that
Perceus, as implemented in Koka, has good performance and
is competitive with other state-of-the-art memory collectors.

CCS Concepts: • Software and its engineering ! Run-
time environments; Garbage collection; • Theory of
computation ! Linear logic.

Keywords: Reference Counting, Algebraic E�ects, Handlers

ACM Reference Format:
Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen.
2021. Perceus: Garbage Free Reference Counting with Reuse. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI ’21), June
20–25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.
h�ps://doi.org/10.1145/3453483.3454032

∗The �rst two authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
h�ps://doi.org/10.1145/3453483.3454032

1 Introduction
Reference counting [7], with its low memory overhead and
ease of implementation, used to be a popular technique for
automatic memory management. However, the �eld has
broadlymoved in favor of generational tracing collectors [31],
partly due to various limitations of reference counting, in-
cluding cycle collection, multi-threaded operations, and ex-
pensive in-place updates.

In this work we take a fresh look at reference counting. We
consider a programming language design that gives strong
compile-time guarantees in order to enable e�cient refer-
ence counting at run-time. In particular, we build on the
pioneering reference counting work in the Lean theorem
prover [46], but we view it through the lens of language
design, rather than purely as an implementation technique.
We demonstrate our approach in the Koka language [23,

25]: a functional language with mostly immutable data types
together with a strong type and e�ect system. In contrast
to the dependently typed Lean language, Koka is general-
purpose, with support for exceptions, side e�ects, and muta-
ble references via general algebraic e�ects and handlers [39,
40]. Using recent work on evidence translation [50–52], all
these control e�ects are compiled into an internal core lan-
guage with explicit control �ow. Starting from this functional
core, we can statically transform the code to enable e�cient
reference counting at runtime. In particular:
• Due to explicit control �ow, the compiler can emit precise
reference counting instructions where a (non-cyclic) ref-
erence is dropped as soon as possible. We call this garbage
free reference counting as only live data is retained (§ 2.2).

• We show that precise reference counting enables many
optimizations, in particular drop specialization which re-
moves many reference count operations in the fast path
(Section 2.3), reuse analysis which updates (immutable)
data in-place when possible (Section 2.4), and reuse spe-
cialization which removes many in-place �eld updates
(Section 2.5). The reuse analysis shows the bene�t of a
holistic approach: even though the surface language has
immutable data types with strong guarantees, we can use
dynamic run-time information, e.g. whether a reference is
unique, to update in-place when possible.

PLDI 2021

https://koka-lang.github.io/

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

effect

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

operation
effect

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

effect handler

operation
effect

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

effect handler

operation

implementation

effect

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

effect handler

computation

operation

implementation

effect

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

)

effect handler

computation

operation

implementation

perform an effect

effect

Algebraic effects 101

2

effect read {
ask : () -> int

}

handler {
ask -> \x.\k. k 1

}
(_.
perform ask () + perform ask ()

) // 2

effect handler

computation

operation

implementation

perform an effect

effect

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

3

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

3

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

3

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

a unit-taking function as a computation

3

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

a unit-taking function as a computation

3

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

a unit-taking function as a computation

3

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

a unit-taking function as a computation

3

evaluation context

h is the
innermost
handler

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

a unit-taking function as a computation

3

evaluation context

get the operation
implementation f

h is the
innermost
handler

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

a unit-taking function as a computation

3

evaluation context

get the operation
implementation f

h is the
innermost
handler

operation argument

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

a unit-taking function as a computation

3

evaluation context

get the operation
implementation f

h is the
innermost
handler

operation argument

Operational semantics of untyped algebraic effects

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

①

②

③

④

a unit-taking function as a computation

resumption

3

evaluation context

The problem: compiling effect handlers efficiently

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

4

The problem: compiling effect handlers efficiently

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

4

Two potentially expensive runtime operations:

The problem: compiling effect handlers efficiently

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

4

Two potentially expensive runtime operations:

evaluation context

The problem: compiling effect handlers efficiently

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

4

Two potentially expensive runtime operations:

h is the innermost handler

evaluation context

The problem: compiling effect handlers efficiently

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

4

1. Searching
a linear search through the current evaluation context to find the innermost handler for op

Two potentially expensive runtime operations:

h is the innermost handler

evaluation context

The problem: compiling effect handlers efficiently

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

4

1. Searching
a linear search through the current evaluation context to find the innermost handler for op

Two potentially expensive runtime operations:

resumption

h is the innermost handler

evaluation context

The problem: compiling effect handlers efficiently

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

4

1. Searching
a linear search through the current evaluation context to find the innermost handler for op

2. Capturing
capture the evaluation context (i.e., stacks and registers) up to the found handler, and create
a resumption function

Two potentially expensive runtime operations:

resumption

h is the innermost handler

evaluation context

efficient C

The problem: compiling effect handlers efficiently

Generalized Evidence Passing for E�ect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.

• We benchmarked the Koka implementation against four other implementations of e�ect
handlers that compile to native code: the current state-of-the-art direct implementation
of e�ect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.E� Haskell library; the Ev.E� Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell e�ect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and �nally
the libhandler C library which implements e�ect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.E�
Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW
We start with a short discussion and examples of basic e�ect handlers and follow with an overview
of each of our semantic re�nements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of e�ect handlers.

2.1 Algebraic E�ects
With algebraic e�ect handlers, an e�ect l de�nes a set of operations op. For example, we can have a
reader e�ect with an ask operation

read { ask : () ! int }
and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op 7! f , providing the implementation f for the operation op from the handled e�ect
where the implementation f is of form _x . _k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader e�ect by always resuming with the constant 1:

hread = { ask 7! _x . _k. k 1 }
where the expression handler hread (__. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic e�ect handlers [Xie
and Leijen 2020]:
(app) (_x . e) v �! e[x:=v]
(handler) handler h f �! handle h (f ())
(return) handle h v �! v
(perform) handle h E[perform op v] �! f v (_x . handle h E[x])

i� op 62 bop(E) ^ (op 7! f) 2 h
Rule (app) is standard V-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic e�ect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

4

1. Searching
a linear search through the current evaluation context to find the innermost handler for op

2. Capturing
capture the evaluation context (i.e., stacks and registers) up to the found handler, and create
a resumption function

Two potentially expensive runtime operations:

This work:

resumption

h is the innermost handler

Multi-prompt
delimited control

Evidence-passing
semantics

Monadic
translation

evaluation context

Reader, formally

5

handler {
ask -> \x.\k. k 1

}

perform ask () + perform ask ()
(_.

)

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

handler {
ask -> \x.\k. k 1

}

f = \x.\k. k 1
h1 = ask -> f

perform ask () + perform ask ()
(_.

)

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

handler {
ask -> \x.\k. k 1

}

f = \x.\k. k 1
h1 = ask -> f

h1

perform ask () + perform ask ()
(_.

)

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f = \x.\k. k 1
h1 = ask -> f

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f = \x.\k. k 1
h1 = ask -> f

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

handle h1 (perform ask () + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

handle h1 (perform ask () + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼ *

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

(\x. handle h1 (x + perform ask ()) 1

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼ *

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

(\x. handle h1 (x + perform ask ()) 1

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

⟼ *

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

(\x. handle h1 (x + perform ask ()) 1

handle h1 (1 + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

⟼ *

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

Reader, formally

5

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

(\x. handle h1 (x + perform ask ()) 1

handle h1 (1 + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

⟼* 2

⟼ *

⟼

⟼

handler h1 (_. perform ask () + perform ask ())

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ())

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

(\x. handle h1 (x + perform ask ()) 1

handle h1 (1 + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

⟼

⟼

⟼* 2

*

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ())

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ())

f () (\x. handle h1 (x + perform ask ())

handle h1 (perform ask () + perform ask ())

f = \x.\k. k 1
h1 = ask -> f

⟼

⟼

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼
prompt m1 h1 (perform ask () + perform ask ())

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼
prompt m1 h1 (perform ask () + perform ask ())

m1: a unique marker
identifying handlers

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼
prompt m1 h1 (perform ask () + perform ask ())

m1: a unique marker
identifying handlers

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼
prompt m1 h1 (perform ask () + perform ask ())

m1: a unique marker
identifying handlers

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())
m1: a unique marker
identifying handlers

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

yielding to a handler
identified by m1

m1: a unique marker
identifying handlers

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

yielding to a handler
identified by m1

m1: a unique marker
identifying handlers

operation implementation partially
applied to operation argument

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

yielding to a handler
identified by m1

m1: a unique marker
identifying handlers

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

⟼
prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

yielding to a handler
identified by m1

m1: a unique marker
identifying handlers

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

⟼
prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

yielding to a handler
identified by m1

m1: a unique marker
identifying handlers

⟼* 2

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

⟼
prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

yielding to a handler
identified by m1

m1: a unique marker
identifying handlers

⟼* 2

searching

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

⟼
prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

yielding to a handler
identified by m1

m1: a unique marker
identifying handlers

⟼* 2

capturing

searching

efficient C

Multi-prompt semantics

Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

6

separating searching from capturing

handler h1 (_. perform ask () + perform ask ()) f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

⟼

⟼

⟼
prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

yielding to a handler
identified by m1

m1: a unique marker
identifying handlers

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())
⟼

f = \x.\k. k 1
h1 = ask -> f

efficient C

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

f = \x.\k. k 1
h1 = ask -> f

efficient C

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

≪≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

f = \x.\k. k 1
h1 = ask -> f

efficient C

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

≪≫

≪≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

f = \x.\k. k 1
h1 = ask -> f

efficient C

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

≪≫

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

f = \x.\k. k 1
h1 = ask -> f

efficient C

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

≪≫

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

f = \x.\k. k 1
h1 = ask -> f

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫

efficient C

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

≪≫

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

f = \x.\k. k 1
h1 = ask -> f

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫. 𝑟𝑒𝑎𝑑 = (𝑚1, ℎ1)

efficient C

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

≪≫

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

f = \x.\k. k 1
h1 = ask -> f

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫. 𝑟𝑒𝑎𝑑 = (𝑚1, ℎ1)

efficient C

constant time

Evidence-passing semantics

7Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

make performs local: push down the current handlers as an evidence vector

≪≫

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

f = \x.\k. k 1
h1 = ask -> f

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫. 𝑟𝑒𝑎𝑑 = (𝑚1, ℎ1)

efficient C

efficient C

Optimization of tail-resumptive operations

8Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫. 𝑟𝑒𝑎𝑑 = (𝑚1, ℎ1)

f = \x.\k. k 1
h1 = ask -> f

avoid yields: evaluate tail-resumptive operations in-place

efficient C

Optimization of tail-resumptive operations

8Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫. 𝑟𝑒𝑎𝑑 = (𝑚1, ℎ1)

f = \x.\k. k 1
h1 = ask -> f

avoid yields: evaluate tail-resumptive operations in-place

71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not !rst-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime – this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their e"ect label.
This requires a strongly typed calculus but it means that if the e"ect type is fully known
at compile time, we can statically determine the index for a particular e"ect in the runtime
evidence vector. For example, in systems that keep track of the e"ect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the e"ect type of our example
perform ask () is the singleton e"ect row 〈read〉, and we know statically that the dynamic
runtime evidence vector will have the form 〈〈read : _〉〉. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ !x . !k. k e where k %∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the !nal result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is de!ned and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

〈〈〉〉
︷!!!︸︸!!!︷

handler hread (!_. perform ask () + perform ask ())

↦−→∗

〈〈〉〉
︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷

prompt m hread •

〈〈read : (m,hread , 〈〈〉〉) 〉〉
︷!!︸︸!!︷

(! + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-
dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,
respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –
for example !x k. if x == 0 then k 1 else k 2 which can be transformed to !x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not !rst-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime – this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their e"ect label.
This requires a strongly typed calculus but it means that if the e"ect type is fully known
at compile time, we can statically determine the index for a particular e"ect in the runtime
evidence vector. For example, in systems that keep track of the e"ect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the e"ect type of our example
perform ask () is the singleton e"ect row 〈read〉, and we know statically that the dynamic
runtime evidence vector will have the form 〈〈read : _〉〉. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ !x . !k. k e where k %∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the !nal result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is de!ned and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

〈〈〉〉
︷!!!︸︸!!!︷

handler hread (!_. perform ask () + perform ask ())

↦−→∗

〈〈〉〉
︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷

prompt m hread •

〈〈read : (m,hread , 〈〈〉〉) 〉〉
︷!!︸︸!!︷

(! + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-
dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,
respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –
for example !x k. if x == 0 then k 1 else k 2 which can be transformed to !x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

tail-resumptive operations

efficient C

Optimization of tail-resumptive operations

8Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫. 𝑟𝑒𝑎𝑑 = (𝑚1, ℎ1)

f = \x.\k. k 1
h1 = ask -> f

avoid yields: evaluate tail-resumptive operations in-place

1

71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not !rst-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime – this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their e"ect label.
This requires a strongly typed calculus but it means that if the e"ect type is fully known
at compile time, we can statically determine the index for a particular e"ect in the runtime
evidence vector. For example, in systems that keep track of the e"ect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the e"ect type of our example
perform ask () is the singleton e"ect row 〈read〉, and we know statically that the dynamic
runtime evidence vector will have the form 〈〈read : _〉〉. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ !x . !k. k e where k %∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the !nal result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is de!ned and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

〈〈〉〉
︷!!!︸︸!!!︷

handler hread (!_. perform ask () + perform ask ())

↦−→∗

〈〈〉〉
︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷

prompt m hread •

〈〈read : (m,hread , 〈〈〉〉) 〉〉
︷!!︸︸!!︷

(! + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-
dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,
respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –
for example !x k. if x == 0 then k 1 else k 2 which can be transformed to !x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not !rst-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime – this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their e"ect label.
This requires a strongly typed calculus but it means that if the e"ect type is fully known
at compile time, we can statically determine the index for a particular e"ect in the runtime
evidence vector. For example, in systems that keep track of the e"ect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the e"ect type of our example
perform ask () is the singleton e"ect row 〈read〉, and we know statically that the dynamic
runtime evidence vector will have the form 〈〈read : _〉〉. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ !x . !k. k e where k %∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the !nal result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is de!ned and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

〈〈〉〉
︷!!!︸︸!!!︷

handler hread (!_. perform ask () + perform ask ())

↦−→∗

〈〈〉〉
︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷

prompt m hread •

〈〈read : (m,hread , 〈〈〉〉) 〉〉
︷!!︸︸!!︷

(! + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-
dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,
respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –
for example !x k. if x == 0 then k 1 else k 2 which can be transformed to !x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

tail-resumptive operations

efficient C

Optimization of tail-resumptive operations

8Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫. 𝑟𝑒𝑎𝑑 = (𝑚1, ℎ1)

f = \x.\k. k 1
h1 = ask -> f

avoid yields: evaluate tail-resumptive operations in-place

1under read 1

71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not !rst-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime – this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their e"ect label.
This requires a strongly typed calculus but it means that if the e"ect type is fully known
at compile time, we can statically determine the index for a particular e"ect in the runtime
evidence vector. For example, in systems that keep track of the e"ect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the e"ect type of our example
perform ask () is the singleton e"ect row 〈read〉, and we know statically that the dynamic
runtime evidence vector will have the form 〈〈read : _〉〉. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ !x . !k. k e where k %∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the !nal result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is de!ned and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

〈〈〉〉
︷!!!︸︸!!!︷

handler hread (!_. perform ask () + perform ask ())

↦−→∗

〈〈〉〉
︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷

prompt m hread •

〈〈read : (m,hread , 〈〈〉〉) 〉〉
︷!!︸︸!!︷

(! + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-
dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,
respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –
for example !x k. if x == 0 then k 1 else k 2 which can be transformed to !x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not !rst-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime – this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their e"ect label.
This requires a strongly typed calculus but it means that if the e"ect type is fully known
at compile time, we can statically determine the index for a particular e"ect in the runtime
evidence vector. For example, in systems that keep track of the e"ect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the e"ect type of our example
perform ask () is the singleton e"ect row 〈read〉, and we know statically that the dynamic
runtime evidence vector will have the form 〈〈read : _〉〉. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ !x . !k. k e where k %∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the !nal result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is de!ned and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

〈〈〉〉
︷!!!︸︸!!!︷

handler hread (!_. perform ask () + perform ask ())

↦−→∗

〈〈〉〉
︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷

prompt m hread •

〈〈read : (m,hread , 〈〈〉〉) 〉〉
︷!!︸︸!!︷

(! + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-
dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,
respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –
for example !x k. if x == 0 then k 1 else k 2 which can be transformed to !x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

tail-resumptive operations

efficient C

Optimization of tail-resumptive operations

8Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())

⟼

≪≫ ≪ 𝑟𝑒𝑎𝑑: (𝑚1, ℎ1) ≫

≪ 𝑟𝑒𝑎𝑑: 𝑚1, ℎ1 ≫. 𝑟𝑒𝑎𝑑 = (𝑚1, ℎ1)

f = \x.\k. k 1
h1 = ask -> f

avoid yields: evaluate tail-resumptive operations in-place

1under read 1

71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not !rst-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime – this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their e"ect label.
This requires a strongly typed calculus but it means that if the e"ect type is fully known
at compile time, we can statically determine the index for a particular e"ect in the runtime
evidence vector. For example, in systems that keep track of the e"ect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the e"ect type of our example
perform ask () is the singleton e"ect row 〈read〉, and we know statically that the dynamic
runtime evidence vector will have the form 〈〈read : _〉〉. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ !x . !k. k e where k %∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the !nal result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is de!ned and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

〈〈〉〉
︷!!!︸︸!!!︷

handler hread (!_. perform ask () + perform ask ())

↦−→∗

〈〈〉〉
︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷

prompt m hread •

〈〈read : (m,hread , 〈〈〉〉) 〉〉
︷!!︸︸!!︷

(! + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-
dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,
respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –
for example !x k. if x == 0 then k 1 else k 2 which can be transformed to !x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the “innermost” handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not !rst-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime – this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their e"ect label.
This requires a strongly typed calculus but it means that if the e"ect type is fully known
at compile time, we can statically determine the index for a particular e"ect in the runtime
evidence vector. For example, in systems that keep track of the e"ect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the e"ect type of our example
perform ask () is the singleton e"ect row 〈read〉, and we know statically that the dynamic
runtime evidence vector will have the form 〈〈read : _〉〉. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ !x . !k. k e where k %∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the !nal result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is de!ned and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

〈〈〉〉
︷!!!︸︸!!!︷

handler hread (!_. perform ask () + perform ask ())

↦−→∗

〈〈〉〉
︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷

prompt m hread •

〈〈read : (m,hread , 〈〈〉〉) 〉〉
︷!!︸︸!!︷

(! + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-
dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and
hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,
respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form –
for example !x k. if x == 0 then k 1 else k 2 which can be transformed to !x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

tail-resumptive operations

≪≫

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())
⟼

f = \x.\k. k 1
h1 = ask -> f

f () (\x. prompt m1 h1 (x + perform ask ())

capturing⟼

make yields local: bubbling it up until it meets its corresponding prompt frame

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (yield m1 (\k. f () k) + perform ask ())

prompt m1 h1 (perform ask () + perform ask ())
⟼

f () (\x. prompt m1 h1 (x + perform ask ())

capturing⟼

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼

prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k)

f () (\x. prompt m1 h1 (x + perform ask ())

capturing⟼

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼

prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k)

f () (\x. prompt m1 h1 ● (+ perform ask ()) ● x)

capturing⟼

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼

prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k)

f () (\x. prompt m1 h1 ● (+ perform ask ()) ● x)

capturing⟼

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼ partially built-up

resumption
prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k) (\x. x)

f () (\x. prompt m1 h1 ● (+ perform ask ()) ● x)

capturing⟼

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼ partially built-up

resumption
prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k) (\x. x)

f () (\x. prompt m1 h1 ● (+ perform ask ()) ● x)

capturing⟼

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼ partially built-up

resumption
prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k) (\x. x)

f () (\x. prompt m1 h1 ● (+ perform ask ()) ● x)

capturing⟼

bubbling⟼

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼ partially built-up

resumption
prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k) (\x. x)

f () (\x. prompt m1 h1 ● (+ perform ask ()) ● x)

capturing⟼

bubbling⟼

prompt m1 h1 ●

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼ partially built-up

resumption

prompt m1 h1 ● yield m1 (\k. f () k) (\x. (+ perform ask ()) ● x)

prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k) (\x. x)

f () (\x. prompt m1 h1 ● (+ perform ask ()) ● x)

capturing⟼

bubbling⟼

prompt m1 h1 ●

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

efficient C

Bubbling yields

9Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

searching

handler h1 (_. perform ask () + perform ask ())

⟼

prompt m1 h1 (perform ask () + perform ask ())
⟼ partially built-up

resumption

prompt m1 h1 ● yield m1 (\k. f () k) (\x. (+ perform ask ()) ● x)

prompt m1 h1 ● (+ perform ask ()) ● yield m1 (\k. f () k) (\x. x)

f () (\x. prompt m1 h1 ● (+ perform ask ()) ● x)

capturing⟼

bubbling⟼

prompt m1 h1 ●

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k 1
h1 = ask -> f

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

handler h1 (_. perform ask () + perform ask ())

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

handler h1 (_. perform ask () + perform ask ())
⇝

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

handler h1 (_. perform ask () + perform ask ())

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (g ¢ k) ((app1), (app2) Fig. 4, ��� Fig. 5)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

A evidence-passing multi-prompt delimited control monad

handler h1 (_. perform ask () + perform ask ())

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (g ¢ k) ((app1), (app2) Fig. 4, ��� Fig. 5)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

A evidence-passing multi-prompt delimited control monad
evidence passing

handler h1 (_. perform ask () + perform ask ())

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (g ¢ k) ((app1), (app2) Fig. 4, ��� Fig. 5)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

A evidence-passing multi-prompt delimited control monad
evidence passing

handler h1 (_. perform ask () + perform ask ())

control monad

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (g ¢ k) ((app1), (app2) Fig. 4, ��� Fig. 5)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

A evidence-passing multi-prompt delimited control monad
evidence passing

handler h1 (_. perform ask () + perform ask ())

control monad

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (g ¢ k) ((app1), (app2) Fig. 4, ��� Fig. 5)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

A evidence-passing multi-prompt delimited control monad
evidence passing

handler h1 (_. perform ask () + perform ask ())

control monad

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.
pass the result and the current evidence

⇝

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

bubbling

Monadic translation

10Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

efficient C

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (g ¢ k) ((app1), (app2) Fig. 4, ��� Fig. 5)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

A evidence-passing multi-prompt delimited control monad
evidence passing

handler h1 (_. perform ask () + perform ask ())

control monad

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.
pass the result and the current evidence

⇝

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

efficient C

Compiling to C

11Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

handler h1 (_. perform ask () + perform ask ())

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

efficient C

Compiling to C

11Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

handler h1 (_. perform ask () + perform ask ())

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

efficient C

Compiling to C

11Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

handler h1 (_. perform ask () + perform ask ())

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

evidence passing

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

efficient C

Compiling to C

11Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

handler h1 (_. perform ask () + perform ask ())

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

evidence passing

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

constant-time look-up

efficient C

Compiling to C

11Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

handler h1 (_. perform ask () + perform ask ())

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

evidence passing

control
monad

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

constant-time look-up

bubbling

efficient C

Compiling to C

11Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

handler h1 (_. perform ask () + perform ask ())

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

evidence passing

control
monad

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

constant-time look-up

bubbling

efficient C

Compiling to C

11Algebraic effects

Multi-prompt
delimited control

Evidence-passing
semantics Bubbling

Monadic
translation

handler h1 (_. perform ask () + perform ask ())

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

evidence passing

control
monad

handler h1 (_. perform ask () (\x. perform ask () (\y. Pure (x + y))))

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e f | prompt m h e | yield m v v
(app1) v ⇤ • yield m f k �! yield m f (_x . v (k x))
(app2) ⇤ e • yield m f k �! yield m f (_x . (k x) e)
(under) under l ⇤ • yield m f k �! yield m f (_x . under l (k x))
(prompt1) prompt m h ⇤ • yield m f k �! f (_x . prompt m h (k x))
(prompt2) prompt n h ⇤ • yield m f k �! yield m f (_x . prompt n h (k x)) i� n < m
(perform) w ` perform op n0 f v �! yield m (_k. f f v k) (_x . x)

with (m, h, _) = w.l ^ (op 7! f) 2 h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (_x . x) which is the initial partially built
resumption – at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app1), (app2) and (prompt2). In rule
(app1), the frame v ⇤ is added to the current partially built resumption k, generating (_x . v (k x)).
Rule (app2) is similar. Rule (prompt2) compares markers and �nds that n < m and adds the prompt
frame to the resumption. The yield keeps bubbling up until it �nds its matching handler in rule
(prompt1), where we �nally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad
All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic e�ect speci�c
construct can be implemented directly as a regular function. In this section, we �rst establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we de�ne our monad Mon as:
type Mon ` U = Evv ` ! Ctl ` U
The evidence-passing semantics is established by taking an argument of type Evv `, which corre-
sponds to the current evidence vector for an e�ect `, and returning in the control monad Ctl. The
control monad is de�ned as4:
data Ctl ` U =
| Pure : U ! Ctl ` U
| Yield :8V ` 0 r . Marker ` 0 r ! ((V !Mon ` 0 r) ! Mon ` 0 r) ! (V ! Mon ` U) ! Ctl ` U

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f � g) x = f (g x) (function composition)
(f ¢ g) x = g x B f (Kleisli composition)
e B g = _w. case e w of Pure x ! g x w (monadic bind)

Yield m f k ! Yield m f (_x . k x B g) ((app1), (app2) Fig. 4, ���)
4This monad is used exactly in the Mp.E� library [Xie and Leijen 2021b], but the Ctl is di�erent from that of Ev.E� [Xie
et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.E� these return in Ctl (again
because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

⇝

constant-time look-up

Benchmarks

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

12

https://koka-lang.github.io/

https://koka-lang.github.io/

Benchmarks

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

12

Benchmarks

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

12

Benchmarks

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

12

Benchmarks

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

12

Excited to know more?

13

https://koka-lang.github.io/

https://koka-lang.github.io/

Excited to know more?

13

https://koka-lang.github.io/

https://hackage.haskell.org/package/mpeff

https://koka-lang.github.io/
https://hackage.haskell.org/package/mpeff

Generalized Evidence Passing for
Effect Handlers

Efficient Compilation of Effect Handlers to C

Ningning Xie Daan Leijen

ICFP 2021

