Generalized Evidence Passing for
Effect Handlers

Efficient Compilation of Effect Handlers to C

Ningning Xie Daan Leijen
A B4 Microsoft’

L THE UNIVERSITY OF HONG KONG Resea I‘Ch
ICFP 2021

Research contributions

®

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

! Algebraic effects

https://koka-lang.github.io/

v
Efficient C (with no special runtime support)

https://koka-lang.github.io/

Research contributions

! Algebraic effects

- Multi-prompt delimited control
https://koka-lang.github.io/

v
Efficient C (with no special runtime support)

https://koka-lang.github.io/

Research contributions

! Algebraic effects

- Multi-prompt delimited control
https://koka-lang.github.io/

T Evidence-passing semantics

v
Efficient C (with no special runtime support)

https://koka-lang.github.io/

https://koka-lang.github.io/

Research contributions

! Algebraic effects

- Multi-prompt delimited control

T Evidence-passing semantics

- Bubbling Yields

v
Efficient C (with no special runtime support)

https://koka-lang.github.io/

Research contributions

! Algebraic effects

T Multi-prompt delimited control
https://koka-lang.github.io/

T Evidence-passing semantics

T Bubbling Yields

+ Monadic translation

v
Efficient C (with no special runtime support)

https://koka-lang.github.io/

Research contributions

! Algebraic effects

T Multi-prompt delimited control
https://koka-lang.github.io/

T Evidence-passing semantics

optimization of tail-resumptive operations
insertion- versus canonical ordered evidence vector

T Bubbling Yields
short-cut resumption

+ Monadic translation
bind-inlining and join-point sharing

v
Efficient C (with no special runtime support)

https://koka-lang.github.io/

Research contributions

Algebraic effects

T Multi-prompt delimited control
https://koka-lang.github.io/

PLDI 2021 T Evidence-passing semantics
Perceus: Garbage Free Reference Counting with Reuse opti mization of tail-resum ptive operations
Alex Reinking” Ningning Xie*
Nl Resrch Uity of Hon Ko insertion- versus canonical ordered evidence vector
alexireinking’@ber!ke]ey.edu nnxige@cs.g};ku.hk
Leonardo de Moura Daan Leijen
Microsoft Research Microso ft Researc h . .
s ey T Bubbling Yields

short-cut resumption

+ Monadic translation
bind-inlining and join-point sharing

v
Efficient C (with no special runtime support)

https://koka-lang.github.io/

Research contributions

https://koka-lang.github.io/
PLDI 2021

Perceus: Garbage Free Reference Counting with Reuse

Alex Reinking” Ningning Xie*

Microsoft Research University of Hong Kong
Redmond, WA, USA Hong Kong, China
alex_reinking@berkeley.edu nnxie@cs.hku.hk
Leonardo de Moura Daan Leijen
Microsoft Research Microso ft Researc h
Redmond, WA, USA Redmond, WA, USA
leonardo@microsoft.com daan@microsoft.com

2 8
2

bett
== 3965
|

EES

elapsed time (lower is be
3

Algebraic effects

T Multi-prompt delimited control

T Evidence-passing semantics

optimization of tail-resumptive operations
insertion- versus canonical ordered evidence vector

Bubbling Yields
short-cut resumption

Monadic translation
bind-inlining and join-point sharing

v

Efficient C (with no special runtime support)

https://koka-lang.github.io/

Algebraic effects 101

effect read {

ask : () -> int
}
handler {
ask -> \x.\k. k 1
}
(_.

perform ask () + perform ask ()

)

Algebraic effects 101

effect read {

ask : () -> int
}
handler {
ask -> \x.\k. k1
}
(_.

perform ask () + perform ask ()

)

Algebraic effects 101

effect read {

ask : () -> int
}
handler {
ask -> \x.\k. k1
}
(_.

perform ask () + perform ask ()

)

Algebraic effects 101

effect read {

ask : () -> int
}
handler {

ask -> \x.\k. k1
(_.

perform ask () + perform ask ()

)

effect

Algebraic effects 101

effect read {
ask : () -> int
}
handler {
ask -> \x.\k. k 1
(\ .

perform ask () + perform ask ()

)

effect

Algebraic effects 101

effect read {
ask : () -> int —4 operation
}
handler {
ask -> \x.\k. k1
(\ .

perform ask () + perform ask ()

)

effect

effect handler

Algebraic effects 101

effect read {

ask : () -> int —4 operation
}
handler {

ask -> \x.\k. k 1

(_.

perform ask () + perform ask ()

)

Algebraic effects 101

effect | effect read {
ask : () -> int —4 operation
}
ffect handl
effect handler handler {

ask -> \x.\k. k 1 —4| implementation

(_.

perform ask () + perform ask ()

)

Algebraic effects 101

effect | effect read {
ask : () -> int —4 operation
}
ffect handl
effect handler handler {

ask -> \x.\k. k 1 —4| implementation

computation (\

perform ask () + perform ask ()

)

effect

effect handler

computation

Algebraic effects 101

effect read {
ask : () -> int —4 operation
}
handler {
ask -> \x.\k. k 1 —4| implementation
(\

perform ask () + perform ask ()

)

4| perform an effect

effect

effect handler

computation

Algebraic effects 101

effect read {
ask : () -> int —4 operation
}
handler {
ask -> \x.\k. k 1 —4| implementation
(\

perform ask () + perform ask ()]
) // 2

4| perform an effect

Operational semantics of untyped algebraic effects

@ (app) (Ax. e) v — e[x=v]
@ (handler) handler h f — handle A (f ())
® (return) handle hv — v

@ (perform) handle h E[perform opv] — f v (Ax. handle h E[x])
iff op ¢ bop(E) A (op— f) € h

Operational semantics of untyped algebraic effects

@ (app) (Ax. e) v — e[x=v]
@ (handler) handler h f — handle A (f ())
® (return) handle hv — v

@ (perform) handle h E[perform opv] — f v (Ax. handle h E[x])
iff op ¢ bop(E) A (op— f) € h

Operational semantics of untyped algebraic effects

© (app) (Ax. e) v —> e[x=V]
@ (handler) handler hf —> handle h (f ())
® (return) handle hv — v

@ (perform) handle h E[perform opv] — f v (Ax. handle h E[x])
iff op ¢ bop(E) A (op— f) € h

Operational semantics of untyped algebraic effects

@ (app) (Ax. e) v —> e[x=V]

‘ a unit-taking function as a computation l
@ (handler) handler h f — handle h (f ())
® (return) handle hv — v

@ (perform) handle h E[perform opv] — f v (Ax. handle h E[x])
iff op ¢ bop(E) A (op— f) € h

Operational semantics of untyped algebraic effects

@ (app) (Ax. e) v —> e[x=V]

‘ a unit-taking function as a computation l
@ (handler) handler h f — handle h (f ())
® (return) handle hv — W

@ (perform) handle h E[perform opv] — f v (Ax. handle h E[x])
iff op ¢ bop(E) A (op— f) € h

Operational semantics of untyped algebraic effects

@ (app) (Ax. e) v —> e[x=V]

‘ a unit-taking function as a computation l
@ (handler) handler h f — handle h (f ())
® (return) handle hv — v

@ (perform) handle h E[perform op v] — f v (Ax. handle h E[x])
iff op ¢ bop(E) A (op— f) € h

Operational semantics of untyped algebraic effects

@ (app) (Ax.e) v

—> e|x=v]

‘ a unit-taking function as a computation l
@ (handler) handler h f — handle h (f ())
® (return) handle hv — v

evaluation context

@ (perform) handle h

E

|perform op v] — f v (Ax. handle h E|x])
iff op ¢ bop(E) A (op— f) € h

Operational semantics of untyped algebraic effects

@ (app) (Ax.e) v

—> e|x=v]

‘ a unit-taking function as a computation l
@ (handler) handler h f — handle h (f ())
® (return) handle hv — v

evaluation context

@ (perform) handle h

E

|perform op v] — f v (Ax. handle h E|x])
iff op ¢ bop(E) A (op— f) € h

his the
innermost

handler

Operational semantics of untyped algebraic effects

@ (app) (Ax.e) v

—> e|x=v]

a unit-taking function as a computation l

@ (handler) handler h f — handle h (f ())

® (return) handle hv

evaluation context

@ (perform) handle h

E

|perform op v] — f v (Ax. handle h E|x])
iff op ¢ bop(E) A (op— f) € h

his the get the operation
innermost implementation f

handler

Operational semantics of untyped algebraic effects

@ (app) (Ax.e) v

—> e|x=v]

‘ a unit-taking function as a computation l
@ (handler) handler h f — handle h (f ())
® (return) handle hv — v
evaluation context operation argument

@ (perform) handle h

E

|
|perform op \‘/] — f v (Ax. handle h E[x])

iff op ¢ bop(E) A (op— f) € h
his the get the operation
innermost implementation f

handler
3

Operational semantics of untyped algebraic effects

@ (app) (Ax. e) v — e[x=v]
‘ a unit-taking function as a computation l
@ (handler) handler h f —> handle & (f ()
® (return) handle hv — v
evaluation context operation argumeint resumption

@ (perform) handle h|E[perform op \‘/] — f v|{(Ax. handle h E[x])
iff op ¢ bop(E) A (op— f) € h

his the get the operation
innermost implementation f

handler

3

The problem: compiling effect handlers efficiently

(perform) handle h E[perform op v] — f v (Ax. handle h E[x])
iff op ¢ bop(E) A (op—f) € h

The problem: compiling effect handlers efficiently

(perform) handle h E[perform op v] — f v (Ax. handle h E[x])
iff op ¢ bop(E) A (op—f) € h

Two potentially expensive runtime operations:

The problem: compiling effect handlers efficiently

evaluation context

(perform) handle hﬂ[perform opv] — f v (Ax. handle h E|[x])
iff op & bop(E) A (op+— f) € h

Two potentially expensive runtime operations:

The problem: compiling effect handlers efficiently

evaluation context

(perform) handle hg[perform opv] — f v (Ax. handle h E|[x])
iff op & bop(E) A (op+— f) € h

h is the innermost handler

Two potentially expensive runtime operations:

The problem: compiling effect handlers efficiently

evaluation context

(perform) handle h

E[perform opv] — f v (Ax. handle h E|[x])
iff op ¢ bop(E) A (op—f) € h

h is the innermost handler

Two potentially expensive runtime operations:

1. Searching

a linear search through the current evaluation context to find the innermost handler for op

The problem: compiling effect handlers efficiently

evaluation context resumption

(perform) handle hg[perform opv] — f v|((Ax. handle h E|[x])
iff op & bop(E) A (op+— f) € h

h is the innermost handler

Two potentially expensive runtime operations:

1. Searching
a linear search through the current evaluation context to find the innermost handler for op

The problem: compiling effect handlers efficiently

evaluation context resumption

(perform) handle hg[perform opv] — f v|((Ax. handle h E|[x])
iff op & bop(E) A (op+— f) € h

h is the innermost handler

Two potentially expensive runtime operations:

1. Searching
a linear search through the current evaluation context to find the innermost handler for op
2. Capturing

capture the evaluation context (i.e., stacks and registers) up to the found handler, and create
a resumption function

The problem: compiling effect handlers efficiently

evaluation context resumption

(perform) handle hg[perform opv] — f v|((Ax. handle h E|[x])
iff op & bop(E) A (op+— f) € h

h is the innermost handler

Two potentially expensive runtime operations:

1. Searching
a linear search through the current evaluation context to find the innermost handler for op
2. Capturing

capture the evaluation context (i.e., stacks and registers) up to the found handler, and create
a resumption function

This work:

Reader, formally

handler {
ask -> \x.\k. k 1

}
(_.

perform ask () + perform ask ()

)

Algebraic effects @

Reader, formally

handler {
ask -> \x.\k. k 1

}
(_.

perform ask () + perform ask ()

)

Algebraic effects @

= \x.\k. k 1
ask -> £

Reader, formally

= \x.\k. k 1

f
handler hl = ask -> f

hl
(\

perform ask () + perform ask ()

)

Algebraic effects @ 5

handler hl (\ .

Algebraic effects

Reader, formally

perform ask () + perform ask ())

= \x.\k. k 1
ask -> £

handler hl (\ .

Algebraic effects

Reader, formally

perform ask () + perform ask ())

= \x.\k. k 1
ask -> £

handler hl (\ .

Algebraic effects

Reader, formally

perform ask () + perform ask ())

= \x.\k. k 1
ask -> £

handler hl (\ .

Reader, formally

perform ask () + perform ask ())

handle hl (perform ask () + perform ask ())

Algebraic effects

= \x.\k. k 1
ask -> £

handler hl (\ .

Reader, formally

perform ask () + perform ask ())

handle hl (perform ask () + perform ask ())

Algebraic effects

= \x.\k. k 1
ask -> £

handler hl (\ .

Reader, formally

perform ask () + perform ask ())

handle hl (perform ask () + perform ask ())

f () (\x. handle hl (x + perform ask ())

Algebraic effects

= \x.\k. k 1
ask -> £

handler hl (\ .

Reader, formally

perform ask () + perform ask ())

handle hl (perform ask () + perform ask ())

f () (\x. handle hl (x + perform ask ())

Algebraic effects

= \x.\k. k 1
ask -> £

Reader, formally

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ask -> f

P Fh
=
Il

handle hl (perform ask () + perform ask ())

f () (\x. handle hl (x + perform ask ())

(\x. handle hl (x + perform ask ()) 1

Algebraic effects @ 5

Reader, formally

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ask -> f

P Fh
=
Il

handle hl (perform ask () + perform ask ())

f () (\x. handle hl (x + perform ask ())

(\x. handle hl (x + perform ask ()) 1

Algebraic effects @ 5

Reader, formally

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ask -> £

P Fh
=
Il

handle hl (perform ask () + perform ask ())

f () (\x. handle hl (x + perform ask ())

(\x. handle hl (x + perform ask ()) 1

handle hl (1 + perform ask ())

Algebraic effects @ 5

Reader, formally

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ask -> £

P Fh
=
Il

handle hl (perform ask () + perform ask ())

f () (\x. handle hl (x + perform ask ())

(\x. handle hl (x + perform ask ()) 1

handle hl (1 + perform ask ())

2

Algebraic effects @ 5

Multi-prompt semantics

separating searching from capturing

Multi-prompt
I delimited control
Algebraic effects

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) El — ask -> f

handle hl (perform ask () + perform ask ())

f () (\x. handle hl (x + perform ask ())

(\x. handle hl (x + perform ask ()) 1

handle hl (1 + perform ask ())
2

Multi-prompt
I delimited control
Algebraic effects

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) il — ask -> f

handle hl (perform ask () + perform ask ())

f () (\x. handle hl (x + perform ask ())
2

Multi-prompt
I delimited control
Algebraic effects

Multi-prompt semantics

separating searching from capturing

handler hl (\ . perform ask () + perform ask ())

Algebraic effects 0—|

Multi-prompt
delimited control

= \x.\k. k 1
ask -> £

Multi-prompt semantics

separating searching from capturing

handler hl (\ . perform ask () + perform ask ())

prompt ml hl (perform ask () + perform ask ())

Algebraic effects 0—|

Multi-prompt
delimited control

= \x.\k. k 1
ask -> £

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ;fll — ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) 4{ identifying handlers

Multi-prompt
I delimited control
Algebraic effects 6

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ;fll — ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) 4{ identifying handlers

Multi-prompt
I delimited control
Algebraic effects 6

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ;fll — ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) 4{ identifying handlers

Multi-prompt
I delimited control
Algebraic effects 6

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ;fll — ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) 4{ identifying handlers

prompt ml hl (yield ml (\k. £ () k) + perform ask ())

Multi-prompt
I delimited control
Algebraic effects 6

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ;fll — ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) —{ identifying handlers

yielding to a handler

prompt ml hl (yield ml (\k. £ () k) + perform ask ()) ——| |gentified by m1

Multi-prompt
I delimited control
Algebraic effects 6

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) El - ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) —| identifying handlers

yielding to a handler

prompt ml hl (yield ml (\k.[£|() k) + perform ask ()) —— genified by m1

operation implementation partially
applied to operation argument

Multi-prompt
I delimited control
Algebraic effects 6

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ;fll — ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) —{ identifying handlers

yielding to a handler

prompt ml hl (yield ml (\k. £ () k) + perform ask ()) ——| |gentified by m1

Multi-prompt
I delimited control
Algebraic effects 6

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) ;fll — ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) —{ identifying handlers

yielding to a handler

prompt ml hl (yield ml (\k. £ () k) + perform ask ()) ——| |gentified by m1

Multi-prompt
I delimited control
Algebraic effects 6

handler hl (\ .

Multi-prompt semantics

separating searching from capturing

perform ask () + perform ask ())

prompt ml hl (perform ask () + perform ask ())

f
hl

= \x.\k. k 1
= ask -> f

—

prompt ml hl (yield ml (\k. £ () k) + perform ask ()) ——%

f () (\x. prompt ml hl (x + perform ask ())

Multi-prompt
I delimited control
Algebraic effects

m1: a unique marker
identifying handlers

yielding to a handler
identified by m1

Multi-prompt semantics

separating searching from capturing

= \x.\k. k 1

handler hl (\ . perform ask () + perform ask ()) El - ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) —| identifying handlers

yielding to a handler

prompt ml hl (yield ml (\k. £ () k) + perform ask ()) —— igenified by m1

f () (\x. prompt ml hl (x + perform ask ())
2

Multi-prompt
I delimited control
Algebraic effects

Multi-prompt semantics

separating searching from capturing

= \x.\k. k1

handler hl (\ . perform ask () + perform ask ()) fll - ask -> f

m1: a unique marker
prompt ml hl (perform ask () + perform ask ()) —| identifying handlers
(perform) iff op & bop(E) A (op+— f) € h searching
prompt ml hl (yield ml (\k. £ () k) + perform ask ()) —|

yielding to a handler
identified by m1

f () (\x. prompt ml hl (x + perform ask ())
2

Multi-prompt
I delimited control
Algebraic effects 6

Multi-prompt semantics

separating searching from capturing

= \x.\k. k1

handler hl (\ . perform ask () + perform ask ()) fll - ask -> f

prompt ml hl (perform ask () + perform ask ()) —| Q;;}fift;?riguhznmdﬁﬁr
(perform) iff op & bop(E) A (op+— f) € h searching

prompt ml hl (yield ml (\k. £ () k) + perform ask ()) —|
(prompt) capturing
f () (\x. prompt ml hl (x + perform ask ())
2

yielding to a handler
identified by m1

Multi-prompt
I delimited control
Algebraic effects 6

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

handler hl (\ . perform ask () + perform ask ())

prompt ml hl (perform ask () + perform ask ())

f
hl

\x.\k. k 1
ask -> £

searching

prompt ml hl (yield ml (\k. £ () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics

Algebraic effects @

handler hl (\ .

prompt ml hl

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

prompt ml hl (yield ml

Algebraic effects

Multi-prompt
delimited control

perform ask () + perform ask ())

(perform ask () + perform ask ())

(\k. £ () k) + perform ask ())

Evidence-passing
semantics

f
hl

\x.\k. k 1
ask -> £

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

A
(|

f
hl

\x.\k. k 1
ask -> £

handler hl (\ . perform ask () + perform ask ())

prompt ml hl (perform ask () + perform ask ())

prompt ml hl (yield ml (\k. £ () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics

Algebraic effects @

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

A
{ |

f
hl

\x.\k. k 1
ask -> £

handler hl (\ . perform ask () + perform ask ())

A
(\
prompt ml hl (perform ask () + perform ask ())

prompt ml hl (yield ml (\k. £ () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics

Algebraic effects @

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

A
{ |

f
hl

\x.\k. k 1
ask -> £

handler hl (\ . perform ask () + perform ask ())

A A
(| |
prompt ml hl (perform ask () + perform ask ())

prompt ml hl (yield ml (\k. f£ () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics

Algebraic effects @

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

A
{ |

f
hl

\x.\k. k 1
ask -> £

handler hl (\ . perform ask () + perform ask ())

A A
(| |
prompt ml hl (perform ask () + perform ask ())

prompt ml hl (yield ml (\k. f£ () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics

Algebraic effects @

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

A
{ |

f
hl

\x.\k. k 1
ask -> £

handler hl (\ . perform ask () + perform ask ())

1 A
r \ \
prompt ml hl (perform ask () + perform ask ())

prompt ml hl (yield ml (\k. £ () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics

Algebraic effects @

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

f = \x.\k. k1
hl = ask -> £

A
(|
handler hl (\ . perform ask () + perform ask ())

A
|

r)
prompt ml hl (perform ask () + perform ask ())

A
\

A
[|

prompt ml hl (yield ml (\k.

f () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics
7

Algebraic effects @

Evidence-passing semantics

make performs local: push down the current handlers as an evidence vector

f = \x.\k. k1
hl = ask -> £

A
(|
handler hl (\ . perform ask () + perform ask ())

A
|

r)
prompt ml hl (perform ask () + perform ask ())

constant time

A
\

A
[|

prompt ml hl (yield ml (\k.

f () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics
7

Algebraic effects @

Optimization of tail-resumptive operations

avoid yields: evaluate tail-resumptive operations in-place

f = \x.\k. k1
hl = ask -> £

A
|

{
handler hl (\ . perform ask () + perform ask ())

A
|

A
()
prompt ml hl (perform ask () + perform ask ())

A
\

A
[|

prompt ml hl (yield ml (\k.

f () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics
8

Algebraic effects @

Optimization of tail-resumptive operations

avoid yields: evaluate tail-resumptive operations in-place

f = \x.\k. k1
hl = ask -> £

A
(|
handler hl (\ . perform ask () + perform ask ())
tail-resumptive operations

op— Ax. Ak. ke
where k ¢ fv(e)

A
|

\
r)
prompt ml hl (perform ask () + perform ask ())

A
\

A
[|

prompt ml hl (yield ml (\k.

f () k) + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics
8

Algebraic effects @

Optimization of tail-resumptive operations

avoid yields: evaluate tail-resumptive operations in-place

f = \x.\k. k1
hl = ask -> £

A
(|
handler hl (\ . perform ask () + perform ask ())
tail-resumptive operations

op— Ax. Ak. ke
where k ¢ fv(e)

A
|

\
r)
prompt ml hl (perform ask () + perform ask ())

A
\

A
[|

prompt ml hl (1 + perform ask ())
Multi-prompt Evidence-passing
delimited control semantics
8

Algebraic effects @

Optimization of tail-resumptive operations

avoid yields: evaluate tail-resumptive operations in-place

f = \x.\k. k1
hl = ask -> £

A
(|
handler hl (\ . perform ask () + perform ask ())
tail-resumptive operations

op— Ax. Ak. ke
where k ¢ fv(e)

A
|

\
r)
prompt ml hl (perform ask () + perform ask ())

A
\

A
[|

prompt ml hl (under read 1 + perform ask ())
Multi-prompt Evidence-passing
delimited control semantics
8

Algebraic effects @

Optimization of tail-resumptive operations

avoid yields: evaluate tail-resumptive operations in-place

f = \x.\k. k1
hl = ask -> £

A
(|
handler hl (\ . perform ask () + perform ask ())
tail-resumptive operations

op— Ax. Ak. ke
where k ¢ fv(e)

A
|

r)
prompt ml hl (perform ask () + perform ask ())

A A
[: | \ (|

prompt ml hl (under read 1 + perform ask ())
Multi-prompt Evidence-passing
delimited control semantics
8

Algebraic effects @

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. k1
h . +
andler hl (\ . perform ask () perform ask ()) hl = ask o> f
prompt ml hl (perform ask () + perform ask ())
searching
prompt ml hl (yield ml (\k. £ () k) + perform ask ())
capturing
f () (\x. prompt ml hl (x + perform ask ())
Multi-prompt Evidence-passing
delimited control semantics Bubbling
9

Algebraic effects @

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 +k1

handler hl (\ . perform ask () + perform ask ()) hl = ask -> f

prompt ml hl (perform ask () + perform ask ())

searching
prompt ml hl (yield ml (\k. £ () k) + perform ask ())

capturing

f () (\x. prompt ml hl (x + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics Bubbling

Algebraic effects @

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 +k1

handler hl (\ . perform ask () + perform ask ()) hl = ask -> f

prompt ml hl (perform ask () + perform ask ())

searching
prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k)

capturing

f () (\x. prompt ml hl (x + perform ask ())

Multi-prompt Evidence-passing
delimited control semantics Bubbling
Algebraic effects @ 9

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 +k1

handler hl (\ . perform ask () + perform ask ()) hl = ask -> f

prompt ml hl (perform ask () + perform ask ())

searching
prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k)

capturing

f () (\x. prompt ml hl e (+ perform ask ()) e Xx)

Multi-prompt Evidence-passing
delimited control semantics Bubbling
Algebraic effects @ 9

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 +k1

handler hl (\ . perform ask () + perform ask ()) hl = ask -> f

prompt ml hl (perform ask () + perform ask ())

searching
prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k)

capturing

f () (\x. prompt ml hl e (+ perform ask ()) e Xx)

Multi-prompt Evidence-passing
delimited control semantics Bubbling
Algebraic effects @ 9

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

handler hl (\ . perform ask () + perform ask ()) £ = \x.\k.

hl = ask =-> £

1 +k1

prompt ml hl (perform ask () + perform ask ())

searching

partially built-up

resumption
prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k) [(\x. X)
capturing
f () (\x. prompt ml hl e (+ perform ask ()) e Xx)
Multi-prompt Evidence-passing
delimited control semantics Bubbling
9

Algebraic effects @

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

handler hl (\ . perform ask () + perform ask ()) £ = \x.\k.

hl = ask =-> £

1 +k1

prompt ml hl (perform ask () + perform ask ())

searching

partially built-up
resumption

X)

prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k) |[(\x.

capturing

f () (\x. prompt ml hl e (+ perform ask ()) e Xx)

Multi-prompt Evidence-passing
delimited control semantics Bubbling

Algebraic effects @

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

handler hl (\ . perform ask () + perform ask ()) £ = \x.\k.

hl = ask =-> £

1 +k1

prompt ml hl (perform ask () + perform ask ())

SearChing partially built-up
resumption
prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k) [(\x. X)
bubbling
capturing

f () (\x. prompt ml hl e (+ perform ask ()) e Xx)

Multi-prompt Evidence-passing
delimited control semantics Bubbling

Algebraic effects @

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k1
hl = ask =-> £

handler hl (\ . perform ask () + perform ask ())

prompt ml hl (perform ask () + perform ask ())

Sea rching partially built-up
resumption
prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k) [(\x. X)
bubbling

prompt ml hl e

capturing

f () (\x. prompt ml hl e (+ perform ask ()) e Xx)

Multi-prompt Evidence-passing

delimited control semantics Bubbling
Algebraic effects @ 9

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k1

handler hl (\ . perform ask () + perform ask ()) hl = ask -> f

prompt ml hl (perform ask () + perform ask ())

(perform) searching partially buiI’Jcc-_up
resumption
prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k) [(\x. X) °
bubbling

prompt ml hl e yield ml (\k. £ () k) (\x. (+ perform ask ()) e X)

capturing

f () (\x. prompt ml hl e (+ perform ask ()) e Xx)

Multi-prompt Evidence-passing

delimited control semantics Bubbling
Algebraic effects @ 9

Bubbling yields

make yields local: bubbling it up until it meets its corresponding prompt frame

f = \x.\k. 1 + k1

handler hl (\ . perform ask () + perform ask ()) hl = ask -> f

prompt ml hl (perform ask () + perform ask ())

(perform) searching partially buiI’Jcc-_up
resumption
prompt ml hl e (+ perform ask ()) e yield ml (\k. £ () k) [(\x. X) °
bubbling

prompt ml hl e yield ml (\k. £ () k) (\x. (+ perform ask ()) e X)

capturing

f () (\x. prompt ml hl e (+ perform ask ()) e Xx)

Multi-prompt Evidence-passing

delimited control semantics Bubbling
Algebraic effects @ 9

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

Multi-prompt Evidence-passing Monadic
delimited control semantics Bubbling translation

Algebraic effects @

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())

Multi-prompt Evidence-passing Monadic
delimited control semantics Bubbling translation

Algebraic effects @

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())

g

Multi-prompt Evidence-passing Monadic
delimited control semantics Bubbling translation

Algebraic effects @

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation
Algebraic effects @ 10

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

A evidence-passing multi-prompt delimited control monad

type Mon pa = Evwpu — Ctl p o

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation
Algebraic effects @ 10

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

A evidence-passing multi-prompt delimited control monad

type Mon pa = Evv u —|Ctl p o

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation
Algebraic effects @ 10

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

A evidence-passing multi-prompt delimited control monad

type Mon pa = Evv u —||Ctl p &

control monad

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation
Algebraic effects @ 10

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

A evidence-passing multi-prompt delimited control monad

type Mon pa = Evv u —||Ctl p &

control monad

e g = Aw. case e w of Pure x —gXxw

Yield m f k — Yield m f (Ax. k x> g)

Multi-prompt | Evidence-passing Monadic

delimited control semantics | Bubbling | translation
Algebraic effects @ 10

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

A evidence-passing multi-prompt delimited control monad

type Mon pa = Evv u —||Ctl p &

control monad

e> g = Aw. case e w of Pure x —gXxw 4{ pass the result and the current evidence

Yield m f k — Yield m f (Ax. k x> g)

Multi-prompt | Evidence-passing Monadic

delimited control semantics | Bubbling | translation
Algebraic effects @ 10

Monadic translation

all transitions are local: translate algebraic effects into a pure lambda calculus with a multi-prompt delimited control monad

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

A evidence-passing multi-prompt delimited control monad

type Mon pa = Evv u —||Ctl p &

control monad

e> g = Aw. case e w of Pure x —gXxw 4{ pass the result and the current evidence
Yield m f k — Yield m f (Ax. [k x> g) bubbling

Multi-prompt | Evidence-passing Monadic

delimited control semantics | Bubbling | translation
Algebraic effects @ 10

Compiling to C

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation
Algebraic effects @ > efficient C 11

Compiling to C

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

int expr(unit_t u, context_t* ctx) {
int x = perform_ask(ctx—w[0@], unit, ctx);
if (ctx—is_yielding) { yield_extend(&joiny,ctx); return 0; }
int y = perform_ask(ctx—w[0], unit, ctx);
if (ctx—is_yielding) { yield_extend(alloc_closure_joini(x,ctx),ctx); return 0; }
return (x+y); }

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation o
Algebraic effects @ > efficient C 11

Compiling to C

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

int expr(unit_t u, context_t* ctx) {
int x = perform_ask(ctx—w[0@], unit, ctx);
if (ctx—is_yielding) { yield_extend(&joiny,ctx); return 0; }
int y = perform_ask(ctx—w[0], unit, ctx);
if (ctx—is_yielding) { yield_extend(alloc_closure_joini(x,ctx),ctx); return 0; }
return (x+y); }

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation o
Algebraic effects @ > efficient C 11

Compiling to C

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

int expr(unit_t u, context_t* ctx) {
int x = perform_ask(ctx—w[0],unit, ctx);
if (ctx—is_yielding) { yield_extend(&joiny,ctx); return 0; }
int y = perform_ask(ctx—w[0], unit, ctx);
if (ctx—is_yielding) { yield_extend(alloc_closure_joini(x,ctx),ctx); return 0; }
return (x+y); }

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation o
Algebraic effects @ > efficient C 11

Compiling to C

handler hl (\ . perform ask () + perform ask ())

g

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

int expr(unit_t u, context_t* ctx) {

control
monad

int x = perform_ask(ctx—w[0@],unit, ctx);

if (ctx—is_yielding) { yield_extend(&joiny,ctx); return 0; }

int y = perform_ask(ctx—w[0], unit, ctx);
if (ctx—is_yielding) { yield_extend(alloc_closure_joini(x,ctx),ctx); return 0; }
return (x+y); }

Multi-prompt Evidence-passing Monadic
delimited control semantics Bubbling translation

Algebraic effects @ > efficient C 11

Compiling to C

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx—w[0], unit, ctx);

if (ctx—is_yielding) { yield_extend(&joiny,ctx); return 0; } bubbling
int y = perform_ask(ctx—w[0], unit, ctx);

if (ctx—is_yielding) { yield_extend(alloc_closure_joini(x,ctx),ctx); return 0; }
return (x+y); }

control
monad

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation o
Algebraic effects @ > efficient C 11

Compiling to C

handler hl (\ . perform ask () + perform ask ())
W

handler hl (\ . perform ask () > (\x. perform ask () > (\y. Pure (X + y))))

int expr(unit_t u, context_t* ctx) {
int x = perform_ask(ctx—wl[@T1;unit. ctx):

int y = perform_ask(ctx—w[0], unit, ctx);

return (x+y); }

Multi-prompt Evidence-passing Monadic

delimited control semantics Bubbling translation o
Algebraic effects @ > efficient C 11

Benchmarks

https://koka-lang.github.io/

https://koka-lang.github.io/

[] tibhandler (C)

[Ev.Eff (Haskell)

[] Mp.Eff (Haskell)

Benchmarks

D multi-core OCaml
I Koka, Insertion-ordered I Koka, No short-cut resumption D Koka, No bind-inlining I:I Koka, No tail-resumptive opt.

I Koka

S96'¢ —H—-H

S0S'¢C

triple

$89°0 [
A4 —

$88'C HH

S90°'L
SyL'0]
s9L0

S¥8°0
SVL0
scv'lL

s19'0
SLZ'L H

nqueens

SGL'0 (I

SLg'L |
SG8'L

s00°¢
S08°L
B e

s96'0 [

S
sLe’0 [

S€g’L

mstate

sgOvy - - -

SylL'L
S60°0L - - -
—] SE6’L

S60°€ I

S6LY - 1

sevL |

counter10

m.V@m. o ..

SGL'L

SEY9L - -

Syl |

SGL'L
SCLC
SL80

Sov°C |

counter1

SGLL |
SGL'L

Sgo'LL - - -

sevIl HC————— 7

SEL’L
SyL'L
S¢L0

ssz’o0 [

counter

SYO'L |

| SyL'L]

5s

[%2) %] %2 [%2)
o (o] — o

(1912q st 1amo|) awi} pasde|s

12

Benchmarks

I Koka

I:I multi-core OCaml

[] Mp.Eff (Haskell) [Ev.Eff (Haskell)

I Koka, Insertion-ordered I Koka, No short-cut resumption D Koka, No bind-inlining I:I Koka, No tail-resumptive opt.

[] tibhandler (C)

5s
—~~
S
Q
E 4s
L
0
2]
o
3s
3
©)
=
Q
£ 2s
-
©
(D]
n
Q. Is
]
(3}
Os

] 3.97s

1.14s

0.25s

]

\
1 1.04s

counter

v wn
< o
- —
n ™
N
™
o

(2] [%2] [%2] wn
(e o wn N o0
° < NS < <
— - ~ K — <
. . AR)
. -
O
S
<t
[%2]
(@)
S
wn) o
(q\]
v N =
\O o~
<
N
= A
[%2]
A)
'\ -
[%2] > [%] [%2]
o — <t o
< 0 — %] < [%2) wn <
— LN n — LN < —
- - - -—
- v—' ‘1’ Al — ‘—'
©
I o I
counter1 counter10

12

N w S
%)) ©n

elapsed time (lower is better)

Benchmarks

B Koka [] multi-core OCaml [] Mp.Eff (Haskell) [Ev.Eff (Haskell) [] tibhandler (C)

I Koka, Insertion-ordered I Koka, No short-cut resumption D Koka, No bind-inlining I:I Koka, No tail-resumptive opt.

%2} [%2] [2) [%2]
Q0 o %) o)) 0
— - ~ R — <
. L .
» 3
r~ S
% <
o
%]
(o))
<
(%] o
o~
3 g
| o
<
(q\]
™ A
%]
Lo N
'\ -
L %2} . (%] [%2]
o™ — g o
[%2) (n(n'q: N — »n . n n
< ©n < on — LN n LN <t —
. .« . . n [.
v—‘_ n T A\nnl — A\ \nn -
— = — e =
| o
o
%]
L
N
o

counter counter1 counter10

Benchmarks

B Koka [] multi-core OCaml [] Mp.Eff (Haskell) [Ev.Eff (Haskell)

I Koka, Insertion-ordered I Koka, No short-cut resumption D Koka, No bind-inlining I:I Koka, No tail-resumptive opt.

[] tibhandler (C)

(2] [%2] %] [%2]
[=e] o %) (o)) [ce]
Ne) < < S S
—) eQ (=] <
— - l\a — <
. L .
5s .
» 3
= % =
3] o
t 4s |- — u
&)
0 &
2} <
— & o
o 3s I M
| 4 ~
= <
) N
—_— [%2]
~— " o
" 4 z
£ 2| 8 > g 3
= . n oS il n < 0 n
-+ < n < o — 1 L — o) < —
Al
(n -7(\I P— P P—
Q. 1s | S <
(o] %)
—_ o)
) N
=)
Os I_I

counter counter1 counter10

12

Excited to know more?

https://koka-lang.github.io/

Programming with Effect Handlers and FBIP in Koka

Who Daan Leijen, Ningning Xie
Track ICFP 2021 Tutorials

When (EST) Thu 26 Aug 2021 12:30 - 14:00 at Tutorials - Programming with Effect Handlers and FBIP in Koka 1

Daan Leijen Ningning Xie
' Microsoft Research University of Hong Kong

United States China

13

https://koka-lang.github.io/

Excited to know more?

https://koka-lang.github.io/

Programming with Effect Handlers and FBIP in Koka

Who Daan Leijen, Ningning Xie
Track ICFP 2021 Tutorials

When (EST) Thu 26 Aug 2021 12:30 - 14:00 at Tutorials - Programming with Effect Handlers and FBIP in Koka 1

Daan Leijen Ningning Xie
' Microsoft Research University of Hong Kong
United States China

D= Hackage :: [Package]

- Browse - What's new - Upload - User accounts

mpeff: Efficient effect handlers based on evidence-passing semantics

[control, effect, library, mit] [Propose Tags]

See the Control.Mp.Eff module or README.md for further Versions [RsS] [faq]
information 0.1.0.0
[Skip to Readme] Change log

https://hackage.haskell.org/package/mpeff

13

https://koka-lang.github.io/
https://hackage.haskell.org/package/mpeff

Generalized Evidence Passing for
Effect Handlers

Efficient Compilation of Effect Handlers to C

Ningning Xie Daan Leijen
A B4 Microsoft’

L THE UNIVERSITY OF HONG KONG Resea I‘Ch
ICFP 2021

