Let Arguments Go First

Ningning Xie, Bruno C. d. S. Oliveira

The University of Hong Kong

ESOP 2018, Thessaloniki, Greece
2018-04-17

Background

Bi-Directional Type Checking

* Well known in the folklore of type system for a long
time

* Popularized by Pierce and Turner’s work”
 Can support many type system features:

refinements, indexed types, intersections and unions,
contextual modal types, object-oriented subtyping,

* Benjamin C Pierce and David N Turner. Local type inference. TOPLAS, 22(1):1-44, 2000.

Bi-Directional Type Checking

Two Modes 1in type-checking

« Inference (synthesis): e synthesizes A

I'Fe= A
* Checked: check e against A
I'Fe< A

e Which constructs should be in which mode?

Bi-Directional Type Checking

* A recipe from Dunfield and Pfenning’

e Tntroduction rules <

I'v:AFe <~ B
I'Mx.e =~ A— B

e Elimination rules =

I'ten = A—B I'Fey — flAPP information flows from
I'-ej e = B functions to arguments

Notice here how type

* Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. POPL" 04, 2004.

Bi-Directional Type Checking

* Consider designing rules for pairs

I'Feq A I'Fes B I'Feg = A I'Fey = B
FI—(el,eg) (A,B) Fl—(el,eg) — (A,B)

« (1, 2) cannot type-check
..unless you write it as (1, 2) : (int, int)

e ..unless you have also an inference rule for pairs

* Rules scales up with the typing rules

Contributions

A variant of bi-directional type checking
with an application mode
type information propagates from arguments to functions

* A new design for type inference of higher-ranked
types
generalizes the Hindley-Milner type system
supports syntactic sugar for polymorphic let

* A System-F like calculus

compatible with type application Except the algorithm
encoding type declaration system, most parts are

formalized in Coq

Contributions

A variant of bi-directional type checking
with an application mode
type information propagates from arguments to functions

* A new design for type inference of higher-ranked

types
generalizes the Hindley-Milner type system
supports syntactic sugar for polymorphic let

* A System-F like calculus

compatible with type application
encoding type declaration

Application Mode

Application Mode
(Ax.) 1

e cannot type-check
.unless you write it as ((Az. x):int —int) 1

e ..unless you have also an inference rule for lambdas
(with some type inference)

 .WAIT! What if the type of the argument 1is accounted for
in inferring the function?

10

Application Mode

(Az.) 1

The argument 1 has type int
Can the function accept arguments of int
Let’s assume x : int

We have return type int
The type of function is int -» int

11

Application Mode

Instead of..

I'Fe; = A— B I'F eq A
I'Feie9 = B

APP

An alternative idea is to push the type of the
arguments into the typing of the function

F|_62:>A FISP,AI_61:>A%B
I'Ylke eo = B

12

Application Mode

Application context W is a stack that tracks the type
of the arguments

Lambda expressions can now make use of the application
context

I'c: AiVlFe = B
L
IN'vArXx.e = A— B

* (A\x. x) 1

AM

13

Application Mode

Two Modes 1n type-checking

« Inference (synthesis): e synthesizes A

I'Fe= A

e Application: under application ctxW, e synthesizes A

' VFe= A

14

Application Mode

Interpretation 'Fe= A

' VFe= A

B Recipe?
Whether the expression can be applied or not

Expressions can be applied:
variables, lambdas, applications, eliminations of
pairs,..

Expressions that cannot be applied:
literals, pairs,..

15

Application Mode

Interpretation 'Fe= A

' VFe= A

B What if the application context 1s empty?

.1t 1s not applied to any arguments
.we know nothing about the expression
.we should infer it!

* We can model inference mode as a particular case of
the application mode

16

Application Mode

Interpretation 'Fe= A

' VEe= A
B What if we have a possibly non-empty application
context?
e: A—-B—C

e Inference: e
Checked : e, A > B > C
Application Mode : e VU=(V=4 V=A2B

finer grain notion leads to partial type checking

17

Application Mode

Ce = 4
' VFEFe= A

B Is Inference mode + Application mode better/worse
than Bi-Directional type checking?

 No one is conservative over the other.

(Ax.) 1
(Az :int — int.\y : bool. y) (Ay. y) True

e But 1t does open paths to design choices
18

Application Mode

rre s 4

' VFe= A

B Local constraint solver for function variables.

Type system with implicit polymorphism and/or static
overloading needs type information about the arguments when
type-checking function variables.

id 3, (==) True False, ..

Type system employs an application subtyping - A < B
19

Application Mode

Cre s 4

' VFe= A

B Declaration desugaring for lambda abstractions.

Annotations are never needed for applied lambdas

(Ax. x) 1

It enables let sugar

let x = €1 In es ~ (Ax. e2) €3

20

Contributions

A variant of bi-directional type checking
with an application mode
type information propagates from arguments to functions

* A new design for type inference of higher-ranked
types

generalizes the Hindley-Milner type system
supports syntactic sugar for polymorphic let

* A System-F like calculus

compatible with type application
encoding type declaration

21

Application 1 for
the Application Mode

22

Application 1

B Type Inference of (implicit, predicative)
Higher-Ranked Types

* Enables expressiveness power of System F.
 Undecidable.

 Hindley-Milner (henceforth HM) with let
generalization has rank 1 types.

* Luis Damas and Robin Milner. Principal type-schemes for functional programs. POPL ' 82, 1982.
*]. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the

23
American Mathematical Society, 146:29-60, 1969.

Application 1

B Type Inference of Higher-Ranked Types

* GHC rejects:
(AMf. (£ 1, £ °c’)) (Ax. x)

* Rewriting according to bi-directional guideline

((Mf. (£ 1, £ ’c?’)) : (Wa. a = a) — (Int, Char)) (\x .

 .Wait! If we generalize the identity function
and propagate it into the function..

* a state-of-the-art compiler for Haskell

X)

24

Application 1

B Type Inference of Higher-Ranked Types

Apply the application mode to higher-ranked type
system”
with generalization on applications

* Martin Odersky and Konstantin L'aufer. Putting type annotations to work. POPL " 96, 1996.

* Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical type inference
for arbitrary-rank types. Journal of func- tional programming, 17(01):1-82, 2007.

* Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typechecking for

higher-rank polymorphism. ICFP " 13, 2013. 25

Application 1

B Type Inference of Higher-Ranked Types

1. Sugars for HM style polymorphic let expression
2. Conservative over the HM type system

3. Comparison with existing literatures

26

Application 1

System Types Impred Let Annotations

ML* flexible and rigid yes yes on polymorphically used parameters

HML flexible F-types yes yes on polymorphic parameters

FPH boxy F-types yes yes on polymorphic parameters and some
let bindings with higher-ranked types

Peyton Jones|F-types no yes on polymorphic parameters

et al. (2007)

Dunfield et al. | F-types no no on polymorphic parameters

(2013)

this paper F-types no sugar on polymorphic parameters that are

not applied

27

Application 1

B Type Inference of Higher-Ranked Types

1

2.

. Sugars for HM style polymorphic let expression
Conservative over the HM type system
. Comparison with existing literatures

. Interesting metatheory studies about the application
mode formalized in Coq.

. An algorithm; a translation to System F

28

Contributions

A variant of bi-directional type checking
with an application mode
type information propagates from arguments to functions

* A new design for type inference of higher-ranked
types
generalizes the Hindley-Milner type system
supports syntactic sugar for polymorphic let

* A System-F like calculus

compatible with type application
encoding type declaration

29

Application 2 for
the Application Mode

30

Application 2

“It is possible, of course, to come up with examples
where it would be beneficial to synthesize the argument
types first and then use the resulting information to
avoid type annotations in the function part of an
application expression....Unfortunately this refinement
does not help infer the type of polymorphic functions.
For example, we cannot uniquely determine the type of x
in the expression (fun[A](x) e) [Int] 37 °

* Benjamin C Pierce and David N Turner. Local type inference. TOPLAS, 22(1):1-44, 2000.

31

Application 2

B A Variant of System F with
More Expressive Type Applications

(Aa. Xx : a. x + 1) Int
..not typeable in traditional System F
..using application mode, we can verify 4 — Int

Use application context to track type equalities
introduced by type application

32

Application 2

B A Variant of System F with
More Expressive Type Applications

(fun[A](x) e) [Int] 3

X:A or X:Int

33

Application 2

B A Variant of System F with
More Expressive Type Applications

1. Sugar for type synonyms type a = A in e ~ (Ada. e) A

2. Preserve System F type abstraction
(Aa. Xx : a. x + 1) Int

let inc = Aa. Ax : a. x + 1 In inc Int e

34

Application 2

B A Variant of System F with
More Expressive Type Applications

1. Sugar for type synonyms type a = A in e ~ (Ada. e) A
2. Preserve System F type abstraction

3. Metatheory studies formalized in Coq.
type safety, uniqueness of typing

35

Discussion

36

Discussion

Combine application and checked mode
Additional constructs: pairs

Encoding declarations in dependent type
systems”®

See our full paper if you are

Related work interested!

* Paula Severi and Erik Poll. Pure type systems with definitions. Logical Foundations of Computer
Science, pages 316-328, 1994.

37

Thanks!

38

Let Arguments Go First

Ningning Xie, Bruno C. d. S. Oliveira

The University of Hong Kong

ESOP 2018, Thessaloniki, Greece
2018-04-17

39

