
Let Arguments Go First

Ningning Xie, Bruno C. d. S. Oliveira
The University of Hong Kong

ESOP 2018, Thessaloniki, Greece
2018-04-17

1

Background

2

Bi-Directional Type Checking

• Well known in the folklore of type system for a long
time

• Popularized by Pierce and Turner’s work*

• Can support many type system features:
refinements, indexed types, intersections and unions,
contextual modal types, object-oriented subtyping, …

* Benjamin C Pierce and David N Turner. Local type inference. TOPLAS, 22(1):1–44, 2000.
3

Bi-Directional Type Checking

Two Modes in type-checking

• Inference (synthesis): e synthesizes A

• Checked: check e against A

• Which constructs should be in which mode?

� ` e) A

4

� ` e (A

Bi-Directional Type Checking

• A recipe from Dunfield and Pfenning*

• Introduction rules

• Elimination rules

21

5.1 Combining Application and Checked Modes

Although the application mode provides us with alternative design choices in
a bi-directional type system, a checked mode can still be easily added. One
motivation for the checked mode would be annotated expressions e : A, where
the type of expressions is known and is therefore used to check expressions.

Consider adding e : A for introducing the third checked mode for the lan-
guage in Section 3. Notice that, since the checked mode is stronger than appli-
cation mode, when entering checked mode the application context is no longer
useful. Instead we use application subtyping to satisfy the application context
requirements. A possible typing rule for annotation expressions is:

 ` A <: B � ` e (A

� p ` (e : A)) B

T-Ann

Here, e is checked using its annotation A, and then we instantiate A to B using
subtyping with application context .

Now we can have a rule set of the checked mode for all expressions. For
example, one useful rule for abstractions in checked mode could be Abs-Chk,
where the parameter type A serves as the type of x, and typing checks the
body with B. Also, combined with the information flow, the checked rule for
application checks the function with the full type.

� , x : A ` e (B

� ` �x. e (A ! B

Abs-Chk

� ` e2) A � ` e1 (A ! B

� ` e1 e2 (B

App-Chk

Note that adding expression annotations might bring convenience for pro-
grammers, since annotations can be more freely placed in a program. For exam-
ple, (�f. f 1) : (Int ! Int) ! Int becomes valid. However this does not add
expressive power, since programs that are typeable under expression annotations,
would remain typeable after moving the annotations to bindings. For example
the previous program is equivalent to (�f : (Int ! Int). f 1).

This discussion is a sketch. We have not defined the corresponding declarative
system nor algorithm. However we believe that the addition of a checked mode
will not bring surprises to the meta-theory.

5.2 Additional Constructs

In this section, we show that the application mode is compatible with other
constructs, by discussing how to add support for pairs in the language given
in Section 3. A similar methodology would apply to other constructs like sum
types, data types, if-then-else expressions and so on.

The introduction rule for pairs must be in the inference mode with an empty
application context. Also, the subtyping rule for pairs is as expected.

� ` e1) A � ` e2) B

� ` (e1, e2)) (A,B)
T-Pair

A1 <: B1 A2 <: B2

(A1, A2) <: (B1, B2)
S-Pair

Let Arguments Go First

Ningning Xie and Bruno C. d. S. Oliveira

The University of Hong Kong
{nnxie,bruno}@cs.hku.hk

Abstract. Bi-directional type checking has proved to be an extremely
useful and versatile tool for type checking and type inference. The con-
ventional presentation of bi-directional type checking consists of two
modes: inference mode and checked mode. In traditional bi-directional
type-checking, type annotations are used to guide (via the checked mode)
the type inference/checking procedure to determine the type of an ex-
pression, and type information flows from functions to arguments.
This paper presents a variant of bi-directional type checking where the
type information flows from arguments to functions. This variant retains
the inference mode, but adds a so-called application mode. Such design
can remove annotations that basic bi-directional type checking cannot,
and is useful when type information from arguments is required to type-
check the functions being applied. We present two applications and de-
velop the meta-theory (mostly verified in Coq) of the application mode.

1 Introduction

Bi-directional type checking has been known in the folklore of type systems
for a long time. It was popularized by Pierce and Turner’s work on local type
inference [29]. Local type inference was introduced as an alternative to Hindley-
Milner (henceforth HM system) type systems [11, 17], which could easily deal
with polymorphic languages with subtyping. Bi-directional type checking is one
component of local type inference that, aided by some type annotations, en-
ables type inference in an expressive language with polymorphism and subtyp-
ing. Since Pierce and Turner’s work, various other authors have proved the ef-
fectiveness of bi-directional type checking in several other settings, including
many di↵erent systems with subtyping [12, 15, 14], systems with dependent
types [37, 10, 2, 21, 3], and various other works [1, 13, 28, 7, 22]. Furthermore,
bi-directional type checking has also been combined with HM-style techniques
for providing type inference in the presence of higher-ranked types [27, 14].

The key idea in bi-directional type checking is simple. In its basic form typing
is split into inference and checked modes. The most salient feature of a bi-
directional type-checker is when information deduced from inference mode is
used to guide checking of an expression in checked mode. One of such interactions
between modes happens in the typing rule for function applications:

� ` e1) A ! B � ` e2 (A

� ` e1 e2) B

APP

)

(

Notice here how type
information flows from
functions to arguments

* Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. POPL’04, 2004.
5

Bi-Directional Type Checking

• Consider designing rules for pairs

3

– A new design for type inference of higher-ranked types which gen-
eralizes the HM type system, supports a polymorphic let as syntactic sugar,
and infers higher rank types. We present a syntax-directed specification, an
elaboration semantics to System F, some meta-theory in Coq, and an algo-
rithmic type system with completeness and soundness proofs.

– A System-F-like calculus as a theoretical response to the challenge noted
by Pierce and Turner [29]. It shows that the application mode is compatible
with type applications, which also enables encoding type declarations. We
present a type system and meta-theory, including proofs of type safety and
uniqueness of typing in Coq.

2 Overview

2.1 Background: Bi-Directional Type Checking

Traditional type checking rules can be heavyweight on annotations, in the sense
that lambda-bound variables always need explicit annotations. Bi-directional
type checking [29] provides an alternative, which allows types to propagate down-
ward the syntax tree. For example, in the expression (�f:Int ! Int. f) (�y.

y), the type of y is provided by the type annotation on f. This is supported by
the bi-directional typing rule for applications:

� ` e1) A ! B � ` e2 (A

� ` e1 e2) B

APP

Specifically, if we know that the type of e1 is a function from A ! B, we can check
that e2 has type A. Notice that here the type information flows from functions
to arguments.

One guideline for designing bi-directional type checking rules [15] is to dis-
tinguish introduction rules from elimination rules. Constructs which correspond
to introduction forms are checked against a given type, while constructs cor-
responding to elimination forms infer (or synthesize) their types. For instance,
under this design principle, the introduction rule for pairs is supposed to be in
checked mode, as in the rule Pair-C.

� ` e1 (A � ` e2 (B

� ` (e1, e2) ((A,B)
Pair-C

� ` e1) A � ` e2) B

� ` (e1, e2)) (A,B)
Pair-I

Unfortunately, this means that the trivial program (1, 2) cannot type-check,
which in this case has to be rewritten to (1, 2) : (Int , Int).

In this particular case, bi-directional type checking goes against its original
intention of removing burden from programmers, since a seemingly unnecessary
annotation is needed. Therefore, in practice, bi-directional type systems do not
strictly follow the guideline, and usually have additional inference rules for the
introduction form of constructs. For pairs, the corresponding rule is Pair-I.

Now we can type check (1, 2), but the price to pay is that two typing rules
for pairs are needed. Worse still, the same criticism applies to other constructs.

3

– A new design for type inference of higher-ranked types which gen-
eralizes the HM type system, supports a polymorphic let as syntactic sugar,
and infers higher rank types. We present a syntax-directed specification, an
elaboration semantics to System F, some meta-theory in Coq, and an algo-
rithmic type system with completeness and soundness proofs.

– A System-F-like calculus as a theoretical response to the challenge noted
by Pierce and Turner [29]. It shows that the application mode is compatible
with type applications, which also enables encoding type declarations. We
present a type system and meta-theory, including proofs of type safety and
uniqueness of typing in Coq.

2 Overview

2.1 Background: Bi-Directional Type Checking

Traditional type checking rules can be heavyweight on annotations, in the sense
that lambda-bound variables always need explicit annotations. Bi-directional
type checking [29] provides an alternative, which allows types to propagate down-
ward the syntax tree. For example, in the expression (�f:Int ! Int. f) (�y.

y), the type of y is provided by the type annotation on f. This is supported by
the bi-directional typing rule for applications:

� ` e1) A ! B � ` e2 (A

� ` e1 e2) B

APP

Specifically, if we know that the type of e1 is a function from A ! B, we can check
that e2 has type A. Notice that here the type information flows from functions
to arguments.

One guideline for designing bi-directional type checking rules [15] is to dis-
tinguish introduction rules from elimination rules. Constructs which correspond
to introduction forms are checked against a given type, while constructs cor-
responding to elimination forms infer (or synthesize) their types. For instance,
under this design principle, the introduction rule for pairs is supposed to be in
checked mode, as in the rule Pair-C.

� ` e1 (A � ` e2 (B

� ` (e1, e2) ((A,B)
Pair-C

� ` e1) A � ` e2) B

� ` (e1, e2)) (A,B)
Pair-I

Unfortunately, this means that the trivial program (1, 2) cannot type-check,
which in this case has to be rewritten to (1, 2) : (Int , Int).

In this particular case, bi-directional type checking goes against its original
intention of removing burden from programmers, since a seemingly unnecessary
annotation is needed. Therefore, in practice, bi-directional type systems do not
strictly follow the guideline, and usually have additional inference rules for the
introduction form of constructs. For pairs, the corresponding rule is Pair-I.

Now we can type check (1, 2), but the price to pay is that two typing rules
for pairs are needed. Worse still, the same criticism applies to other constructs.

• (1, 2) cannot type-check
…unless you write it as (1, 2) : (int, int)

• …unless you have also an inference rule for pairs

• Rules scales up with the typing rules
6

Contributions

• A variant of bi-directional type checking

• A new design for type inference of higher-ranked
types

• A System-F like calculus
Except the algorithm
system, most parts are
formalized in Coq

with an application mode
type information propagates from arguments to functions

generalizes the Hindley-Milner type system
supports syntactic sugar for polymorphic let

compatible with type application
encoding type declaration

7

Contributions

• A variant of bi-directional type checking

• A new design for type inference of higher-ranked
types

• A System-F like calculus

with an application mode
type information propagates from arguments to functions

generalizes the Hindley-Milner type system
supports syntactic sugar for polymorphic let

compatible with type application
encoding type declaration

8

Application Mode

9

(�x. x) 1

• cannot type-check
…unless you write it as

• …unless you have also an inference rule for lambdas
(with some type inference)

• …WAIT! What if the type of the argument is accounted for
in inferring the function?

((�x. x) : int ! int) 1

Application Mode

10

The argument 1 has type int
Can the function accept arguments of int
Let’s assume x : int
We have return type int
The type of function is int → int
………

Application Mode

(�x. x) 1

11

Instead of…

An alternative idea is to push the type of the
arguments into the typing of the function

Application Mode

Let Arguments Go First

Ningning Xie and Bruno C. d. S. Oliveira

The University of Hong Kong
{nnxie,bruno}@cs.hku.hk

Abstract. Bi-directional type checking has proved to be an extremely
useful and versatile tool for type checking and type inference. The con-
ventional presentation of bi-directional type checking consists of two
modes: inference mode and checked mode. In traditional bi-directional
type-checking, type annotations are used to guide (via the checked mode)
the type inference/checking procedure to determine the type of an ex-
pression, and type information flows from functions to arguments.
This paper presents a variant of bi-directional type checking where the
type information flows from arguments to functions. This variant retains
the inference mode, but adds a so-called application mode. Such design
can remove annotations that basic bi-directional type checking cannot,
and is useful when type information from arguments is required to type-
check the functions being applied. We present two applications and de-
velop the meta-theory (mostly verified in Coq) of the application mode.

1 Introduction

Bi-directional type checking has been known in the folklore of type systems
for a long time. It was popularized by Pierce and Turner’s work on local type
inference [29]. Local type inference was introduced as an alternative to Hindley-
Milner (henceforth HM system) type systems [11, 17], which could easily deal
with polymorphic languages with subtyping. Bi-directional type checking is one
component of local type inference that, aided by some type annotations, en-
ables type inference in an expressive language with polymorphism and subtyp-
ing. Since Pierce and Turner’s work, various other authors have proved the ef-
fectiveness of bi-directional type checking in several other settings, including
many di↵erent systems with subtyping [12, 15, 14], systems with dependent
types [37, 10, 2, 21, 3], and various other works [1, 13, 28, 7, 22]. Furthermore,
bi-directional type checking has also been combined with HM-style techniques
for providing type inference in the presence of higher-ranked types [27, 14].

The key idea in bi-directional type checking is simple. In its basic form typing
is split into inference and checked modes. The most salient feature of a bi-
directional type-checker is when information deduced from inference mode is
used to guide checking of an expression in checked mode. One of such interactions
between modes happens in the typing rule for function applications:

� ` e1) A ! B � ` e2 (A

� ` e1 e2) B

APP

4

This shows one drawback of bi-directional type checking: often to minimize anno-
tations, many rules are duplicated for having both inference and checked mode,
which scales up with the typing rules in a type system.

2.2 Bi-Directional Type Checking with the Application Mode

We propose a variant of bi-directional type checking with a new application mode.
The application mode preserves the advantage of bi-directional type checking,
namely many redundant annotations are removed, while certain programs can
type check with even fewer annotations. Also, with our proposal, the inference
mode is a special case of the application mode, so it does not produce duplications
of rules in the type system. Additionally, the checked mode can still be easily
combined into the system (see Section 5.1 for details). The essential idea of
the application mode is to enable the type information flow in applications to
propagate from arguments to functions (instead of from functions to arguments
as in traditional bi-directional type checking).

To motivate the design of bi-directional type checking with an application
mode, consider the simple expression

(�x. x) 1

This expression cannot type check in traditional bi-directional type checking
because unannotated abstractions only have a checked mode, so annotations are
required. For example, ((�x. x) : Int ! Int) 1.

In this example we can observe that if the type of the argument is accounted
for in inferring the type of �x. x, then it is actually possible to deduce that the
lambda expression has type Int ! Int , from the argument 1.

The application mode. If types flow from the arguments to the function, an
alternative idea is to push the type of the arguments into the typing of the
function, as the rule that is briefly introduced in Section 1:

� ` e2) A � p , A ` e1) A ! B

� p ` e1 e2) B

APP

Here the argument e2 synthesizes its type A, which then is pushed into the
application context . Lambda expressions can now make use of the application
context, leading to the following rule:

�, x : A p ` e) B

� p , A ` �x. e) A ! B

Lam

The type A that appears last in the application context serves as the type for x,
and type checking continues with a smaller application context and x:A in the
typing context. Therefore, using the rule App and Lam, the expression (�x.

x) 1 can type-check without annotations, since the type Int of the argument 1

is used as the type of the binding x.

12

• Application context is a stack that tracks the type
of the arguments

• Lambda expressions can now make use of the application
context

•

Application Mode

4

This shows one drawback of bi-directional type checking: often to minimize anno-
tations, many rules are duplicated for having both inference and checked mode,
which scales up with the typing rules in a type system.

2.2 Bi-Directional Type Checking with the Application Mode

We propose a variant of bi-directional type checking with a new application mode.
The application mode preserves the advantage of bi-directional type checking,
namely many redundant annotations are removed, while certain programs can
type check with even fewer annotations. Also, with our proposal, the inference
mode is a special case of the application mode, so it does not produce duplications
of rules in the type system. Additionally, the checked mode can still be easily
combined into the system (see Section 5.1 for details). The essential idea of
the application mode is to enable the type information flow in applications to
propagate from arguments to functions (instead of from functions to arguments
as in traditional bi-directional type checking).

To motivate the design of bi-directional type checking with an application
mode, consider the simple expression

(�x. x) 1

This expression cannot type check in traditional bi-directional type checking
because unannotated abstractions only have a checked mode, so annotations are
required. For example, ((�x. x) : Int ! Int) 1.

In this example we can observe that if the type of the argument is accounted
for in inferring the type of �x. x, then it is actually possible to deduce that the
lambda expression has type Int ! Int , from the argument 1.

The application mode. If types flow from the arguments to the function, an
alternative idea is to push the type of the arguments into the typing of the
function, as the rule that is briefly introduced in Section 1:

� ` e2) A � p , A ` e1) A ! B

� p ` e1 e2) B

APP

Here the argument e2 synthesizes its type A, which then is pushed into the
application context . Lambda expressions can now make use of the application
context, leading to the following rule:

�, x : A p ` e) B

� p , A ` �x. e) A ! B

Lam

The type A that appears last in the application context serves as the type for x,
and type checking continues with a smaller application context and x:A in the
typing context. Therefore, using the rule App and Lam, the expression (�x.

x) 1 can type-check without annotations, since the type Int of the argument 1

is used as the type of the binding x.

(�x. x) 1
13

Two Modes in type-checking

• Inference (synthesis): e synthesizes A

• Application: under application ctx , e synthesizes A

Application Mode

� ` e) A

� p ` e) A

14

Application Mode

� ` e) A
� p ` e) A

Whether the expression can be applied or not

• Expressions can be applied:
variables, lambdas, applications, eliminations of
pairs,…

• Expressions that cannot be applied:
literals, pairs,…

Interpretation

n Recipe?

15

Application Mode

� ` e) A
� p ` e) A

Interpretation

n What if the application context is empty?

…it is not applied to any arguments
…we know nothing about the expression
…we should infer it!

• We can model inference mode as a particular case of
the application mode

16

Application Mode

� ` e) A
� p ` e) A

n What if we have a possibly non-empty application
context?

• Inference: e
• Checked : e, A → B → C
• Application Mode : e

Interpretation

e : A ! B ! C

 = A = ; = A,B

finer grain notion leads to partial type checking
17

Application Mode

� ` e) A
� p ` e) A

n Is Inference mode + Application mode better/worse
than Bi-Directional type checking?

• No one is conservative over the other.

• But it does open paths to design choices

Interpretation

(�x : int ! int.�y : bool. y) (�y. y) True
(�x. x) 1

18

Application Mode

� ` e) A
� p ` e) A

Type system with implicit polymorphism and/or static
overloading needs type information about the arguments when
type-checking function variables.

id 3, (==) True False, …

Type system employs an application subtyping

Benefits

 ` A  B

n Local constraint solver for function variables.

19

Application Mode

� ` e) A
� p ` e) A

Annotations are never needed for applied lambdas

It enables let sugar

Benefits

6

provides a new design choice for type inference/checking algorithms, especially
for those where the information about arguments is useful. Therefore we next
discuss some benefits of the application mode for two interesting cases where
functions are either variables; or lambda (or type) abstractions.

2.3 Benefits of Information Flowing from Arguments to Functions

Local constraint solver for function variables. Many type systems, including
type systems with implicit polymorphism and/or static overloading, need infor-
mation about the types of the arguments when type checking function variables.
For example, in conventional functional languages with implicit polymorphism,
function calls such as (id 3) where id: 8a. (a ! a), are pervasive. In such a
function call the type system must instantiate a to Int. Dealing with such im-
plicit instantiation gets trickier in systems with higher-ranked types. For example,
Peyton Jones et al. [27] require additional syntactic forms and relations, whereas
Dunfield and Krishnaswami [14] add a special purpose application judgment.

With the application mode, all the type information about the arguments be-
ing applied is available in application contexts and can be used to solve instanti-
ation constraints. To exploit such information, the type system employs a special
subtyping judgment called application subtyping, with the form ` A  B. Un-
like conventional subtyping, computationally and A are interpreted as inputs
and B as output. In above example, we have that Int ` 8a.a ! a  B and we
can determine that a = Int and B = Int ! Int. In this way, type system is able
to solve the constraints locally according to the application contexts since we no
longer need to propagate the instantiation constraints to the typing process.

Declaration desugaring for lambda abstractions. An interesting consequence of
the usage of an application mode is that it enables the following let sugar:

let x = e1 in e2 (�x. e2) e1

Such syntactic sugar for let is, of course, standard. However, in the context of
implementations of typed languages it normally requires extra type annotations
or a more sophisticated type-directed translation. Type checking (�x. e2) e1

would normally require annotations (for example an annotation for x), or other-
wise such annotation should be inferred first. Nevertheless, with the application
mode no extra annotations/inference is required, since from the type of the ar-
gument e1 it is possible to deduce the type of x. Generally speaking, with the
application mode annotations are never needed for applied lambdas. Thus let
can be the usual sugar from the untyped lambda calculus, including HM-style
let expression and even type declarations.

2.4 Application 1: Type Inference of Higher-Ranked Types

As a first illustration of the utility of the application mode, we present a calculus
with implicit predicative higher-ranked polymorphism.

n Declaration desugaring for lambda abstractions.

(�x. x) 1

20

Contributions

• A variant of bi-directional type checking

• A new design for type inference of higher-ranked
types

• A System-F like calculus

with an application mode
type information propagates from arguments to functions

generalizes the Hindley-Milner type system
supports syntactic sugar for polymorphic let

compatible with type application
encoding type declaration

21

Application 1 for
the Application Mode

22

Application 1

n Type Inference of (implicit, predicative)
Higher-Ranked Types

• Enables expressiveness power of System F.

• Undecidable.

• Hindley-Milner*(henceforth HM) with let
generalization has rank 1 types.

* Luis Damas and Robin Milner. Principal type-schemes for functional programs. POPL ’82, 1982.
* J. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29–60, 1969.

23

Application 1

n Type Inference of Higher-Ranked Types

• GHC rejects:

• Rewriting according to bi-directional guideline

• …Wait! If we generalize the identity function
and propagate it into the function…

7

Higher-ranked types. Type systems with higher-ranked types generalize the tra-
ditional HM type system, and are useful in practice in languages like Haskell or
other ML-like languages. Essentially higher-ranked types enable much of the ex-
pressive power of System F, with the advantage of implicit polymorphism. Com-
plete type inference for System F is known to be undecidable [36]. Therefore,
several partial type inference algorithms, exploiting additional type annotations,
have been proposed in the past instead [25, 15, 31, 27].

Higher-ranked types and bi-directional type checking. Bi-directional type check-
ing is also used to help with the inference of higher-ranked types [27, 14]. Con-
sider the following program:

(�f. (f 1, f ’c’)) (�x. x)

which is not typeable under those type systems because they fail to infer the type
of f, since it is supposed to be polymorphic. Using bi-directional type checking,
we can rewrite this program as

((�f. (f 1, f ’c’)) : (8a. a ! a) ! (Int, Char)) (�x . x)

Here the type of f can be easily derived from the type signature using checked
mode in bi-directional type checking. However, although some redundant an-
notations are removed by bi-directional type checking, the burden of inferring
higher-ranked types is still carried by programmers: they are forced to add poly-
morphic annotations to help with the type derivation of higher-ranked types.
For the above example, the type annotation is still provided by programmers,
even though the necessary type information can be derived intuitively without
any annotations: f is applied to �x. x, which is of type 8a. a ! a.

Generalization. Generalization is famous for its application in let polymorphism
in the HM system, where generalization is adopted at let bindings. Let polymor-
phism is a useful component to introduce top-level quantifiers (rank 1 types)
into a polymorphic type system. The previous example becomes typeable in the
HM system if we rewrite it to: let f = �x. x in (f 1, f ’c’).

Type Inference for higher-ranked types with the application mode. Using our bi-
directional type system with an application mode, the original expression can
type check without annotations or rewrites: (�f. (f 1, f ’c’)) (�x. x).

This result comes naturally if we allow type information flow from arguments
to functions. For inferring polymorphic types for arguments, we use generaliza-
tion. In the above example, we first infer the type 8 a. a ! a for the argument,
then pass the type to the function. A nice consequence of such an approach
is that HM-style polymorphic let expressions are simply regarded as syntactic
sugar to a combination of lambda/application:

let x = e1 in e2 (�x. e2) e1

Interestingly, with this approach, nested lets can lead to types which are more
general than HM. For example, let s = �x. x in let t = �y. s in e. The type

7

Higher-ranked types. Type systems with higher-ranked types generalize the tra-
ditional HM type system, and are useful in practice in languages like Haskell or
other ML-like languages. Essentially higher-ranked types enable much of the ex-
pressive power of System F, with the advantage of implicit polymorphism. Com-
plete type inference for System F is known to be undecidable [36]. Therefore,
several partial type inference algorithms, exploiting additional type annotations,
have been proposed in the past instead [25, 15, 31, 27].

Higher-ranked types and bi-directional type checking. Bi-directional type check-
ing is also used to help with the inference of higher-ranked types [27, 14]. Con-
sider the following program:

(�f. (f 1, f ’c’)) (�x. x)

which is not typeable under those type systems because they fail to infer the type
of f, since it is supposed to be polymorphic. Using bi-directional type checking,
we can rewrite this program as

((�f. (f 1, f ’c’)) : (8a. a ! a) ! (Int, Char)) (�x . x)

Here the type of f can be easily derived from the type signature using checked
mode in bi-directional type checking. However, although some redundant an-
notations are removed by bi-directional type checking, the burden of inferring
higher-ranked types is still carried by programmers: they are forced to add poly-
morphic annotations to help with the type derivation of higher-ranked types.
For the above example, the type annotation is still provided by programmers,
even though the necessary type information can be derived intuitively without
any annotations: f is applied to �x. x, which is of type 8a. a ! a.

Generalization. Generalization is famous for its application in let polymorphism
in the HM system, where generalization is adopted at let bindings. Let polymor-
phism is a useful component to introduce top-level quantifiers (rank 1 types)
into a polymorphic type system. The previous example becomes typeable in the
HM system if we rewrite it to: let f = �x. x in (f 1, f ’c’).

Type Inference for higher-ranked types with the application mode. Using our bi-
directional type system with an application mode, the original expression can
type check without annotations or rewrites: (�f. (f 1, f ’c’)) (�x. x).

This result comes naturally if we allow type information flow from arguments
to functions. For inferring polymorphic types for arguments, we use generaliza-
tion. In the above example, we first infer the type 8 a. a ! a for the argument,
then pass the type to the function. A nice consequence of such an approach
is that HM-style polymorphic let expressions are simply regarded as syntactic
sugar to a combination of lambda/application:

let x = e1 in e2 (�x. e2) e1

Interestingly, with this approach, nested lets can lead to types which are more
general than HM. For example, let s = �x. x in let t = �y. s in e. The type

24* a state-of-the-art compiler for Haskell

Application 1

n Type Inference of Higher-Ranked Types

Apply the application mode to higher-ranked type
system*
with generalization on applications

* Martin Odersky and Konstantin L ̈aufer. Putting type annotations to work. POPL ’96, 1996.
* Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical type inference
for arbitrary-rank types. Journal of func- tional programming, 17(01):1–82, 2007.
* Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typechecking for
higher-rank polymorphism. ICFP ’13, 2013.

25

Application 1

n Type Inference of Higher-Ranked Types

1. Sugars for HM style polymorphic let expression

2. Conservative over the HM type system

3. Comparison with existing literatures

26

Application 1
24

System Types Impred Let Annotations

ML

F flexible and rigid yes yes on polymorphically used parameters
HML flexible F-types yes yes on polymorphic parameters
FPH boxy F-types yes yes on polymorphic parameters and some

let bindings with higher-ranked types
Peyton Jones
et al. (2007)

F-types no yes on polymorphic parameters

Dunfield et al.
(2013)

F-types no no on polymorphic parameters

this paper F-types no sugar on polymorphic parameters that are
not applied

Fig. 5. Comparison of higher-ranked type inference systems.

Predicative Systems. Peyton Jones et al. [27] developed an approach for type in-
ference for higher rank types using traditional bi-directional type checking based
on Odersky and Läufer [24]. However in their system, in order to do instantia-
tion on higher rank types, they are forced to have an additional type category (⇢
types) as a special kind of higher rank type without top-level quantifiers. This
complicates their system since they need to have additional rule sets for such
types. They also combine a variant of the containment relation from Mitchell
[23] for deep skolemisation in subsumption rules, which we believe is compatible
with our subtyping definition.

Dunfield and Krishnaswami [14] build a simple and concise algorithm for
higher ranked polymorphism based on traditional bidirectional type checking.
They deal with the same language of Peyton Jones et al. [27], except they do
not have let expressions nor generalization (though it is discussed in design
variations). They have a special application judgment which delays instantiation
until the expression is applied to some argument. As with application mode, this
avoids the additional category of types. Unlike their work, our work supports
generalization and HM-style let expressions. Moreover the use of an application
mode in our work introduces several di↵erences as to when and where annota-
tions are needed (see Section 2.4 for related discussion).

Impredicative Systems. ML

F [18, 32, 19] generalizes ML with first-class poly-
morphism. ML

F introduces a new type of bounded quantification (either rigid
or flexible) for polymorphic types so that instantiation of polymorphic bindings
is delayed until a principal type is found. The HML system [20] is proposed as
a simplification and restriction of ML

F . HML only uses flexible types, which
simplifies the type inference algorithm, but retains many interesting properties
and features.

The FPH system [35] introduces boxy monotypes into System F types. One
critique of boxy type inference is that the impredicativity is deeply hidden in the
algorithmic type inference rules, which makes it hard to understand the interac-
tion between its predicative constraints and impredicative instantiations [31].

27

Application 1

n Type Inference of Higher-Ranked Types

1. Sugars for HM style polymorphic let expression

2. Conservative over the HM type system

3. Comparison with existing literatures

4. Interesting metatheory studies about the application
mode formalized in Coq.

5. An algorithm; a translation to System F 28

Contributions

• A variant of bi-directional type checking

• A new design for type inference of higher-ranked
types

• A System-F like calculus

with an application mode
type information propagates from arguments to functions

generalizes the Hindley-Milner type system
supports syntactic sugar for polymorphic let

compatible with type application
encoding type declaration

29

Application 2 for
the Application Mode

30

Application 2

“It is possible, of course, to come up with examples
where it would be beneficial to synthesize the argument
types first and then use the resulting information to
avoid type annotations in the function part of an
application expression....Unfortunately this refinement
does not help infer the type of polymorphic functions.
For example, we cannot uniquely determine the type of x
in the expression (fun[A](x) e) [Int] 3” *

* Benjamin C Pierce and David N Turner. Local type inference. TOPLAS, 22(1):1–44, 2000.
31

Application 2

n A Variant of System F with
More Expressive Type Applications

…not typeable in traditional System F

…using application mode, we can verify

Use application context to track type equalities
introduced by type application

9

binders can be omitted in their system. This requires understanding how the
applications in checked mode operate.

In our system the above expression is not typeable, as a consequence of
the information flow in the application mode. However, following our guideline
for annotations leads to a program that can be type-checked with a smaller
annotation: (�f. f) (�g : (8a. a ! a). (g 1, g ’a’)). This means that our
work is not conservative over their work, which is due to the design choice of the
application typing rule. Nevertheless, we can always rewrite programs using our
guideline, which often leads to fewer/smaller annotations.

2.5 Application 2: More Expressive Type Applications

The design choice of propagating arguments to functions was subject to consid-
eration in the original work on local type inference [29], but was rejected due to
possible non-determinism introduced by explicit type applications:

“It is possible, of course, to come up with examples where it would be
beneficial to synthesize the argument types first and then use the result-
ing information to avoid type annotations in the function part of an
application expression....Unfortunately this refinement does not help in-
fer the type of polymorphic functions. For example, we cannot uniquely
determine the type of x in the expression (fun[X](x) e) [Int] 3.” [29]

Therefore, as a response to this challenge, our second application is a variant
of System F. Our development of the calculus shows that the application mode
can actually work well with calculi with explicit type applications. To explain
the new design, consider the expression:

(⇤a. �x : a. x + 1) Int

which is not typeable in the traditional type system for System F. In System
F the lambda abstractions do not account for the context of possible function
applications. Therefore when type checking the inner body of the lambda ab-
straction, the expression x + 1 is ill-typed, because all that is known is that x

has the (abstract) type a.
If we are allowed to propagate type information from arguments to functions,

then we can verify that a = Int and x + 1 is well-typed. The key insight in the
new type system is to use application contexts to track type equalities induced
by type applications. This enables us to type check expressions such as the
body of the lambda above (x+1). Therefore, back to the problematic expression
(fun[X](x) e) [Int] 3, the type of x can be inferred as either X or Int since they
are actually equivalent.

Sugar for type synonyms. In the same way that we can regard let expressions as
syntactic sugar, in the new type system we further gain built-in type synonyms
for free. A type synonym is a new name for an existing type. Type synonyms
are common in languages such as Haskell. In our calculus a simple form of type
synonyms can be desugared as follows:

a = Int

32

Application 2

n A Variant of System F with
More Expressive Type Applications

(fun[A](x) e) [Int] 3

x:A or x:Int

33

Application 2

n A Variant of System F with
More Expressive Type Applications

1. Sugar for type synonyms

2. Preserve System F type abstraction

10

type a = A in e (⇤a. e) A

One practical benefit of such syntactic sugar is that it enables a direct en-
coding of a System F-like language with declarations (including type-synonyms).
Although declarations are often viewed as a routine extension to a calculus, and
are not formally studied, they are highly relevant in practice. Therefore, a more
realistic formalization of a programming language should directly account for
declarations. By providing a way to encode declarations, our new calculus en-
ables a simple way to formalize declarations.

Type abstraction. The type equalities introduced by type applications may seem
like we are breaking System F type abstraction. However, we argue that type
abstraction is still supported by our System F variant. For example:

let id = ⇤a. �x : a. x + 1 in id Int e

(after desugaring) does not type-check, as in a System-F like language. In our
type system lambda abstractions that are immediatelly applied to an argument,
and unapplied lambda abstractions behave di↵erently. Unapplied lambda ab-
stractions are just like System F abstractions and retain type abstraction. The
example above illustrates this. In contrast the typeable example (⇤a. �x : a.

x + 1) Int, which uses a lambda abstraction directly applied to an argument,
can be regarded as the desugared expression for type a = Int in �x : a . x + 1.

3 A Polymorphic Language with Higher-Ranked Types

This section first presents a declarative, syntax-directed type system for a lambda
calculus with implicit higher-ranked polymorphism. The interesting aspects about
the new type system are: 1) the typing rules, which employ a combination of
inference and application modes; 2) the novel subtyping relation under an appli-
cation context. Later, we prove our type system is type-safe by a type directed
translation to System F [16]. in Section 3.4. Finally an algorithmic type system
is discussed in Section 3.5.

3.1 Syntax

The syntax of the language is:

Expr e ::= x | n | �x : A. e | �x. e | e1 e2

Type A,B,C,D ::= a | A ! B | 8a.A | Int
Monotype ⌧ ::= a | ⌧1 ! ⌧2 | Int
Typing Context � ::= ? | �, x : A

Application Context ::= ? | , A

Expressions. Expressions e include variables (x), integers (n), annotated lambda
abstractions (�x : A. e), lambda abstractions (�x. e), and applications (e1 e2).
Letters x, y, z are used to denote term variables. Notably, the syntax does not
include a let expression (letx = e1 in e2). Let expressions can be regarded as
the standard syntax sugar (�x. e2) e1, as illustrated in more detail later.

9

binders can be omitted in their system. This requires understanding how the
applications in checked mode operate.

In our system the above expression is not typeable, as a consequence of
the information flow in the application mode. However, following our guideline
for annotations leads to a program that can be type-checked with a smaller
annotation: (�f. f) (�g : (8a. a ! a). (g 1, g ’a’)). This means that our
work is not conservative over their work, which is due to the design choice of the
application typing rule. Nevertheless, we can always rewrite programs using our
guideline, which often leads to fewer/smaller annotations.

2.5 Application 2: More Expressive Type Applications

The design choice of propagating arguments to functions was subject to consid-
eration in the original work on local type inference [29], but was rejected due to
possible non-determinism introduced by explicit type applications:

“It is possible, of course, to come up with examples where it would be
beneficial to synthesize the argument types first and then use the result-
ing information to avoid type annotations in the function part of an
application expression....Unfortunately this refinement does not help in-
fer the type of polymorphic functions. For example, we cannot uniquely
determine the type of x in the expression (fun[X](x) e) [Int] 3.” [29]

Therefore, as a response to this challenge, our second application is a variant
of System F. Our development of the calculus shows that the application mode
can actually work well with calculi with explicit type applications. To explain
the new design, consider the expression:

(⇤a. �x : a. x + 1) Int

which is not typeable in the traditional type system for System F. In System
F the lambda abstractions do not account for the context of possible function
applications. Therefore when type checking the inner body of the lambda ab-
straction, the expression x + 1 is ill-typed, because all that is known is that x

has the (abstract) type a.
If we are allowed to propagate type information from arguments to functions,

then we can verify that a = Int and x + 1 is well-typed. The key insight in the
new type system is to use application contexts to track type equalities induced
by type applications. This enables us to type check expressions such as the
body of the lambda above (x+1). Therefore, back to the problematic expression
(fun[X](x) e) [Int] 3, the type of x can be inferred as either X or Int since they
are actually equivalent.

Sugar for type synonyms. In the same way that we can regard let expressions as
syntactic sugar, in the new type system we further gain built-in type synonyms
for free. A type synonym is a new name for an existing type. Type synonyms
are common in languages such as Haskell. In our calculus a simple form of type
synonyms can be desugared as follows:

34

10

Sugar for Type Synonyms. In the same way that we can regard let expressions
as syntactic sugar, in the new type system we further gain built-in type synonyms
for free. A type synonym is a new name for an existing type. Type synonyms
are common in languages such as Haskell. In our calculus a simple form of type
synonyms can be desugared as follows:

type a = A in e (⇤a. e) A

One practical benefit of such syntactic sugar is that it enables a direct en-
coding of a System F-like language with declarations (including type-synonyms).
Although declarations are often viewed as a routine extension to a calculus, and
are not formally studied, they are highly relevant in practice. Therefore, a more
realistic formalization of a programming language should directly account for
declarations. By providing a way to encode declarations, our new calculus en-
ables a simple way to formalize declarations.

Type Abstraction. The type equalities introduced by type applications may seem
like we are breaking System F type abstraction. However, we argue that type
abstraction is still supported by our System F variant. For example:

let inc = ⇤a. �x : a. x + 1 in inc Int e

(after desugaring) does not type-check, as in a System-F like language. In our
type system lambda abstractions that are immediatelly applied to an argument,
and unapplied lambda abstractions behave di↵erently. Unapplied lambda ab-
stractions are just like System F abstractions and retain type abstraction. The
example above illustrates this. In contrast the typeable example (⇤a. �x : a.

x + 1) Int, which uses a lambda abstraction directly applied to an argument,
can be regarded as the desugared expression for type a = Int in �x : a . x + 1.

3 A Polymorphic Language with Higher-Ranked Types

This section first presents a declarative, syntax-directed type system for a lambda
calculus with implicit higher-ranked polymorphism. The interesting aspects about
the new type system are: 1) the typing rules, which employ a combination of
inference and application modes; 2) the novel subtyping relation under an appli-
cation context. Later, we prove our type system is type-safe by a type directed
translation to System F[16, 27] in Section 3.4. Finally an algorithmic type system
is discussed in Section 3.5.

3.1 Syntax

The syntax of the language is:

Expr e ::= x | n | �x : A. e | �x. e | e1 e2

Type A,B ::= a | A ! B | 8a.A | Int
Monotype ⌧ ::= a | ⌧1 ! ⌧2 | Int
Typing Context � ::= ? | �, x : A

Application Context ::= ? | , A

Application 2

n A Variant of System F with
More Expressive Type Applications

1. Sugar for type synonyms

2. Preserve System F type abstraction

3. Metatheory studies formalized in Coq.
type safety, uniqueness of typing

10

type a = A in e (⇤a. e) A

One practical benefit of such syntactic sugar is that it enables a direct en-
coding of a System F-like language with declarations (including type-synonyms).
Although declarations are often viewed as a routine extension to a calculus, and
are not formally studied, they are highly relevant in practice. Therefore, a more
realistic formalization of a programming language should directly account for
declarations. By providing a way to encode declarations, our new calculus en-
ables a simple way to formalize declarations.

Type abstraction. The type equalities introduced by type applications may seem
like we are breaking System F type abstraction. However, we argue that type
abstraction is still supported by our System F variant. For example:

let id = ⇤a. �x : a. x + 1 in id Int e

(after desugaring) does not type-check, as in a System-F like language. In our
type system lambda abstractions that are immediatelly applied to an argument,
and unapplied lambda abstractions behave di↵erently. Unapplied lambda ab-
stractions are just like System F abstractions and retain type abstraction. The
example above illustrates this. In contrast the typeable example (⇤a. �x : a.

x + 1) Int, which uses a lambda abstraction directly applied to an argument,
can be regarded as the desugared expression for type a = Int in �x : a . x + 1.

3 A Polymorphic Language with Higher-Ranked Types

This section first presents a declarative, syntax-directed type system for a lambda
calculus with implicit higher-ranked polymorphism. The interesting aspects about
the new type system are: 1) the typing rules, which employ a combination of
inference and application modes; 2) the novel subtyping relation under an appli-
cation context. Later, we prove our type system is type-safe by a type directed
translation to System F [16]. in Section 3.4. Finally an algorithmic type system
is discussed in Section 3.5.

3.1 Syntax

The syntax of the language is:

Expr e ::= x | n | �x : A. e | �x. e | e1 e2

Type A,B,C,D ::= a | A ! B | 8a.A | Int
Monotype ⌧ ::= a | ⌧1 ! ⌧2 | Int
Typing Context � ::= ? | �, x : A

Application Context ::= ? | , A

Expressions. Expressions e include variables (x), integers (n), annotated lambda
abstractions (�x : A. e), lambda abstractions (�x. e), and applications (e1 e2).
Letters x, y, z are used to denote term variables. Notably, the syntax does not
include a let expression (letx = e1 in e2). Let expressions can be regarded as
the standard syntax sugar (�x. e2) e1, as illustrated in more detail later.

35

Discussion

36

Discussion

• Combine application and checked mode

• Additional constructs: pairs

• Encoding declarations in dependent type
systems*

• Related work
See our full paper if you are
interested!

* Paula Severi and Erik Poll. Pure type systems with definitions. Logical Foundations of Computer
Science, pages 316–328, 1994. 37

Thanks!

38

Let Arguments Go First

Ningning Xie, Bruno C. d. S. Oliveira
The University of Hong Kong

ESOP 2018, Thessaloniki, Greece
2018-04-17

39

