
Effect Handlers in Haskell, Evidently

Ningning Xie Daan Leijen

Haskell Symposium 2020
 https://github.com/xnning/EvEff

E!ect Handlers in Haskell, Evidently

Ningning Xie
Microsoft Research

USA
nnxie@cs.hku.hk

Daan Leijen
Microsoft Research

USA
daan@microso!.com

Abstract
Algebraic e!ect handlers o!er an alternative to monads to
incorporate e!ects in Haskell. In recent work Xie et al. show
how to give semantics to e!ect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more e"cient implementations. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. We show how the de-
sign naturally leads to a concise e!ect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.

CCS Concepts: • Software and its engineering → Con-
trol structures; Polymorphism.

Keywords: Algebraic E!ects, Handlers, Evidence Passing
Translation

ACM Reference Format:
Ningning Xie and Daan Leijen. 2020. E!ect Handlers in Haskell,
Evidently. In Proceedings of the 13th ACM SIGPLAN International
Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. h"ps://doi.org/10.1145/
3406088.3409022

1 Introduction
Algebraic e!ects handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] provide an alternative to monads to in-
corporate e!ectful programs in Haskell [Kammar et al. 2013;
Kiselyov and Ishii 2015;Wu and Schrijvers 2015a]. E!ect han-
dlers can express any free monad in a concise and compos-
able way, and can be used to express complex control-$ow,
like exceptions, asynchronous I/O, local state, backtracking,
and much more.

In recent work Xie et al. [2020] show how to give seman-
tics to e!ect handlers in terms of plain polymorphic lambda

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Haskell ’20, August 27, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8050-8/20/08.
h"ps://doi.org/10.1145/3406088.3409022

calculus through evidence translation. Besides giving pre-
cise semantics, this translation also allows for potentially
more e"cient implementations – a handler is now passed
as evidence to the call site of an operation where it can be
invoked immediately without needing to search for it. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. In particular,

• We give an implementation of e!ect handlers based
on the target language Fv in [Xie et al. 2020]. This
implements e!ect handler semantics faithfully and in
particular enforces the scoped resumptions restriction
(although at runtime only).

• The library interface (Figure 1) is concise and arguably
simpler than other library interfaces for e!ect handlers.
In particular, e!ects are de#ned as a regular data type
with a #eld for each operation. For example,

data Reader a e ans

= Reader{ ask :: Op () a e ans }

declares a Reader e!ect with one operation ask from
() to a (in e!ect context e with answer type ans).
Other libraries typically require GADT’s [Kiselyov and
Ishii 2015], data types à la carte [Swierstra 2008; Wu
et al. 2014], or Template Haskell [Kammar et al. 2013]
to create new e!ects. Being e!ect handlers, there are
also of course the usual advantages with respect to a
monadic interface: e!ects can be composed freely (as
e!ects always form a freemonad), and there is no need
to lift operations into a particular monad (as they are
all part of the single e!ect monad).

• Since evidence of each handler is passed explicitly,
we can directly invoke operations on a handler. For
example, the function greet:

greet :: (Reader String :? e) ⇒ Eff e String

greet = do s <- perform ask ()

return ("hello " ++ s)

performs an ask operation. Here the quali#ed type
Reader String :? e ensures the reader e!ect is in the
e!ect context e and its dictionary allows perform to
directly select the actual Reader handler from the e!ect
context evidence (passed in the e!ect monad Eff e)
without needing to search for the correct handler. It
then uses ask to select the operation #eld directly from
the handler data type and invokes it. This is quite dif-
ferent from most e!ect libraries that typically propa-
gate the operations through a handler stack. Moreover,

95

https://github.com/xnning/EvEff

Computational Effects

1

monad transformers
[Liang et al. 1995]

all you need is lifting
any type error can be resolved

by adding more lifting

Computational Effects

1

algebraic effects
[Plotkin and Power 2003;
Plotkin and Pretnar 2013]

composable
modular

monad transformers
[Liang et al. 1995]

all you need is lifting
any type error can be resolved

by adding more lifting

Computational Effects

1

an alternative to
[Kammar et al. 2013;
Kiselyov et al. 2013Ҕ

Kiselyov and Ishii 2015;
Wu and Schrijvers 2015]

algebraic effects
[Plotkin and Power 2003;
Plotkin and Pretnar 2013]

composable
modular

monad transformers
[Liang et al. 1995]

all you need is lifting
any type error can be resolved

by adding more lifting

Computational Effects

1

an alternative to
[Kammar et al. 2013;
Kiselyov et al. 2013Ҕ

Kiselyov and Ishii 2015;
Wu and Schrijvers 2015]

algebraic effects
[Plotkin and Power 2003;
Plotkin and Pretnar 2013]

composable
modular

monad transformers
[Liang et al. 1995]

all you need is lifting
any type error can be resolved

by adding more lifting

[This paper]

polymorphic
evidence
calculus

Contribution

2

ICFP 2020

polymorphic
algebraic
effects

polymorphic
lambda
calculus

evidence-
passing

translation

monadic
multi-prompt

translation

99

E!ect Handlers, Evidently

NINGNING XIE,Microsoft Research, USA

JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

DANIEL HILLERSTRÖM, The University of Edinburgh, United Kingdom

PHILIPP SCHUSTER, University of Tübingen, Germany

DAAN LEIJEN,Microsoft Research, USA

Algebraic e!ect handlers are a powerful way to incorporate e!ects in a programming language. Sometimes
perhaps even too powerful. In this article we de"ne a restriction of general e!ect handlers with scoped
resumptions. We argue one can still express all important e!ects, while improving reasoning about e!ect
handlers. Using the newly gained guarantees, we de"ne a sound and coherent evidence translation for e!ect
handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and
coherence of the translation into plain lambda calculus. The evidence in turn enables e#cient implementations
of e!ect operations; in particular, we showwe can execute tail-resumptive operations in place (without needing
to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with
a constant o!set.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation→ Type theory.

Additional Key Words and Phrases: Algebraic E!ects, Handlers, Evidence Passing Translation

ACM Reference Format:
Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen.
2020. E!ect Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (August 2020), 29 pages.
https://doi.org/10.1145/3408981

1 INTRODUCTION

Algebraic e!ects [Plotkin and Power 2003] and the extension with handlers [Plotkin and Pret-
nar 2013], are a powerful way to incorporate e!ects in programming languages. Algebraic e!ect
handlers can express any free monad in a concise and composable way, and can be used to express
complex control-$ow, like exceptions, asynchronous I/O, local state, backtracking, and many more.
Even though there are many language implementations of algebraic e!ects, like Koka [Lei-

jen 2014], E! [Pretnar 2015], Frank [Lindley et al. 2017], Links [Lindley and Cheney 2012], and
Multicore OCaml [Dolan et al. 2015], the implementations may not be as e#cient as one might
hope. Generally, handling e!ect operations requires a linear search at runtime to the innermost
handler. This is a consequence of the core operational rule for algebraic e!ect handlers:

handlem h E[perform op v] −→ f v k

Authors’ addresses: Ningning Xie, Microsoft Research, USA, nnxie@cs.hku.hk; Jonathan Immanuel Brachthäuser, University
of Tübingen, Germany, jonathan.brachthaeuser@uni-tuebingen.de; Daniel Hillerström, The University of Edinburgh,
United Kingdom, daniel.hillerstrom@ed.ac.uk; Philipp Schuster, University of Tübingen, Germany, philipp.schuster@uni-
tuebingen.de; Daan Leijen, Microsoft Research, USA, daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART99
https://doi.org/10.1145/3408981

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 99. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

polymorphic
evidence
calculus

Contribution

2

ICFP 2020

polymorphic
algebraic
effects

polymorphic
lambda
calculus

evidence-
passing

translation

monadic
multi-prompt

translation

a Haskell library Control.Ev.Eff of effect handlers
via evidence-passing

Haskell 2020

99

E!ect Handlers, Evidently

NINGNING XIE,Microsoft Research, USA

JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

DANIEL HILLERSTRÖM, The University of Edinburgh, United Kingdom

PHILIPP SCHUSTER, University of Tübingen, Germany

DAAN LEIJEN,Microsoft Research, USA

Algebraic e!ect handlers are a powerful way to incorporate e!ects in a programming language. Sometimes
perhaps even too powerful. In this article we de"ne a restriction of general e!ect handlers with scoped
resumptions. We argue one can still express all important e!ects, while improving reasoning about e!ect
handlers. Using the newly gained guarantees, we de"ne a sound and coherent evidence translation for e!ect
handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and
coherence of the translation into plain lambda calculus. The evidence in turn enables e#cient implementations
of e!ect operations; in particular, we showwe can execute tail-resumptive operations in place (without needing
to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with
a constant o!set.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation→ Type theory.

Additional Key Words and Phrases: Algebraic E!ects, Handlers, Evidence Passing Translation

ACM Reference Format:
Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen.
2020. E!ect Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (August 2020), 29 pages.
https://doi.org/10.1145/3408981

1 INTRODUCTION

Algebraic e!ects [Plotkin and Power 2003] and the extension with handlers [Plotkin and Pret-
nar 2013], are a powerful way to incorporate e!ects in programming languages. Algebraic e!ect
handlers can express any free monad in a concise and composable way, and can be used to express
complex control-$ow, like exceptions, asynchronous I/O, local state, backtracking, and many more.
Even though there are many language implementations of algebraic e!ects, like Koka [Lei-

jen 2014], E! [Pretnar 2015], Frank [Lindley et al. 2017], Links [Lindley and Cheney 2012], and
Multicore OCaml [Dolan et al. 2015], the implementations may not be as e#cient as one might
hope. Generally, handling e!ect operations requires a linear search at runtime to the innermost
handler. This is a consequence of the core operational rule for algebraic e!ect handlers:

handlem h E[perform op v] −→ f v k

Authors’ addresses: Ningning Xie, Microsoft Research, USA, nnxie@cs.hku.hk; Jonathan Immanuel Brachthäuser, University
of Tübingen, Germany, jonathan.brachthaeuser@uni-tuebingen.de; Daniel Hillerström, The University of Edinburgh,
United Kingdom, daniel.hillerstrom@ed.ac.uk; Philipp Schuster, University of Tübingen, Germany, philipp.schuster@uni-
tuebingen.de; Daan Leijen, Microsoft Research, USA, daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART99
https://doi.org/10.1145/3408981

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 99. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Overview

3

Control.Ev.Eff

algebraic
effects

multi-prompt
monad

evidence-passing

Overview

3

• The library interface
concise and simple.

• Implementations
1. layered implementations
2. optimizations: tail-resumptive operations are
evaluated in-place
3. the restriction: scoped resumptions

• Benchmarks

Control.Ev.Eff

algebraic
effects

multi-prompt
monad

evidence-passing

The library Interface

 5

Library Interface

4

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

effect

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans } operation

effect

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

operation
effect

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

operation
effect

effect monad

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

operation
effect

effect monad

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

operation
effect

effect monad

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

implementation

operation
effect

effect monad

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

implementation

operation
effect

effect monad

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

implementation

operation
effect

handles

effect monad

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

implementation

operation
effect

handles

effect monad

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

helloWorld :: Eff e String
helloWorld = reader greet

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

implementation

operation
effect

handles

effect monad

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

helloWorld :: Eff e String
helloWorld = reader greet

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

implementation

operation
effect

handles

effect monad

Reader String :? (Reader String :* e)

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

helloWorld :: Eff e String
helloWorld = reader greet

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

effect constraint

implementation

> runEff helloWorld
"hello world”

operation
effect

handles

effect monad

Reader String :? (Reader String :* e)

Library Interface

4

data Reader a e ans
 = Reader{ ask :: Op () a e ans }

reader :: Eff (Reader String :* e) ans → Eff e ans
reader action
 = handler (Reader{ ask = value "world" }) action

helloWorld :: Eff e String
helloWorld = reader greet

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()
 return ("hello " ++ s)

> runEff helloWorld
"hello world”

Operations

5

data Op a b e ans

value :: a → Op () a e ans

Operations

5

Reader{ ask = value "world" }

data Op a b e ans

value :: a → Op () a e ans

function :: (a → Eff e b) → Op a b e ans

Operations

5

Reader{ ask = value "world" }

Reader{ ask = function (\() -> "world”) }

data Op a b e ans

Reader{ ask = operation (\() k -> k "world”) }

value :: a → Op () a e ans

function :: (a → Eff e b) → Op a b e ans

operation :: (a → (b → Eff e ans) → Eff e ans) → Op a b e ans

Operations

5

Reader{ ask = value "world" }

Reader{ ask = function (\() -> "world”) }

data Op a b e ans

 13

Implementation

Implementation

6

Control.Ev.Eff

algebraic
effects

multi-prompt
monad

evidence-passing

Implementation

6

Eff e adata

Control.Ev.Eff

algebraic
effects

multi-prompt
monad

evidence-passing

Implementation

6

data Ctl a  

Eff e adata

Control.Ev.Eff

algebraic
effects

multi-prompt
monad

evidence-passing

newtype

Implementation

6

 = Eff (Context e → Ctl a)

data Ctl a  

Eff e a

Control.Ev.Eff

algebraic
effects

multi-prompt
monad

evidence-passing

newtype

Implementation

6

 = Eff (Context e → Ctl a)

data Ctl a  

Eff e a

Control.Ev.Eff

algebraic
effects

multi-prompt
monad

evidence-passing a vector of handlers is passed down as the context

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

ask()

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

ask()

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

ask()

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

ask()

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

ask()

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

ask()

unique marker

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

ask()

unique marker

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

unique marker

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

unique marker

evidence vector

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

unique marker

evidence vector

Context e

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

Context e

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

Context e

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

m1

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

Context e

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

m1

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

yield up

Context e

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

m1

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

1

yield up

Context e

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

m1

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

1

yield up

resume

Context e

evidence

// 2

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2)

m1

Evidence Passing

7

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

1

yield up

resume

Context e

evidence

Ctl a

// 2

Multi-prompt Monad

8

data Ctl a  
= Pure { result :: a }
| forall ans b.
 Yield {
 marker :: Marker ans,
 op :: (b → Ctl ans) → Ctl ans,
 cont :: b → Ctl a }
instance Monad Ctl

Multi-prompt Monad

8

data Ctl a  
= Pure { result :: a }
| forall ans b.
 Yield {
 marker :: Marker ans,
 op :: (b → Ctl ans) → Ctl ans,
 cont :: b → Ctl a }

ɠ a value result

ɡ yielding to a prompt

instance Monad Ctl

Multi-prompt Monad

8

data Ctl a  
= Pure { result :: a }
| forall ans b.
 Yield {
 marker :: Marker ans,
 op :: (b → Ctl ans) → Ctl ans,
 cont :: b → Ctl a }

the prompt to which it yields

ɠ a value result

the partially built up continuation
the operation impl

ɡ yielding to a prompt

instance Monad Ctl

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

:: (Marker ans, Exception e1 ans)

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

:: (Marker ans, Exception e1 ans)
:: (Marker ans, Incr e2 ans)

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

:: (Marker ans, Exception e1 ans)
:: (Marker ans, Incr e2 ans)
:: (Marker ans, (Reader Int) e3 ans)

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

:: (Marker ans, Exception e1 ans)
:: (Marker ans, Incr e2 ans)
:: (Marker ans, (Reader Int) e3 ans)

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

data Context e where  
 CNil :: Context ()
 CCons :: Marker ans → h e ans → Context e → Context (h :* e)

:: (Marker ans, Exception e1 ans)
:: (Marker ans, Incr e2 ans)
:: (Marker ans, (Reader Int) e3 ans)

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

data Context e where  
 CNil :: Context ()
 CCons :: Marker ans → h e ans → Context e → Context (h :* e)

:: (Marker ans, Exception e1 ans)
:: (Marker ans, Incr e2 ans)
:: (Marker ans, (Reader Int) e3 ans)

data (h :: * → * → *) :* e

e ans

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

data Context e where  
 CNil :: Context ()
 CCons :: Marker ans → h e ans → Context e → Context (h :* e)

:: (Marker ans, Exception e1 ans)

CCons m3 exception

:: (Marker ans, Incr e2 ans)
:: (Marker ans, (Reader Int) e3 ans)

data (h :: * → * → *) :* e

e ans

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

data Context e where  
 CNil :: Context ()
 CCons :: Marker ans → h e ans → Context e → Context (h :* e)

:: (Marker ans, Exception e1 ans)

(CCons m2 incrCCons m3 exception

:: (Marker ans, Incr e2 ans)
:: (Marker ans, (Reader Int) e3 ans)

data (h :: * → * → *) :* e

e ans

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

data Context e where  
 CNil :: Context ()
 CCons :: Marker ans → h e ans → Context e → Context (h :* e)

:: (Marker ans, Exception e1 ans)

(CCons m2 incrCCons m3 exception (CCons m1 reader CNil)))

:: (Marker ans, Incr e2 ans)
:: (Marker ans, (Reader Int) e3 ans)

data (h :: * → * → *) :* e

e ans

The Evidence Vector, or, The Context

9

(m3, exception) (m2, incr) (m1, reader)

:: [(Marker, Handler)]

:: Context (Exception :* Incr :* Reader Int :* ())

data Context e where  
 CNil :: Context ()
 CCons :: Marker ans → h e ans → Context e → Context (h :* e)

:: (Marker ans, Exception e1 ans)

(CCons m2 incrCCons m3 exception (CCons m1 reader CNil)))

:: (Marker ans, Incr e2 ans)
:: (Marker ans, (Reader Int) e3 ans)

data (h :: * → * → *) :* e

e ans

Effect Constraints (:?)

10

Effect Constraints (:?)

10

class h :? e
 subContext :: Context e → SubContext h

where

Effect Constraints (:?)

10

class h :? e
 subContext :: Context e → SubContext h

data SubContext h
 = forall e. SubContext (Context (h :* e))s

where

Effect Constraints (:?)

10

class h :? e
 subContext :: Context e → SubContext h

(m3, h3) (m2, h2) (m1, h1)

data SubContext h
 = forall e. SubContext (Context (h :* e))s

where

Effect Constraints (:?)

10

class h :? e
 subContext :: Context e → SubContext h

ɠ instance h :? (h :* e) where  
 subContext ctx = SubContext ctx

(m3, h3) (m2, h2) (m1, h1)

data SubContext h
 = forall e. SubContext (Context (h :* e))s

where

Effect Constraints (:?)

10

class h :? e
 subContext :: Context e → SubContext h

ɠ instance h :? (h :* e) where  
 subContext ctx = SubContext ctx

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

data SubContext h
 = forall e. SubContext (Context (h :* e))s

where

Effect Constraints (:?)

10

class h :? e
 subContext :: Context e → SubContext h

ɠ instance h :? (h :* e) where  
 subContext ctx = SubContext ctx

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1) ɡ instance (h :? e) => h :? (h’ :* e) where  
 subContext (CCons _ _ ctx) = subContext ctx

data SubContext h
 = forall e. SubContext (Context (h :* e))s

where

Effect Constraints (:?)

10

class h :? e
 subContext :: Context e → SubContext h

ɠ instance h :? (h :* e) where  
 subContext ctx = SubContext ctx

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1) ɡ instance (h :? e) => h :? (h’ :* e) where  
 subContext (CCons _ _ ctx) = subContext ctx

> :load
error:
Overlapping instances for (h :? (h :* e))

data SubContext h
 = forall e. SubContext (Context (h :* e))s

where

Effect Constraints (:?)

10

class h :? e
 subContext :: Context e → SubContext h

ɠ instance h :? (h :* e) where  
 subContext ctx = SubContext ctx

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1) ɡ instance (h :? e) => h :? (h’ :* e) where  
 subContext (CCons _ _ ctx) = subContext ctx

> :load
error:
Overlapping instances for (h :? (h :* e))

≠ Ҙ

data SubContext h
 = forall e. SubContext (Context (h :* e))s

where

Type-level Equality

11

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

// datatype promotion

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate

ɠ instance InEq ‘True h1 h2 e where  

instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

ɡ instance
 InEq ‘False h1 h2 e where

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

subContextEq ctx = SubContext ctx

subContextEq (CCons _ _ ctx) = subContext ctx

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate

ɠ instance InEq ‘True h1 h2 e where  

instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

ɡ instance
 InEq ‘False h1 h2 e where

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

subContextEq ctx = SubContext ctx

subContextEq (CCons _ _ ctx) = subContext ctx

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate

ɠ instance InEq ‘True h1 h2 e where  

instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

ɡ instance
 InEq ‘False h1 h2 e where

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

‘True ~ HEqual h1 h2

subContextEq ctx = SubContext ctx

subContextEq (CCons _ _ ctx) = subContext ctx

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate

ɠ instance InEq ‘True h1 h2 e where  

instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

ɡ instance
 InEq ‘False h1 h2 e where

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

subContextEq ctx = SubContext ctx

subContextEq (CCons _ _ ctx) = subContext ctx

(h1 ~ h2) ⇒

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate

ɠ instance InEq ‘True h1 h2 e where  

instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

ɡ instance
 InEq ‘False h1 h2 e where

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

subContextEq ctx = SubContext ctx

subContextEq (CCons _ _ ctx) = subContext ctx

(h1 ~ h2) ⇒

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate

ɠ instance InEq ‘True h1 h2 e where  

instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

ɡ instance
 InEq ‘False h1 h2 e where

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

subContextEq ctx = SubContext ctx

subContextEq (CCons _ _ ctx) = subContext ctx

(h1 ~ h2) ⇒

(‘False ~ HEqual h1 h2

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate

ɠ instance InEq ‘True h1 h2 e where  

instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

ɡ instance
 InEq ‘False h1 h2 e where

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

subContextEq ctx = SubContext ctx

subContextEq (CCons _ _ ctx) = subContext ctx

(h1 ~ h2) ⇒

(‘False ~ HEqual h1 h2
, h1 :? e) ⇒

Type-level Equality

11

type family HEqual (h1 :: * → * → *) h2 where  
 HEqual h1 h1 = ‘True
 HEqual h1 h2 = ‘False

1. type-level
equality function

2. effect constaints
with type equality

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where  
 subContextEq :: Context (h2 :* e) → SubContext h1

3. delegate

ɠ instance InEq ‘True h1 h2 e where  

instance InEq (HEqual h1 h2) h1 h2 e) ⇒ h1 :? (h2 :* e) where  
 subContext = subContextEq

ɡ instance
 InEq ‘False h1 h2 e where

(m3, h3) (m2, h2) (m1, h1)

(m3, h3) (m2, h2) (m1, h1)

subContextEq ctx = SubContext ctx

subContextEq (CCons _ _ ctx) = subContext ctx

(h1 ~ h2) ⇒

(‘False ~ HEqual h1 h2
, h1 :? e) ⇒

Optimization

12

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

1

yield up

resume

m1

evidence

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2) // 2

Optimization

12

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

m1

evidence

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2) // 2

tail-resumptive	
(\x.\k. k e with	k	fv(e))

Optimization

12

reader

incr

exception

ask()

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

m1

evidence

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2) // 2

tail-resumptive	
(\x.\k. k e with	k	fv(e))

Optimization

12

reader

incr

exception

ask()
1

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

evidence

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2) // 2

tail-resumptive	
(\x.\k. k e with	k	fv(e))

Optimization

12

reader

incr

exception

ask()
1

(m1, reader)

(m2, incr) (m1, reader)

ask()

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

evidence

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2) // 2

tail-resumptive	
(\x.\k. k e with	k	fv(e))

Optimization

12

reader

incr

exception

ask()
1

(m1, reader)

(m2, incr) (m1, reader)

ask()1

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

evidence

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2) // 2

tail-resumptive	
(\x.\k. k e with	k	fv(e))

Optimization

12

reader

incr

exception

ask()
1

(m1, reader)

(m2, incr) (m1, reader)

ask()1

(m3, exception) (m2, incr) (m1, reader)

unique marker

evidence vector

evidence

handler
 (Reader{ ask = value 1}) $
handler
 (Incr{ incr =
 operation (\x.\k. 1 + k ())}) $
handler
 (Exn{ fail =
 operation (\x.\k. 3)}) $  
do x1 <- perform ask ()  
 x2 <- perform ask ()
 return (x1 + x2) // 2

Optimization

13

Optimization

13

1. tail-resumptive operations (i.e., value/function)
 are evaluated in-place

2. non tail-resumptive operations (i.e., operation)
 locally decide which marker to yield to

Scoped Resumptions

14

• Restriction: resumptions can only be resumed in the same
handler context as captured

• We believe that all important effect handlers in practice can be
defined in terms of scoped resumptions

• Implemented as a dynamic check, called guard

 23

Benchmarks

Benchmarks

15

EV
EV NT

EE

FE

MTL

our Control.Ev.Eff library
our Control.Ev.Eff library; handlers always Non Tail-resumptive
the Extensible Effects library [Kiselyov and Ishii 2015]

the Fused Effects library [Schrijvers et al. 2019; Wu and Schrijvers 2015b; Wu et al. 2014]

the Monad Transformer Library

Benchmarks
 [Kiselyov and Ishii 2015]

Benchmarks

16

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks

This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks

This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks

This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks

This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Benchmarks

16

(msec)(msec)

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

E!ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed
Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed
Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed
MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e!ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to "nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su!ers severely for deep stacks.

6.4 Error E!ect

The single error e!ect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks
This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →
(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →
prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →
case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →
Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →
prompt $ \m →
let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks

This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible E!ects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused E!ect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer library MTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile "ag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to de#ne
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption – evaluating
tail-resumptive operations in-place is really e!ective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒
Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to #nd its maximum,
and performs a get and putwhenever it hits a multiple of #ve.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the “pure” version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

Benchmarks

17

In the benchmark, we put many Reader layers under or over the
target State layer.E�ect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed
Pure 9 5.44⇥
MTL 9 5.44⇥
RunST 41 1.20⇥
EE 339 0.14⇥
FE 10 4.90⇥
EV NT 867 0.06⇥
EV 49 1.00⇥

(b) Counter

Time Speed
Pure 247 0.34⇥
MTL 327 0.25⇥
RunST 256 0.32⇥
EE 129 0.64⇥
FE 136 0.61⇥
EV NT 99 0.84⇥
EV 83 1.00⇥

(c) Counter5

Time Speed
Pure 57.2 1.01⇥
MTL 62.2 0.93⇥
EE 61.9 0.93⇥
FE 59.5 0.97⇥
EV 57.6 1.00⇥

(d) Error

Time Speed
MTL 141 4.23⇥
EE 574 1.04⇥
FE 229 2.60⇥
EV 596 1.00⇥
(e) Pythagorean Triples

Time Speed
MTL 3230 0.39⇥
EE 1698 0.75⇥
FE 4974 0.26⇥
EV 1272 1.00⇥

(f) Pythagorean Triples (C)

Fig. 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

it needs to fold with an extra state which causes allocation
of tuples.

6.3 Multi Layer Counter
Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of e�ects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in

linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer
stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to �nd the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL su�ers severely for deep stacks.

More in the Paper

• Advanced handlers:
handlers with return clauses, handlers with local state

• Our implementation ensures type safety

• More discussion

18

 https://github.com/xnning/EvEffE!ect Handlers in Haskell, Evidently

Ningning Xie
Microsoft Research

USA
nnxie@cs.hku.hk

Daan Leijen
Microsoft Research

USA
daan@microso!.com

Abstract
Algebraic e!ect handlers o!er an alternative to monads to
incorporate e!ects in Haskell. In recent work Xie et al. show
how to give semantics to e!ect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more e"cient implementations. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. We show how the de-
sign naturally leads to a concise e!ect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.

CCS Concepts: • Software and its engineering → Con-
trol structures; Polymorphism.

Keywords: Algebraic E!ects, Handlers, Evidence Passing
Translation

ACM Reference Format:
Ningning Xie and Daan Leijen. 2020. E!ect Handlers in Haskell,
Evidently. In Proceedings of the 13th ACM SIGPLAN International
Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. h"ps://doi.org/10.1145/
3406088.3409022

1 Introduction
Algebraic e!ects handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] provide an alternative to monads to in-
corporate e!ectful programs in Haskell [Kammar et al. 2013;
Kiselyov and Ishii 2015;Wu and Schrijvers 2015a]. E!ect han-
dlers can express any free monad in a concise and compos-
able way, and can be used to express complex control-$ow,
like exceptions, asynchronous I/O, local state, backtracking,
and much more.

In recent work Xie et al. [2020] show how to give seman-
tics to e!ect handlers in terms of plain polymorphic lambda

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Haskell ’20, August 27, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8050-8/20/08.
h"ps://doi.org/10.1145/3406088.3409022

calculus through evidence translation. Besides giving pre-
cise semantics, this translation also allows for potentially
more e"cient implementations – a handler is now passed
as evidence to the call site of an operation where it can be
invoked immediately without needing to search for it. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. In particular,

• We give an implementation of e!ect handlers based
on the target language Fv in [Xie et al. 2020]. This
implements e!ect handler semantics faithfully and in
particular enforces the scoped resumptions restriction
(although at runtime only).

• The library interface (Figure 1) is concise and arguably
simpler than other library interfaces for e!ect handlers.
In particular, e!ects are de#ned as a regular data type
with a #eld for each operation. For example,

data Reader a e ans

= Reader{ ask :: Op () a e ans }

declares a Reader e!ect with one operation ask from
() to a (in e!ect context e with answer type ans).
Other libraries typically require GADT’s [Kiselyov and
Ishii 2015], data types à la carte [Swierstra 2008; Wu
et al. 2014], or Template Haskell [Kammar et al. 2013]
to create new e!ects. Being e!ect handlers, there are
also of course the usual advantages with respect to a
monadic interface: e!ects can be composed freely (as
e!ects always form a freemonad), and there is no need
to lift operations into a particular monad (as they are
all part of the single e!ect monad).

• Since evidence of each handler is passed explicitly,
we can directly invoke operations on a handler. For
example, the function greet:

greet :: (Reader String :? e) ⇒ Eff e String

greet = do s <- perform ask ()

return ("hello " ++ s)

performs an ask operation. Here the quali#ed type
Reader String :? e ensures the reader e!ect is in the
e!ect context e and its dictionary allows perform to
directly select the actual Reader handler from the e!ect
context evidence (passed in the e!ect monad Eff e)
without needing to search for the correct handler. It
then uses ask to select the operation #eld directly from
the handler data type and invokes it. This is quite dif-
ferent from most e!ect libraries that typically propa-
gate the operations through a handler stack. Moreover,

95

https://github.com/xnning/EvEff

More in the Paper

• Advanced handlers:
handlers with return clauses, handlers with local state

• Our implementation ensures type safety

• More discussion

18

 https://github.com/xnning/EvEff

Effect Handlers, Evidently
Ningning Xie Jonathan Brachthäuser

Daniel Hillerström Philipp Schuster Daan Leijen
ICFP 2020

E!ect Handlers in Haskell, Evidently

Ningning Xie
Microsoft Research

USA
nnxie@cs.hku.hk

Daan Leijen
Microsoft Research

USA
daan@microso!.com

Abstract
Algebraic e!ect handlers o!er an alternative to monads to
incorporate e!ects in Haskell. In recent work Xie et al. show
how to give semantics to e!ect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more e"cient implementations. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. We show how the de-
sign naturally leads to a concise e!ect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.

CCS Concepts: • Software and its engineering → Con-
trol structures; Polymorphism.

Keywords: Algebraic E!ects, Handlers, Evidence Passing
Translation

ACM Reference Format:
Ningning Xie and Daan Leijen. 2020. E!ect Handlers in Haskell,
Evidently. In Proceedings of the 13th ACM SIGPLAN International
Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. h"ps://doi.org/10.1145/
3406088.3409022

1 Introduction
Algebraic e!ects handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] provide an alternative to monads to in-
corporate e!ectful programs in Haskell [Kammar et al. 2013;
Kiselyov and Ishii 2015;Wu and Schrijvers 2015a]. E!ect han-
dlers can express any free monad in a concise and compos-
able way, and can be used to express complex control-$ow,
like exceptions, asynchronous I/O, local state, backtracking,
and much more.

In recent work Xie et al. [2020] show how to give seman-
tics to e!ect handlers in terms of plain polymorphic lambda

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Haskell ’20, August 27, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8050-8/20/08.
h"ps://doi.org/10.1145/3406088.3409022

calculus through evidence translation. Besides giving pre-
cise semantics, this translation also allows for potentially
more e"cient implementations – a handler is now passed
as evidence to the call site of an operation where it can be
invoked immediately without needing to search for it. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. In particular,

• We give an implementation of e!ect handlers based
on the target language Fv in [Xie et al. 2020]. This
implements e!ect handler semantics faithfully and in
particular enforces the scoped resumptions restriction
(although at runtime only).

• The library interface (Figure 1) is concise and arguably
simpler than other library interfaces for e!ect handlers.
In particular, e!ects are de#ned as a regular data type
with a #eld for each operation. For example,

data Reader a e ans

= Reader{ ask :: Op () a e ans }

declares a Reader e!ect with one operation ask from
() to a (in e!ect context e with answer type ans).
Other libraries typically require GADT’s [Kiselyov and
Ishii 2015], data types à la carte [Swierstra 2008; Wu
et al. 2014], or Template Haskell [Kammar et al. 2013]
to create new e!ects. Being e!ect handlers, there are
also of course the usual advantages with respect to a
monadic interface: e!ects can be composed freely (as
e!ects always form a freemonad), and there is no need
to lift operations into a particular monad (as they are
all part of the single e!ect monad).

• Since evidence of each handler is passed explicitly,
we can directly invoke operations on a handler. For
example, the function greet:

greet :: (Reader String :? e) ⇒ Eff e String

greet = do s <- perform ask ()

return ("hello " ++ s)

performs an ask operation. Here the quali#ed type
Reader String :? e ensures the reader e!ect is in the
e!ect context e and its dictionary allows perform to
directly select the actual Reader handler from the e!ect
context evidence (passed in the e!ect monad Eff e)
without needing to search for the correct handler. It
then uses ask to select the operation #eld directly from
the handler data type and invokes it. This is quite dif-
ferent from most e!ect libraries that typically propa-
gate the operations through a handler stack. Moreover,

95

https://github.com/xnning/EvEff

