
Coercion Quantification

Ningning Xie 1 Richard A. Eisenberg 2

22 Sept. 2018

Haskell Implementor’s Workshop (HIW’18)

1The University of Hong Kong

2Bryn Mawr College

1

Motivation

Motivation

Our long-term goal is to have Dependent Haskell

The World of Haskell

Dependent Haskell

Dependent Core

Homogeneous Equality

Coercion Quantification

2

Motivation

Our long-term goal is to have Dependent Haskell

The World of Haskell

Dependent Haskell

Dependent Core

Homogeneous Equality

Coercion Quantification

2

Motivation

Our long-term goal is to have Dependent Haskell

The World of Haskell

Dependent Haskell

Dependent Core

Homogeneous Equality

Coercion Quantification

2

Motivation

Our long-term goal is to have Dependent Haskell

The World of Haskell

Dependent Haskell

Dependent Core

Homogeneous Equality

Coercion Quantification

2

Motivation

Our long-term goal is to have Dependent Haskell

The World of Haskell

Dependent Haskell

Dependent Core

Homogeneous Equality

Coercion Quantification

2

Motivation

Our long-term goal is to have Dependent Haskell

The World of Haskell

Dependent Haskell

Dependent Core

Homogeneous Equality

Coercion Quantification

2

Outline

• From Haskell to Coercion Quantification

• Coercion Quantification

• For Core Contributors: Theory and Implementation

• For Haskell Users: Design Space in Source Haskell

• Future Work

3

From Haskell to Coercion

Quantification

From Haskell to Coercion Quantification

• Why Dependent Types?

4

Why Dependent Types?

We want dependent types...Oh, do we?

• A language with dependent types may include references to

programs inside of types.

• Length-indexed vectors

data Nat = Zero | Succ Nat
data Vec :: Type → Nat → Type where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Succ n)

-- vector of length 3
vec1 :: Vec Int (Succ (Succ (Succ Zero)))
vec1 = Cons 1 (Cons 2 (Cons 3 Nil))

-- type error!
vec2 :: Vec Int (Succ (Succ Zero))
vec2 = Cons 1 (Cons 2 (Cons 3 Nil))

5

Why Dependent Types?

We want dependent types...Oh, do we?

• A language with dependent types may include references to

programs inside of types.

• Length-indexed vectors

data Nat = Zero | Succ Nat
data Vec :: Type → Nat → Type where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Succ n)

-- vector of length 3
vec1 :: Vec Int (Succ (Succ (Succ Zero)))
vec1 = Cons 1 (Cons 2 (Cons 3 Nil))

-- type error!
vec2 :: Vec Int (Succ (Succ Zero))
vec2 = Cons 1 (Cons 2 (Cons 3 Nil))

5

Why Dependent Types?

We want dependent types...Oh, do we?

• A language with dependent types may include references to

programs inside of types.

• Length-indexed vectors

data Nat = Zero | Succ Nat
data Vec :: Type → Nat → Type where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Succ n)

-- vector of length 3
vec1 :: Vec Int (Succ (Succ (Succ Zero)))
vec1 = Cons 1 (Cons 2 (Cons 3 Nil))

-- type error!
vec2 :: Vec Int (Succ (Succ Zero))
vec2 = Cons 1 (Cons 2 (Cons 3 Nil))

5

Why Dependent Types?

We want dependent types...Oh, do we?

• A language with dependent types may include references to

programs inside of types.

• Length-indexed vectors

data Nat = Zero | Succ Nat
data Vec :: Type → Nat → Type where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Succ n)

-- vector of length 3
vec1 :: Vec Int (Succ (Succ (Succ Zero)))
vec1 = Cons 1 (Cons 2 (Cons 3 Nil))

-- type error!
vec2 :: Vec Int (Succ (Succ Zero))
vec2 = Cons 1 (Cons 2 (Cons 3 Nil))

5

Why Dependent Types?

-- accepts only non-empty vector
vecHead :: Vec a (Succ n) → a
vecHead (Cons x xs) = x

-- type error!
headOfEmpty = vecHead Nil

-- addition in type-level
type family Plus (x::Nat) (y::Nat) :: Nat where

Plus Zero y = y
Plus (Succ x) y = Succ (Plus x y)

-- property of length is ensured in type-level
append :: Vec a n → Vec a m → Vec a (Plus n m)
append Nil v = v
append (Cons a v1) v2 = Cons a (append v1 v2)

6

Why Dependent Types?

-- accepts only non-empty vector
vecHead :: Vec a (Succ n) → a
vecHead (Cons x xs) = x

-- type error!
headOfEmpty = vecHead Nil

-- addition in type-level
type family Plus (x::Nat) (y::Nat) :: Nat where

Plus Zero y = y
Plus (Succ x) y = Succ (Plus x y)

-- property of length is ensured in type-level
append :: Vec a n → Vec a m → Vec a (Plus n m)
append Nil v = v
append (Cons a v1) v2 = Cons a (append v1 v2)

6

Why Dependent Types?

-- accepts only non-empty vector
vecHead :: Vec a (Succ n) → a
vecHead (Cons x xs) = x

-- type error!
headOfEmpty = vecHead Nil

-- addition in type-level
type family Plus (x::Nat) (y::Nat) :: Nat where

Plus Zero y = y
Plus (Succ x) y = Succ (Plus x y)

-- property of length is ensured in type-level
append :: Vec a n → Vec a m → Vec a (Plus n m)
append Nil v = v
append (Cons a v1) v2 = Cons a (append v1 v2)

6

Why Dependent Types?

-- accepts only non-empty vector
vecHead :: Vec a (Succ n) → a
vecHead (Cons x xs) = x

-- type error!
headOfEmpty = vecHead Nil

-- addition in type-level
type family Plus (x::Nat) (y::Nat) :: Nat where

Plus Zero y = y
Plus (Succ x) y = Succ (Plus x y)

-- property of length is ensured in type-level
append :: Vec a n → Vec a m → Vec a (Plus n m)
append Nil v = v
append (Cons a v1) v2 = Cons a (append v1 v2)

6

Why Dependent Types?

• Dependent types help us eliminate erroneous programs

• Type-level computation

• Equivalence proofs

• ...

7

From Haskell to Coercion Quantification

• Why Dependent Types?

• Why Dependent Haskell?

8

Why Dependent Haskell?

A set of language extensions for GHC that provides the ability to

program as if the language had dependent types1

{-# LANGUAGE DataKinds, TypeFamilies, PolyKinds,
TypeInType, GADTs, RankNTypes, TypeOperators,
FunctionalDependencies, ScopedTypeVariables,
TypeApplications, Template Haskell,
UndecidableInstances, InstanceSigs,
TypeSynonymInstances, KindSignatures,
MultiParamTypeClasses, TypeFamilyDependencies,
AllowAmbiguousTypes, FlexibleContexts ... #-}

1Adapted from Dependent Types in Haskell by Stephanie Weirich at

StrangeLoop’17

9

Why Dependent Haskell?

• There is no unified meta-theory for the extensions.

• Duplications for term-level and type-level functions.

-- term-level function
plus :: Nat → Nat → Nat
plus Zero m = m
plus (Succ n) m = Succ (plus n m)

• Restrictions:
• All applications of a type family must be fully saturated with

respect to that arity;

• Data families are not promoted;

• ...

• Plan: to extend GHC with full-spectrum dependent types in a

way that is compatible with the current implementation, with

the goal of simplifying and unifying many of GHC’s

extensions (Eisenberg, 2016; Gundry, 2013; Weirich et al.,

2017).

10

Why Dependent Haskell?

• There is no unified meta-theory for the extensions.

• Duplications for term-level and type-level functions.

-- term-level function
plus :: Nat → Nat → Nat
plus Zero m = m
plus (Succ n) m = Succ (plus n m)

• Restrictions:
• All applications of a type family must be fully saturated with

respect to that arity;

• Data families are not promoted;

• ...

• Plan: to extend GHC with full-spectrum dependent types in a

way that is compatible with the current implementation, with

the goal of simplifying and unifying many of GHC’s

extensions (Eisenberg, 2016; Gundry, 2013; Weirich et al.,

2017).

10

Why Dependent Haskell?

• There is no unified meta-theory for the extensions.

• Duplications for term-level and type-level functions.

-- term-level function
plus :: Nat → Nat → Nat
plus Zero m = m
plus (Succ n) m = Succ (plus n m)

• Restrictions:
• All applications of a type family must be fully saturated with

respect to that arity;

• Data families are not promoted;

• ...

• Plan: to extend GHC with full-spectrum dependent types in a

way that is compatible with the current implementation, with

the goal of simplifying and unifying many of GHC’s

extensions (Eisenberg, 2016; Gundry, 2013; Weirich et al.,

2017).

10

Why Dependent Haskell?

• There is no unified meta-theory for the extensions.

• Duplications for term-level and type-level functions.

-- term-level function
plus :: Nat → Nat → Nat
plus Zero m = m
plus (Succ n) m = Succ (plus n m)

• Restrictions:
• All applications of a type family must be fully saturated with

respect to that arity;

• Data families are not promoted;

• ...

• Plan: to extend GHC with full-spectrum dependent types in a

way that is compatible with the current implementation, with

the goal of simplifying and unifying many of GHC’s

extensions (Eisenberg, 2016; Gundry, 2013; Weirich et al.,

2017). 10

From Haskell to Coercion Quantification

• Why Dependent Types?

• Why Dependent Haskell?

• Why Dependent Core?

11

Why Dependent Core?

Adding dependent types to GHC in one patch...

is very difficult 2.

12

Why Dependent Core?

Adding dependent types to GHC in one patch... is very difficult 2.

2High-level Dependency Graph from

https://ghc.haskell.org/trac/ghc/wiki/Commentary/ModuleStructure 12

https://ghc.haskell.org/trac/ghc/wiki/Commentary/ModuleStructure

Why Dependent Core?

• GHC incorporates several

compilation phases 3.

• Dependent Core, as steps are

taken towards dependent

Haskell (Weirich et al., 2017).

• Some discussions can be found

in Haskell wiki4.

3Compiler Pipeline from

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe
13

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe

Why Dependent Core?

• GHC incorporates several

compilation phases 3.

• Dependent Core, as steps are

taken towards dependent

Haskell (Weirich et al., 2017).

• Some discussions can be found

in Haskell wiki4.

3Compiler Pipeline from

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe
13

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe

Why Dependent Core?

• GHC incorporates several

compilation phases 3.

• Dependent Core, as steps are

taken towards dependent

Haskell (Weirich et al., 2017).

• Some discussions can be found

in Haskell wiki4.

3Compiler Pipeline from

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe
4https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase2 13

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase2

From Haskell to Coercion Quantification

• Why Dependent Types?

• Why Dependent Haskell?

• Why Dependent Core?

• Why Homogeneous Equality?

14

Why Homogeneous Equality?

• Given an equality proposition a : A ∼ b : B

• Homogeneous Equality: A and B are definitionally equivalent

types.

• Heterogeneous Equality: A and B may be unrelated.

• A Specification for Dependent Types in Haskell (Weirich

et al., 2017).

The most important change is that we show that the use

of homogeneous equality propositions is compatible with

explicit coercion proofs...by changing our treatment of

equality propositions, we are able to simplify both the

language semantics and the proofs of its metatheoretic

properties with no cost to expressiveness...

15

Why Homogeneous Equality?

• Given an equality proposition a : A ∼ b : B

• Homogeneous Equality: A and B are definitionally equivalent

types.

• Heterogeneous Equality: A and B may be unrelated.

• A Specification for Dependent Types in Haskell (Weirich

et al., 2017).

The most important change is that we show that the use

of homogeneous equality propositions is compatible with

explicit coercion proofs...by changing our treatment of

equality propositions, we are able to simplify both the

language semantics and the proofs of its metatheoretic

properties with no cost to expressiveness...

15

From Haskell to Coercion Quantification

• Why Dependent Types?

• Why Dependent Haskell?

• Why Dependent Core?

• Why Homogeneous Equality?

• Why Coercion Quantification?

16

Why Coercion Quantification?

Suppose we have homogeneous equalities A ∼# B in Core, then

how can we define the kind-indexed GADTs? 5

-- Source
data Rep :: ∀ k. k → Type where
RepBool :: Rep Bool -- instantiate k to Type
RepMaybe :: Rep Maybe -- instantiate k to Type → Type

5Codes in Source Haskell are in black, and codes in Core are in blue.

17

Why Coercion Quantification?

Suppose we have homogeneous equalities A ∼# B in Core, then

how can we define the kind-indexed GADTs? 5

-- Source
data Rep :: ∀ k. k → Type where
RepBool :: Rep Bool -- instantiate k to Type
RepMaybe :: Rep Maybe -- instantiate k to Type → Type

-- Core
Rep :: ∀ k. k → Type
RepBool :: ∀ k (a :: k).

(k ∼# Type)
→ (a ∼# Bool) -- ill-kinded
→ Rep k a

RepMaybe :: ∀ k (a :: k).
(k ∼# (Type → Type))
→ (a ∼# Maybe) -- ill-kinded
→ Rep k a

5Codes in Source Haskell are in black, and codes in Core are in blue.
17

Why Coercion Quantification?

Suppose we have homogeneous equalities A ∼# B in Core, then

how can we define the kind-indexed GADTs? 5

-- Source
data Rep :: ∀ k. k → Type where
RepBool :: Rep Bool -- instantiate k to Type
RepMaybe :: Rep Maybe -- instantiate k to Type → Type

-- Core
Rep :: ∀ k. k → Type
RepBool :: ∀ k (a :: k).

∀ (cv :: k ∼# Type). -- a name for kind co
((a . cv) ∼# Bool) -- kind cast
→ Rep k a

RepMaybe :: ∀ k (a :: k).
∀ (cv :: k ∼# (Type → Type)).--kind co
((a . cv) ∼# Maybe) -- kind cast
→ Rep k a

5Codes in Source Haskell are in black, and codes in Core are in blue.
17

Coercion Quantification

Coercion Quantification

A quantification over a coercion variable.

• Forall-type over coercion variable.

RepBool :: ∀ k (a :: k).
∀ (cv :: k ∼# Type). -- kind coercion
((a . cv) ∼# Bool) -- cast
→ Rep k a

• Forall-coercion over coercion variable.

∀ c: c1. c2 -- a coercion between two
-- (Forall-types over coercion variable)

:: ∀ (co1:: k1 ∼# k2). A ∼# ∀ (co2::k3 ∼# k4). B

18

Coercion Quantification

A quantification over a coercion variable.

• Forall-type over coercion variable.

RepBool :: ∀ k (a :: k).
∀ (cv :: k ∼# Type). -- kind coercion
((a . cv) ∼# Bool) -- cast
→ Rep k a

• Forall-coercion over coercion variable.

∀ c: c1. c2 -- a coercion between two
-- (Forall-types over coercion variable)

:: ∀ (co1:: k1 ∼# k2). A ∼# ∀ (co2::k3 ∼# k4). B

18

Coercion Quantification

A quantification over a coercion variable.

• Forall-type over coercion variable.

RepBool :: ∀ k (a :: k).
∀ (cv :: k ∼# Type). -- kind coercion
((a . cv) ∼# Bool) -- cast
→ Rep k a

• Forall-coercion over coercion variable.

∀ c: c1. c2 -- a coercion between two
-- (Forall-types over coercion variable)

:: ∀ (co1:: k1 ∼# k2). A ∼# ∀ (co2::k3 ∼# k4). B

18

Coercion Quantification: Theory and Implementation

Theory

• Typing rules: roles, NthCo, InstCo; optimizations; visibility

rules; ...

Γ ` γ1 : (t1 ∼r t2) ∼N (t3 ∼r t4)

Γ, c : t1 ∼r t2 ` γ2 : t5 ∼r2 t6

η1 = Nth r 2 (downgradeRole r N γ1) :: t1 ∼r t3

η2 = Nth r 3 (downgradeRole r N γ1) :: t2 ∼r t4

Γ ` ∀c : γ1.γ2 :: (∀c : t1 ∼ t2.t5) ∼r2 (∀c : t3 ∼ t4.t6[c 7→ η1; c ; η2])

19

Coercion Quantification: Theory and Implementation

Theory

• Typing rules: roles, NthCo, InstCo; optimizations; visibility

rules; ...

Γ ` γ1 : (t1 ∼r t2) ∼N (t3 ∼r t4)

Γ, c : t1 ∼r t2 ` γ2 : t5 ∼r2 t6

η1 = Nth r 2 (downgradeRole r N γ1) :: t1 ∼r t3

η2 = Nth r 3 (downgradeRole r N γ1) :: t2 ∼r t4

Γ ` ∀c : γ1.γ2 :: (∀c : t1 ∼ t2.t5) ∼r2 (∀c : t3 ∼ t4.t6[c 7→ η1; c ; η2])

19

Coercion Quantification: Theory and Implementation

Practice

• Merged patch: https://phabricator.haskell.org/D5054

• Both ForAllTy and ForAllCo can quantify over coercion

variables, but only in Core.

• All relevant functions are updated accordingly.

20

https://phabricator.haskell.org/D5054

Coercion Quantification: Theory and Implementation

Example: compiler/basicTypes/DataCon.hs6

data DataCon
= MkData { ...

dcUnivTyVars :: [TyVar]
dcExTyVars :: [TyVar]
dcUserTyVarBinders :: [TyVarBinder]

... }
-- old invariant : tyvars in dcUserTyVarBinders =

dcUnivTyVars ‘union‘ dcExTyVars

data DataCon
= MkData { ...

dcUnivTyVars :: [TyVar]
dcExTyCoVars :: [TyCoVar] -- covars allowed
dcUserTyVarBinders :: [TyVarBinder]

... }
-- new invariant : tyvars in dcUserTyVarBinders =

dcUnivTyVars ‘union‘ (tyvars in dcExTyCoVars)

6Simplified for presentation. 21

Coercion Quantification: Theory and Implementation

Example: compiler/basicTypes/DataCon.hs6

data DataCon
= MkData { ...

dcUnivTyVars :: [TyVar]
dcExTyVars :: [TyVar]
dcUserTyVarBinders :: [TyVarBinder]

... }
-- old invariant : tyvars in dcUserTyVarBinders =

dcUnivTyVars ‘union‘ dcExTyVars

data DataCon
= MkData { ...

dcUnivTyVars :: [TyVar]
dcExTyCoVars :: [TyCoVar] -- covars allowed
dcUserTyVarBinders :: [TyVarBinder]

... }
-- new invariant : tyvars in dcUserTyVarBinders =

dcUnivTyVars ‘union‘ (tyvars in dcExTyCoVars)

6Simplified for presentation. 21

Coercion Quantification: Design Space in Source Haskell

• So far, the user experience with Haskell should not be

changed at all.

• Question for Haskellers: do you want the compiler to accept

the type of fun?

-- rejected!

data SameKind :: k → k → *
fun :: ∀ k1 k2 (a::k1) (b::k2).

(k1 ∼ k2) ⇒ SameKind a b

If the solver is smart enough (which implies non-trivial

extensions), it should accept the program and produce

-- in Core
data SameKind :: k → k → *
fun :: ∀ k1 k2 (a:k1) (b:k2).

(co :: k1 ∼# k2). -- generate a name
SameKind (a . co) b -- insert a cast

22

Coercion Quantification: Design Space in Source Haskell

• So far, the user experience with Haskell should not be

changed at all.

• Question for Haskellers: do you want the compiler to accept

the type of fun?

-- rejected!

data SameKind :: k → k → *
fun :: ∀ k1 k2 (a::k1) (b::k2).

(k1 ∼ k2) ⇒ SameKind a b

If the solver is smart enough (which implies non-trivial

extensions), it should accept the program and produce

-- in Core
data SameKind :: k → k → *
fun :: ∀ k1 k2 (a:k1) (b:k2).

(co :: k1 ∼# k2). -- generate a name
SameKind (a . co) b -- insert a cast

22

Coercion Quantification: Design Space in Source Haskell

• So far, the user experience with Haskell should not be

changed at all.

• Question for Haskellers: do you want the compiler to accept

the type of fun?

-- rejected!

data SameKind :: k → k → *
fun :: ∀ k1 k2 (a::k1) (b::k2).

(k1 ∼ k2) ⇒ SameKind a b

If the solver is smart enough (which implies non-trivial

extensions), it should accept the program and produce

-- in Core
data SameKind :: k → k → *
fun :: ∀ k1 k2 (a:k1) (b:k2).

(co :: k1 ∼# k2). -- generate a name
SameKind (a . co) b -- insert a cast

22

Coercion Quantification: Design Space in Source Haskell

• So far, the user experience with Haskell should not be

changed at all.

• Question for Haskellers: do you want the compiler to accept

the type of fun?

-- rejected!

data SameKind :: k → k → *
fun :: ∀ k1 k2 (a::k1) (b::k2).

(k1 ∼ k2) ⇒ SameKind a b

If the solver is smart enough (which implies non-trivial

extensions), it should accept the program and produce

-- in Core
data SameKind :: k → k → *
fun :: ∀ k1 k2 (a:k1) (b:k2).

(co :: k1 ∼# k2). -- generate a name
SameKind (a . co) b -- insert a cast

22

Future Work

Future Work

• Implementation of homogeneous equality in Core.

• Dependent Core: unified syntax for terms/types/kinds,

elaboration, etc.

• Dependent Source Haskell.

23

References

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice.

PhD Dissertation. University of Pennsylvania.

Adam Michael Gundry. 2013. Type Inference, Haskell and Dependent Types.

PhD Dissertation. University of Strathclyde.

Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and

Richard A Eisenberg. 2017. A Specification for Dependent Types in Haskell.

Proceedings of the ACM on Programming Languages 1, ICFP (2017), 31.

24

Acknowledgments

Summer of Haskell

25

Coercion Quantification

Ningning Xie 1 Richard A. Eisenberg 2

22 Sept. 2018

Haskell Implementor’s Workshop (HIW’18)

1The University of Hong Kong

2Bryn Mawr College

26

Backup Slides

26

Why Haskell?

Why Haskell? Why not any existing dependently typed

language? [Eisenberg, 2016]

• Haskell is a general purpose functional programming language.

• Backward-compatible type inference.

• No termination or totality checking.

27

Different Equalities

Note [The equality types story] in compiler/prelude/TysPrim.hs

• (∼#) :: ∀ k1 k2. k1 → k2 → #

• The Type Of Equality in GHC. This type is used in the solver

for recording equality constraints.

• We want this to be homogeneous.

• (∼∼) :: ∀ k1 k2. k1 → k2 → Constraint

• Defined as if

class a ∼# b ⇒ a ∼∼ b
instance a ∼# b ⇒ a ∼∼ b

• We want this to keep heterogeneous.

28

Strongly Typed STLC

• De Bruijn index

-- type: unit, or arrow
data Typ = U | Typ :→ Typ
infixr 0 :→

-- context is a list of types, e.g. [U, U → U, U]
-- variable in context
data Member :: a → [a] → * where

First :: ∀ elm ls . Member elm (elm:ls)
Next :: ∀ elm ls x . Member elm ls → Member elm
(x:ls)

test1 :: Member Int ’[Int, Bool]
test1 = First

test2 :: Member Bool ’[Int, Bool]
test2 = Next First

-- type error!
-- test3 :: Member Int ’[Int, Bool]
-- test3 = Next First

29

Strongly Typed STLC

• De Bruijn index

-- type: unit, or arrow
data Typ = U | Typ :→ Typ
infixr 0 :→

-- context is a list of types, e.g. [U, U → U, U]
-- variable in context
data Member :: a → [a] → * where

First :: ∀ elm ls . Member elm (elm:ls)
Next :: ∀ elm ls x . Member elm ls → Member elm
(x:ls)

test1 :: Member Int ’[Int, Bool]
test1 = First

test2 :: Member Bool ’[Int, Bool]
test2 = Next First

-- type error!
-- test3 :: Member Int ’[Int, Bool]
-- test3 = Next First

29

Strongly Typed STLC

• De Bruijn index

-- type: unit, or arrow
data Typ = U | Typ :→ Typ
infixr 0 :→

-- context is a list of types, e.g. [U, U → U, U]

-- variable in context
data Member :: a → [a] → * where

First :: ∀ elm ls . Member elm (elm:ls)
Next :: ∀ elm ls x . Member elm ls → Member elm
(x:ls)

test1 :: Member Int ’[Int, Bool]
test1 = First

test2 :: Member Bool ’[Int, Bool]
test2 = Next First

-- type error!
-- test3 :: Member Int ’[Int, Bool]
-- test3 = Next First

29

Strongly Typed STLC

• De Bruijn index

-- type: unit, or arrow
data Typ = U | Typ :→ Typ
infixr 0 :→

-- context is a list of types, e.g. [U, U → U, U]
-- variable in context
data Member :: a → [a] → * where
First :: ∀ elm ls . Member elm (elm:ls)
Next :: ∀ elm ls x . Member elm ls → Member elm
(x:ls)

test1 :: Member Int ’[Int, Bool]
test1 = First

test2 :: Member Bool ’[Int, Bool]
test2 = Next First

-- type error!
-- test3 :: Member Int ’[Int, Bool]
-- test3 = Next First

29

Strongly Typed STLC

• De Bruijn index

-- type: unit, or arrow
data Typ = U | Typ :→ Typ
infixr 0 :→

-- context is a list of types, e.g. [U, U → U, U]
-- variable in context
data Member :: a → [a] → * where
First :: ∀ elm ls . Member elm (elm:ls)
Next :: ∀ elm ls x . Member elm ls → Member elm
(x:ls)

test1 :: Member Int ’[Int, Bool]
test1 = First

test2 :: Member Bool ’[Int, Bool]
test2 = Next First

-- type error!
-- test3 :: Member Int ’[Int, Bool]
-- test3 = Next First

29

Strongly Typed STLC

-- context [Typ], expr has type Typ
data Expr :: [Typ] → Typ → * where
Unit :: ∀ ts. Expr ts U
Var :: ∀ ts t. Member t ts → Expr ts t
Abs :: ∀ ts dom ran. Expr (dom:ts) ran → Expr ts
(dom :→ ran)

App :: ∀ ts dom ran. Expr ts (dom :→ ran) → Expr ts
dom → Expr ts ran

30

Strongly Typed STLC

-- context [Typ], expr has type Typ
data Expr :: [Typ] → Typ → * where
Unit :: ∀ ts. Expr ts U
Var :: ∀ ts t. Member t ts → Expr ts t
Abs :: ∀ ts dom ran. Expr (dom:ts) ran → Expr ts
(dom :→ ran)

App :: ∀ ts dom ran. Expr ts (dom :→ ran) → Expr ts
dom → Expr ts ran

-- \x. \y. x
fst’ :: Expr ’[] (a :→ b :→ a)
fst’ = Abs (Abs (Var (Next First)))
{- ^ ---------

| ^

-}

30

Strongly Typed STLC

-- context [Typ], expr has type Typ
data Expr :: [Typ] → Typ → * where
Unit :: ∀ ts. Expr ts U
Var :: ∀ ts t. Member t ts → Expr ts t
Abs :: ∀ ts dom ran. Expr (dom:ts) ran → Expr ts
(dom :→ ran)

App :: ∀ ts dom ran. Expr ts (dom :→ ran) → Expr ts
dom → Expr ts ran

-- \x. \y. x
fst’’ :: Expr ’[] (a :→ b :→ b) -- ill-typed!
fst’’ = Abs (Abs (Var (Next First)))
{- ^ ---------

| ^

-}

30

	Motivation
	From Haskell to Coercion Quantification
	Why Dependent Types?
	Why Dependent Haskell?
	Why Dependent Core?
	Why Homogeneous Equality?
	Why Coercion Quantification?

	Coercion Quantification
	Future Work

