Staging with Class
A Specification for Typed Template Haskell

NINGNING XIE, University of Cambridge, United Kingdom
MATTHEW PICKERING, Well-Typed LLP, United Kingdom
ANDRES LOH, Well-Typed LLP, United Kingdom

NICOLAS WU, Imperial College London, United Kingdom
JEREMY YALLOP, University of Cambridge, United Kingdom
MENG WANG, University of Bristol, United Kingdom

Multi-stage programming using typed code quotation is an established technique for writing optimizing code
generators with strong type-safety guarantees. Unfortunately, quotation in Haskell interacts poorly with type
classes, making it difficult to write robust multi-stage programs.

We study this unsound interaction and propose a resolution, staged type class constraints, which we formalize
in a source calculus A[=1 that elaborates into an explicit core calculus F 1. We show type soundness of both
calculi, establishing that well-typed, well-staged source programs always elaborate to well-typed, well-staged
core programs, and prove beta and eta rules for code quotations.

Our design allows programmers to incorporate type classes into multi-stage programs with confidence.
Although motivated by Haskell, it is also suitable as a foundation for other languages that support both
overloading and quotation.

CCS Concepts: » Software and its engineering — Functional languages; Semantics; « Theory of
computation — Type theory.

Additional Key Words and Phrases: Staging, Type Classes, Typed Template Haskell

ACM Reference Format:

Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang. 2022. Staging with
Class: A Specification for Typed Template Haskell. Proc. ACM Program. Lang. 6, POPL, Article 61 (January 2022),
74 pages. https://doi.org/10.1145/3498723

1 INTRODUCTION

Producing code with predictable performance is a difficult task that is greatly assisted by staging
annotations, a technique which has been extensively studied and implemented in a variety of
languages [Kiselyov 2014; Rompf and Odersky 2010; Taha and Sheard 2000] and used to eliminate
abstraction overhead in many domains [Jonnalagedda et al. 2014; Krishnaswami and Yallop 2019;
Schuster et al. 2020; Willis et al. 2020; Yallop 2017]. These annotations give programmers fine
control over performance by instructing the compiler to generate code in one stage of compilation
that can be used in another.

Authors’ addresses: Ningning Xie, University of Cambridge, United Kingdom, ningning.xie@cl.cam.ac.uk; Matthew Pickering,
Well-Typed LLP, United Kingdom, matthew@well-typed.com; Andres Loh, Well-Typed LLP, United Kingdom, andres@well-
typed.com; Nicolas Wu, Imperial College London, United Kingdom, n.wu@imperial.ac.uk; Jeremy Yallop, University of
Cambridge, United Kingdom, jeremy.yallop@cl.cam.ac.uk; Meng Wang, University of Bristol, United Kingdom, meng.
wang@bristol.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART61

https://doi.org/10.1145/3498723

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

https://doi.org/10.1145/3498723
https://doi.org/10.1145/3498723

61:2 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value n* can be efficiently computed for
a fixed k by generating code where the required multiplications have been unrolled and inlined.
The gpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a fixed value at
compile time, it remains a value of type Int.

power :: Int — Int — Int gpower :: Int — Code Int — Code Int
power 0 n=1 qpower 0 gn=1[1]
power k n=nx* power (k—1) n gpower k gn = [$(qn) = $(gpower (k — 1) gn) |

Then in the definition of power5, we can quote n :: Int to create [n] :: Code Int, and splice the
expression $(gpower 5 [n]) to generate n* (n* (n* (n+ (nx*1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int — Int
power5 n=$(qpower 5[n]) --powerSn=nsnkn%nxnx*1l

The code above is restricted to a fixed type Int, and it is natural to hope for a more generic version.

The incarnation of staged programming in Typed Template Haskell promises the benefits of
type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a definition to be reused for any type that is qualified to be numeric:

npower :: Num a = Int > a — a gqnpower :: Num a = Int — Code a — Code a
npower 0 n =1 gnpower 0 gn=[1]
npower k n=nx* power (k—1) n gnpower k qn = [$(gn) = $(gnpower (k — 1) qn) |

Thanks to type class polymorphism, this works when n has any fixed type that satisfies the Num
interface, such as Integer, Double and countless other types.

It is somewhat surprising, then, that the following function fails to compile in the latest imple-
mentation of Typed Template Haskell in GHC 9.0.1:

npower5:: Numa = a — a
npower5 n = $(gnpower 5[n]) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the definition of gnpower, the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
qualified types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we offer the following contributions:

e We formalize a source calculus A[=], which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

e We formalize a core calculus FII, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in FII, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

e We present a type-directed elaboration from AI=1 to FII, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:3

e We prove key properties of our formalism: (a) FII enjoys type soundness (§4.4), (b) well-typed,
well-staged source programs always elaborate to well-typed, well-staged core programs, and
thus A>T also enjoys type soundness (§5.4) and (c) splices and quotations are dual, building
on the axiomatic semantics of FI (§6).

§7 provides a detailed comparison of our work here to the current implementation of Template
Haskell in GHC. The full proofs of the stated lemmas and theorems are available in the appendix.
While this work has been motivated by Typed Template Haskell, we believe our work will be useful
to designers and implementors of other languages which combine similar features and share many
of the same challenges.

2 OVERVIEW

This section gives an overview of our work. We start by introducing the fundamental concepts of
multi-staged programming, in the context of Typed Template Haskell.

2.1 Multi-stage Programming

Multi-stage programming provides two standard staging annotations that allow construction and
combination of program fragments:

e A quotation expression [e] is a representation of the expression e as program fragment in a
future stage. If e :: a, then [e] :: Code a.

o A splice expression $(e) extracts the expression from its representation e. If e :: Code a, then
$(e) :: a. By splicing expressions inside quotations we can construct larger quotations from
smaller ones.

Given these definitions, it may seem that quotes and splices can be used freely so long as the
types align; well-typed problems don’t go wrong, as the old adage says. Unfortunately, things are
not so simple: type soundness in multi-staged programming also requires programs to be well-staged.

2.2 The Level Restriction

The definition of well-stagedness depends on the notion of a level. Levels indicate the evaluation
order of expressions, and well-stagedness ensures that program can be evaluated in the order of
their levels, so that an expression at a particular level can only be evaluated when all expressions
it depends on at previous levels have been evaluated. Formally, the level of an expression is an
integer given by the number of quotes that surround it, minus the number of splices. In other words,
starting from level zero, quotation increases the level of an expression while splicing decreases it.
The level of an expression indicates when the expression is evaluated: (1) programs of negative
levels are evaluated at compile time; (2) programs of level 0 are evaluated at runtime; and (3)
programs of positive levels are at future unevaluated stages.

In the simplest setting, a program is well-staged if each variable is used only at the level in which
it is bound (hereafter referred to as the level restriction). Using a variable in a different stage may
simply be impossible, or at least require special attention. The following three example programs
are all well-typed, but only the first, timely, is well-staged:

timely :: Code (Int — Int) hasty :: Code Int — Int tardy :: Int — Code Int
timely = [Ax — x| hasty = 1y — $(y) tardy =1z — [z]

In timely, the variable x is both introduced and used at level 1. (Similarly, in the well-staged example,
gpower, in the introduction, the variables gpower, k and gn are introduced and used at level 0.) In
the second program, hasty, the variable y is introduced at level 0, but used at level —1. Evaluating
the program would get stuck, because its value is not yet known at level —1. In the third program,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:4 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

tardy, the variable z is introduced at level 0, but used at level 1. Using a variable at a later stage in
this way requires additional mechanisms to persist its value from one stage to another.

Relaxing the level restriction. Designers of multi-stage languages have developed several mecha-
nisms for relaxing the level restriction to allow references to variables from previous stages [Hanada
and Igarashi 2014; Taha and Sheard 1997]. Lifting makes a variable available to future stages by
copying its value into a future-stage representation. Since lifting is akin to serialisation, it can be
done easily for first-order types such as strings and integers, but not higher-order types. Cross-stage
persistence (CSP) is more general than lifting: it supports embedding references to heap-resident
values into quotations. Since it does not involve serialisation, CSP also supports persisting non-
serialisable values such as functions and file handles. Path-based persistence is a restricted form
of CSP for top-level® identifiers. Rather than persisting references to heap values, path-based
persistence stores identifiers themselves, which can be resolved in the same top-level environment
in future stages. For example, the top-level function power can be persisted in this way.

This work considers only path-based persistence. Fully-general CSP is limited to systems in
which all stages are evaluated in the same process, since it requires sharing of heaps between stages;
it is not available in systems such as Typed Template Haskell. Lifting is more broadly applicable,
but it is straightforward to add separately as a local rewriting of programs. For example, GHC
provides the Lift type class with a method lift, and instances of Lift for basic types like Int. Using
these facilities, the ill-staged tardy can be rewritten into the well-staged timelyLift:

class Lift a where timelyLift :: Int — Code Int
lift : a > Code a timelyLift = Ax — [$(lift x) |

2.3 Type Classes and the Level Restriction

The examples in the previous section demonstrate the importance of levels in a well-staged program
in the simplest setting. However, other features found in real-world languages sometimes interact
in non-trivial ways with multi-stage programming support. One such feature is type classes [Wadler
and Blott 1989], a structured approach to overloading. Unfortunately, naive integration of type
classes and staging poses a threat to type soundness. This section presents the problem, after a
brief introduction to type classes and their dictionary-passing elaboration.

Type classes and dictionary-passing elaboration. The following presents the elements of type
classes: the Show class offers an interface with one method show, the Show Int instance provides an
implementation of Show for the type Int with a primitive primShowlInt, and the print function uses
the class method show; its type indicates that it can be used at any type a that has a Show instance.

class Show a where instance Show Int where print :: Show a = a — String
show :: a — String show = primShowlint print x = show x
Type classes do not have direct operational semantics; rather, they are implemented by dictionary-
passing elaboration into a simpler language without type classes (e.g. System F). After elaboration, a
type class definition becomes a dictionary (i.e. a record type with a field for each class member), an
instance becomes a value of the dictionary type, and each function that uses class methods acquires
an extra parameter for the corresponding dictionary:
data ShowDict a = ShowDict showInt = ShowDict print’ :: ShowDict a — a — String
{show’ :: a — String} {show” = primShowlInt } print’ dShow x = show dShow x

Do not confuse this use of “top-level” with the staging level.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:5

The problem of staging type class methods. Constraints introduced by type classes have the
potential to break type soundness, as implicit dictionary passing may not adhere to the level
restriction. For example, in the following program, the class method show appears inside a quotation.
Note the change of the function return type from a — String to Code (a — String)®.

print1:: Show a = Code (a — String)

printl = [show | €1)

Is print1 well-staged? It appears so, since print1 only uses the top-level class method show, which
is path-based persisted. However, a subtle problem reveals itself after type class elaboration:

print1’ :: ShowDict a — Code (a — String)
printl’ dShow = [show dShow |

After elaboration, print1’ takes an additional dictionary argument dShow :: ShowDict a. Notice that
the dictionary variable dShow is introduced at level 0, but is used at level 1! Naively elaborating
without considering the levels of constraints has introduced a cross-stage reference, making print1
ill-staged. As §2.2 outlined, one possible remedy is to persist dShow between stages, a solution
once advocated by [Pickering et al. 2019]. Although dictionaries are typically higher-order, they
are ultimately constructed from path-persistable top-level values. However, the additional run-time
overhead associated with this approach has led its erstwhile advocates to abandon it as impractical.

In contrast, the following monomorphic definition of printInt remains well-staged even after
dictionary-passing elaboration into printInt’, since the constraint is resolved to a global instance
showlnt (which can be path-based persisted) rather than abstracted as a local variable. But of course
this version does not enjoy all the benefits of type classes.

printlnt :: Code (Int — String) printlnt’ :: Code (Int — String) (C2)
printInt = [show | printInt’ = [show showlnt |

The problem of splicing type class methods. The interaction of splicing and dictionary-passing
elaboration can also be subtle. In particular, splices that appear in top-level definitions may require
class constraints to be used at levels prior to the ones where they are introduced. Consider the
definition of topLift:

topLift :: Lift C = C topLift’ :: LiftDict C — C

topLift = $(lift C) topLift’ dLift = $(lift dList C) (TS1)
As with C1, although topLift appears to be well-staged, elaboration reveals that it is not, since it
produces a future-stage reference inside the splice: the dictionary dLift is introduced at level 0 but

is used at level —1. Unlike the case of C1, there is no remedy here, and the code should be rejected,
as dLift is not known until runtime, and thus cannot be used in compile-time evaluation.

dataC=C

2.4 Staging Type Classes: An Exploration of the Design Space

Up to this point we have focused on the problems of type unsoundness arising from the interaction
between quotation/splicing and type classes. We now turn to an exploration of potential solutions.
Since there is little formal work in this area, our remarks here focus on designs that have been
implemented in GHC. This section discusses the problems with each of these designs, and §7
includes a more detailed comparison with GHC.

Delaying type class elaboration until splicing. One approach to resolving Example C1 is to delay
dictionary-passing elaboration until the program is spliced. With this approach, code values

“This example is an eta-reduced version of print1 = [Ax — show x]. For simplicity, we omit the argument x.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:6 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

represent source programs rather than elaborated programs. For C1 this means that print1 is
not elaborated, and so the problem with its ill-staged elaboration print1’ does not arise. Instead,
splicing print1 first inserts its source code and then performs dictionary-passing elaboration, at
which point we can provide the dictionary as per normal.

universe :: String universe’ :: String
universe = $(print1) 42 universe’ = show showlnt 42

However, as Pickering et al. [2019] observe, not preserving dictionary information in quotations
can also threaten soundness. For example, the readInt function below uses the built-in function
read :: Read a = String — a, which converts a String into some Read instance (e.g. Int).

printlnt :: Code (Int — String) readint :: Code (String — Int)
printInt = [show | readInt = [read |

Like Example C2, we expect that the global instance readIntPrim can be used to resolve Read Int in
readInt. If so, then the following function composition would have a clear meaning, which trims
spacing around a string representing an integer by first reading it into an integer and then print it:

trim :: Code (String — String) (A1)
trim = [$(printint) - $(readInt) |

Unfortunately, if dictionary information is not preserved in quotations, and we only do dictionary-
passing elaboration when splicing trim, i.e., in $(trim), then any use of $(trim) would be rejected,
as its spliced result print - read is a typical example of an ambiguous type scheme [Jones 1993], i.e.,
print - read is of type (Show a, Read a) = Code (String — String), where the dictionary to be used
cannot be decided deterministically. Moreover, even when there is no such ambiguity, this approach
may still accidentally change the semantics of a program, for example when the definition site and
the splicing site have different instances®.

Excluding local constraints for top-level splices. One tempting solution to address the problem
of splicing-type-class-methods mentioned above (Example TS1) is to exclude local constraints
from the scope inside top-level splices. After all, top-level splices require compile time evaluation,
and local constraints will not be available during compile time. While this approach can correctly
reject TS1, it unfortunately cannot handle the combination of quotations and splices properly. In
particular, programs like the following may be unnecessarily rejected.

cancel :: Show a = a — String
cancel = $([show])

In this case, the body of the top-level splice is a simple quotation of the show method. This method
requires an Show constraint which is provided by the context on cancel. The constraint is introduced
at level 0 and also used at level 0, as the splice and the quotation cancel each other out. It is therefore
perfectly fine to use the dictionary passed to cancel to satisfy the requirements of Show.

(A2)

Impredicativity. Forthcoming versions of GHC are expected to feature impredicativity, allowing
type variables to be instantiated by polymorphic types [Serrano et al. 2020]. At a first glance,
impredicativity appears to resolve the difficulty; furthermore, it naturally extends to include other
features such as quantified constraints [Bottu et al. 2017].

For our example, impredicativity allows print to be given the following type, indicating that the
code returned is polymorphic in the Show instance:

3In GHC, this requires language pragmas for overlapping instances, which allows resolving class constraints using more
specific instances, and is not uncommon in practice. For example, a module can have both instance Eq [Int] and
instance Eq [a], and the former will be used to resolve Eq [Int], and the latter can resolve, for example, Eq [Bool].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:7

printImp :: Code (Show a = a — String)
printlmp = [show |

At a small scale, this neatly solves the problem: the type indicates that the constraint Show a
elaborates to a level 1 parameter, making the generated code well-staged. However, in larger
examples, using impredicativity in this way severely limits the flexibility of staged functions. For
example, here is an alternative definition of gnpower using impredicativity:

qnpowerlmp :: Int — Code (Num a = a) — Code (Num a = a)
gnpowerlmp 0 gn=1[1]
gnpowerlmp k qn = [$(qn) = $(gnpowerlmp (k— 1) qn) |

As with printImp, the types indicate that gnpowerImp is well-staged: the positions of the Num a
constraints beneath Code indicate that they elaborate to level 1 parameters. Unfortunately, the type
of the parameter gn now places additional demands on callers. The unstaged polymorphic npower
function accepts an expression of any numeric type a as its second argument, and it would be
convenient for its staged counterpart to accept an expression of any future-stage numeric type
Code a. Instead, gnpowerImp demands an argument of type Code (Num a = a): even if it is called
at a monomorphic type such as Int, the argument must still have type Code (Num Int = Int). This
requirement has unfortunate effects on usability: such arguments cannot be of type Code Int, since
Code Int is not a subtype of Code (Num Int = Int) (in the latest GHC). This is a significant loss of
flexibility for callers. Further studies, beyond the scope of this paper, would be needed to support
such subtyping while preserving impredicativity. Moreover, the requirement also leads to reduced
control over generated code, which will be strewn with many additional dictionary abstractions
and applications in generated code involving type classes. It may be possible to eliminate some of
these in subsequent compiler passes but many of those passes are based on heuristics. Relying on
compiler optimizations does not produce predictable program performance: it is almost impossible
to tell by inspection how a program will be optimized.

2.5 Our Proposal: Staged Type Class Constraints

As we have seen, the interaction of staging and type-class elaboration is complicated, which cannot
be managed by simply imposing additional restrictions on either one. A targeted solution that
properly combines the two processes and restores type soundness is therefore needed.

Our proposal is to introduce staged type class constraints, a new constraint form CodeC C
indicating that the constraint C has been staged. That is, we can use the staged constraint CodeC C
to prove a constraint C in the next stage. With staged type class constraints, we can establish type
soundness by enforcing well-stageness of constraints and dictionaries, and thus ill-staged use of
constraints (e.g. print1 and topLift) can be correctly rejected. To illustrate the idea, let us reconsider
the problematic example printI in C1. We rewrite the example to print2 with a staged type class
constraint in its new type signature as follows.

print2 :: CodeC (Show a) = Code (a — String) -- originally Show a = Code (a — String)

print2 = [show | 1)

This example illustrates the key idea of staged type class constraints. First, during typing, we
use the CodeC (Show a) constraint to resolve the Show a constraint raised by show. Notably, the
CodeC (Show a) constraint is introduced at level 0 but the Show a constraint is resolved at level 1.
That means, staged type classes have the static semantics that a constraint CodeC C at level n is
equivalent to a constraint C at level n+ 1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:8 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

Second, in order to elaborate the expression with dictionary-passing, we need a dictionary
representation of CodeC C. Fortunately, we already have all necessary machinery within the
language - since dictionaries become regular data structures after elaboration, staging annotations
can effectively convert between a dictionary for CodeC C and a dictionary for C. That means,
staged type class constraints have the simple elaboration semantics that a dictionary for a constraint
CodeC C is a representation of the dictionary for a constraint C.

Applying this elaboration semantics to print2 produces the following code:

print2’ :: Code (ShowDict a) — Code (a — String)
print2’ cdShow = [show $(cdShow) |

The type Code (ShowDict a) is the elaboration of the constraint CodeC (Show a), and so cdShow is
the representation of a dictionary, and can be spliced inside the quote as the dictionary argument
to show. Crucially, the reference to cdShow is at the correct level, and so the program is type-safe.

The power function revisited. Recall the gnpower example in the introduction (§1):
qnpower :: Num a = Int — Code a — Code a

Just as print1 in Example C1, the definition had to be rejected because of the ill-stagedness of the
constraints. Using staged class constraints, we argue that the function power should instead have
the constraint CodeC (Num a), which then gets elaborated to Code (NumDict a):

qnpower :: CodeC (Num a) = qnpower’ :: Code (NumDict a) —

Int — Code a — Code a Int — Code a — Code a
gnpower 0 cn=[1] gnpower’ ¢cdNum 0 cn=[1] (S2)
qnpower k cn = qnpower’ cdNum k cn =

[$(cn) = $(gnpower (k—1) cn) | [(+) $(cdNum) $(cn) $(gnpower (k—1) cn) |
The elaboration of npower5 then shows how C can be converted into CodeC C by quoting:
npower5:: Numa = a — a npower5’ :: NumDict a — a — a
npower5 n = $(gnpower 5 [n]) npower5’ dNum n = $(qnpower’ [dNum] 5[n])

In this case, by quoting dNum, the argument to gnpower’ is a representation of a dictionary (i.e.,
[dNum | :: Code (NumDict a)) as will be required by the elaborated type of CodeC (Num a).
Moreover, all variables in the definitions are well-staged.

2.6 Staging with Levels at Runtime

Besides formalizing staged type class constraints, our work also offers a guideline for implementa-
tion. In order to provide a robust basis for real-world languages such as Typed Template Haskell,
we want our formalism to be easy to implement and to stay close to existing implementations.
One question, then, is how to evaluate staging programs. The level of an expression, described
earlier, indicates when the expression is evaluated: expressions with negative levels are evaluated at
compile time, those with level 0 at runtime, and those with positive levels in future stages. Ensuring
a well-staged evaluation order involves access the level information during evaluation. For example,
evaluating the following expression at runtime (level 0) involves evaluating e; and es, but not e;:

(er, [€2 $(es))

This is often done by level-indexing the reduction relation [Calcagno et al. 2003; Taha and Sheard
1997]. For example, during evaluation, we can traverse the quotation [e; $(e;3) |, modifying the
level (initially 0) when quotations or splices are encountered, looking for expressions of level 0 to

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be difficult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments

We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus FII. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted [e];, where e is a quoted expression and ¢ the
splices it contains. ¢» consists of a list of splice variables, with each splice variable s represented as
a closure. For example, our previous expression (e;, | e; $(es3)]) is represented as follows in F Il
(assuming ey, e; and e; contain no other splices).

(81, [[ez S]]o»”s:r*(’;)

There are several points to note. First, the splice $(es3) is replaced by a fresh splice variable s,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, FII has no splices, only splice environments.

Second, the splice variable s captures four elements:

(1) the spliced expression (e3).

(2) the type context (o). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.

(3) the level of the expression. Here, es is of level 0.

(4) the type () after splicing. If es is of type Code 7 then $(es3) is of type 7.

Those elements imply that the splice variable s, representing $(es), is at level 1 and of type 7.

Finally, the splice environment contains only expressions of level 0, and is itself bound to a
quotation of the same level (i.e., the whole quotation ez s].1;..—., is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
[e] s, rather than inspecting e, it evaluates its splice environments ¢, which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with e;, then proceeds to the quotation [e; s]|.j0.,—., and moves to its splice
environment e I’ s : 7 = e, which in turn evaluates es. As this description makes clear, evaluating
the expression evaluates e; and e3 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice definitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:10 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

top-level splices. Since splices of negative levels are exactly those expressions that are evaluated at
compile-time, we lift the corresponding splice environments to top-level as splice definitions

spdefe ' s:7=c¢

and put them before the rest of the program. This also gives meaning to compile-time evaluation in
our formalism, where it is modeled using top-level splice definitions, whose evaluation happens
before the rest of the program. We might also imagine a post-elaboration process which partially
evaluates a program to a residual by computing and removing these splice definitions. Such a
process can be easily implemented separately, so we do not include it in the formalism.

3 A=l MULTI-STAGE PROGRAMMING WITH TYPE CLASSES

We present Al=], which has been designed to incorporate the essential features of a language with
staging and qualified types, with the key novelty in the formalism of staged type class constraints.

3.1 Syntax

Figure 1 presents the syntax of our source calculus AI=1. The syntax of type classes follows closely
that of Bottu et al. [2017]; Chakravarty et al. [2005]; Jones [1994].

A source program pgm is a sequence of top-level definitions D, type class declarations C, and
instance definitions 7, followed by an expression e. Top-level definitions D (k = e) model path-
based cross-stage persistence: only variables previously defined in a top-level definition can be
referenced at arbitrary levels. The syntax of type class declarations C is largely simplified to avoid
clutter in the presentation. In particular, type class definitions TC awhere {k : p} have precisely

one method and no superclasses. Instance definitions C;' = TCrwhere{k = ¢} are permitted
to have an instance context, which is interpreted that 7 is an instance of the type class TC with

the method implementation k = e, if C;' holds. The expression language e is a standard A-calculus
extended with multi-stage annotations, and includes literals i, top-level variables k, variables x,
lambdas Ax : 7.e, applications e; e;, as well as quotations [[e] and splicing $e.

Following Jones [1994], the type language distinguishes between monotypes 7, qualified types
p, and polymorphic types o. Monotypes 7 include type variables g, the integer type Int, function
types r; — 1, and code representation Code 7. Qualified types p qualify over monotypes with a list
of constraints (C = p). Polymorphic types o are qualified types with universal quantifiers (Ya.o).
Finally, type class constraints are normal constraints TC 7, or staged constraints CodeC C.

The program theory © is a context of type information for names introduced by top-level

definitions k : o, and the type class axioms introduced by instance declarations Vﬁii.a] = C.
The context T' is used for locally introduced information, including value variables x : (z, n), type
variables a, and local type class axioms (C, n). The context keeps track of the (integer) level n that
value and constraint variables are introduced at; the typing rules will ensure that the variables are
only used at the current level.

3.2 Typing Expressions

Figure 1 also presents the typing rules for expressions. The judgment ©;T t e : o says that under
the program theory ©, the context I', and the current level n, the expression e has type o. The
gray parts are for elaboration (§5) and can be ignored until then.

Most typing rules are standard [Bottu et al. 2017; Chakravarty et al. 2005], except that rules are
indexed by a level. As emphasized before, level-indexed typing rules ensure that variables and
constraint can only be used at the level they are introduced. Literals and top-level variables can
be used at any level (rules s-Li1T and s-KVAR), as they can be persisted. Importantly, rule s-var

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:11

program pgm = def D;pgm | classC;pgm | instI;pgm|e
definition D == k=e
class C = TCawhere{k:p}
instance I n= al = TC rwhere {k = e}
expression e = dilk|x|Ax:te|ere|[e]] $e
monotype T = al|lnt|7 > | Coder
qualified type p = C=p|r7
polymorphic type o = Vaolp
constraint C m= TCr|CodeCC
program context © = e|0B,k:0o| @,VEi.EJ =C
context r = eo|T,x:(r,n)|T,a|T,(C,n)
O;THe:o~ el (Typing expressions)
S-KVAR S-VAR
ST k:ceo® x:(r,n) €T
O;THi:Int~>ile ;TP k:c~> k|e OTHx:T~> x|e
S-ABS S-APP
O;,x:(r,n)Fe:mp~ el OTHe:m>n~e|d
I'tn g Oy +Hx:(7,n) ~ d, ;T H e~ ey
T Ax:r.e:11 > 1~ Ax:ti.e| ¢, O;TH erey: 1~ erex | dy, 0y
S-TABS S-TAPP
O;T,afe:0~eld, by +Ha~> d, ;I e:Vao~elg Tt~
O;T ¥ e:Va.o~ Aae| ¢, O;T¥e:olar 1] ~er | ¢
S-CABS
O, ev: (Cn)Fe:p~el rrC~r ¢y +Hev:(T,n) ~ ¢, fresh ev
O;TPe:C=p~ Aev:re| P,
S-CAPP
OTHe:C=p~e |y OTHE C~ e,
OTHe:p~ere|dy, o,
S-QUOTE S-SPLICE
O;rle:r~elo O;T¥"'e:Coder~e|d Trr~>17 freshs
©;T ¥ [e] : Coder~ [e]s, | [4]" O;TH$e:r~as|d (o s =0

Fig. 1. Syntax and typing rules of A=]

says that if a variable x is introduced at level n, then it is well-typed at level n. Rules s-cass and
s-capp handle generalization and instantiation of type class constraints. If an expression e can be
type-checked under a local type class assumption C, then e has a qualified type C = p. Otherwise,
if a constraint C can be resolved (§3.3), then an expression of type C = p can be typed p.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:12 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

(Well-formed types)

S-K-TVAR S-K-ARROW S-K-CARROW
aecT 'kt~ 1 'kt~ o T'tC~ 1 F'kp~n
T'ta~ a Tt~ >0 IT'rC=2p~>n—on
S-K-FORALL S-K-CODE
Taro~T Lart~ 7
I'+Vao~ Yar I'+ Codet ~ Coder’
(Well-formed constraints)
§-K-TC S-K-CODEC
TC awhere {k : p} Trplam]~ TFC~ 1
F'rTCr~ 7’ I'+ CodeCC ~ Coder
O;TH C~elo (Constraint Resolution)
S-SOLVE-GLOBAL '
JE— 1
ev:iVaC; =>Ce® Trr~or O;T 2 Cilar 1] ~ e | ¢; S-SOLVE-LOCAL
ev: (C,n)erl
@;1"|:”C[av—>r]f\/>evr’e_ii|<,7il O, TEC~ev|e
S-SOLVE-INCR S-SOLVE-DECR
O;T ! CodeCC~s e ¢ rt+C~or fresh s OTHE"C~eld
OTHE C~s | (e s:r=0¢) ©;T F CodeCC ~ [e] . | Lo]"

Fig. 2. Well-formed types, well-formed constraints and constraint resolution in Al=1

Rules s-QuoTE and s-spPLICE type-check staging annotations. In particular, rule s-QUOTE increases
the level by one and gives [e] type Code 7 when e has type 7, while rule s-spLICE decreases the
level by one and gives e type when $e has type Code 7.

Well-formed types and constraints. Typing rules (e.g., rule s-aBs) refer to well-formed rules for
types and for constraints as given in Figure 2. The type well-formedness judgment I' - ¢ simply
checks that all type variables are well-scoped. The constraint well-formedness constraint I" + C
checks that the class method type is well-formed after substituting the variable a with 7.

3.3 Constraint Resolution

The typing rule (rule s-capp) also makes use of constraint resolution, whose rules are given at
the bottom of Figure 2. The judgment ®;T [C reads that under the program theory ©, the
context I', and the current level C, the type class constraint C can be resolved. The definition of
constraint resolution in AI=1 has two key novelties: (1) level-indexing, which allows us to guarantee
well-stagedness of constraints; (2) resolution of staged type class constraints.

Rule s-sOLVE-GLOBAL resolves a type class constraint using an instance definition. If © contains

the instance definition Va.C; = C, we can resolve C [a — 1] by resolving Ci[a > 7] ' Rule s-
SOLVE-LOCAL resolves a constraint using the local type class axiom.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:13

(Typing programs)

$-PGM-DEF $-PGM-CLS
@1}-1)4(")2 ®2|—pgm:0' ®1|—C—|®2 G)ZI—_pgm:O'
O rdef D;pgm: o O +classC; pgm: o
S-PGM-EXPR
$-PGM-INST 0 ; =
O, 7 40, O+ pgm: o O;eFe:o~ el oFo T e:TF ¢~ pgm
O, +instl;pgm: o OFe:o~ pgm
(Typing definitions) (Typing class declarations)
S-DEF $-CLS
Qe e:0 arp
Ork=e40,k:0 O+ TCawhere{k: p}410,k:YaTCa= p
(Typing class instances)
S-INST

TC awhere {k : p}
i

W =fiv() BrC €5, (C0) Pe:plar]

©+C; = TCrwhere{k=e}+40,Vb C; =TCr

Fig. 3. Program typing in A[=]

Rules s-sOLVE-DECR and s-SOLVE-INCR are specific to our system. In particular, rule s-INCR says
that a staged type class constraint CodeC C at level n — 1 can be used to resolve C at level n, which
is essentially what enables us to have constraint inside quotations. Similarly, rule s-DECR says that
a normal type class constraint C at level n + 1 can be used to resolve CodeC C at level n. We can
thus use these two rules to convert back and forth between CodeC C and C.

Example 3.1 (AI=1 typing). Let us illustrate the typing rules and the constraint resolution rules by
revisiting the example [show || (Example S1). Below we give its typing derivation. For this example
we assume the primitive type String, and the program environment © to contain the type of show.

© = show : Ya.Show a = a — String

I = g, (CodeC (Show a), 0)

show : Va.Show a = a — String € © (CodeC (Show a),0) € T
T — S-KVAR S-SOLVE-LOCAL
©;T ¥ show : Va.Show a = a — String ;T |é) CodeC (Show a)
S-TAPP S-SOLVE-INCR
©;T ¥ show: Showa = a — String e;T I:l Show a

0 S-CAPP
©;T F show : (a — String)

©;T ¥ [show] : Code (a — String)
O;al [show] : CodeC (Show a) = Code (a — String)
©; e 1 [show] : Ya.CodeC (Show a) = Code (a — String)

S-QUOTE

S-CABS

S-TABS

Let us go through the derivation bottom-up. First, by applying rules s-TaBs and s-cABs, we introduce
the type variable a and the staged type class constraint CodeC (Show a) at level 0 into the context.
Then by rule s-QUOTE, our goal becomes ©;T ¥ show : (a — String) at level 1. At this point,
rule s-kvAR allows us to use show from O at level 1, but we need to further apply rule s-tapp and
s-capp, and the latter requires us to prove Show a at level 1. To this end, rule s-soLVE-LOCAL first
gets CodeC Show a at level 0, and rule s-sOLVE-INCR then converts it into Show a at level 1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:14 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

3.4 Program Typing

As we have seen from the syntax, a program is a sequence of top-level definitions, class and
instance declarations followed by an expression. Figure 3 presents the typing rules for programs.
The judgment © + pgm : o reads that under the program theory ©, the source program pgm has
type 0. Most rules are standard. Top-level definitions (rule s-rGmM-DEF) and declaration forms (rules s-
PGM-CLS and s-PGM-INST) extend the program theory ® which is used to type-check subsequent
definitions. Rule s-PGM-EXPR makes it clear that the top-level of the program is level 0 and that the
expression is checked in an empty local environment.

Rules s-DEF, s-cLs, and s-INST type-check top-level definitions, class and instance declarations,
respectively. Rule s-DEF extends the list of top-level definitions available at all stages. Rule s-cLs
extends the program theory with the qualified class method. Rule s-INsT checks that the class
method is of the type specified in the class definition.

4 FlI: MULTI-STAGE CORE CALCULUS WITH SPLICE ENVIRONMENTS

We describe an explicitly typed core language FLI, which extends System F with quotations, splice
environments and top-level splice definitions. FII does not contain splices themselves as they are
modeled using the splice environments, which are attached to quotations, and top-level splice
definitions. As such, quotations can be considered opaque until spliced, and FII serves as a suitable
compilation target for multi-staging programming.

4.1 Syntax

The syntax for FII is presented at the top of Figure 4. To reduce notational clutter, we reuse notation
from A[=1 for expressions and types, making it clear from the context which calculus we refer to.
A program (pgm) is a sequence of top-level definitions (9) and top-level splice definitions (S)
followed by an expression (e). Top-level definitions k : 7 = e are the same as for A[=], except
that, since FII is explicitly typed, k is associated with its type 7. There is no syntax for type
classes or instances, which will be represented using top-level definitions after dictionary-passing
elaborations. Top-level splice definitions A ' s : 7 = ¢ are used to support compile-time evaluation,
where the splice variable s captures the local type environment A, the level n, the type after splicing
7, and the expression to be spliced e. As we will see, the typing rules will ensure that that expression
e has type Code 7 at level n under type context A. The purpose of the environment A is to support
open code representations which lose their lexical scoping when floated out from the quotation.

Expressions e include literals i, top-level variables k, splice variables s, variables x, lambdas
Ax : T.e, applications e; e,, type abstractions Aa.e and type applications e 7, and quotations with
splice environment [e];, which are quotations with an associated splice environment. The splice
environment ¢ is essentially a list of splice definitions (A ¥ s : 7 = ¢), which binds a splice variable
s for each splice point within the quoted expression. A splice point is where the result of evaluating
a splice will be inserted. One example we have seen from §2.7 is that the expression [e; $(e;)] can
be represented in FII as [[e; 5], .=, Which, when spliced, will insert the result of splicing e3 in the
place of the splice variable s.

The program context © records the type of top-level definitions k : 7 and top-level splice
definitions s : (A, 7, n). We distinguish between two type contexts A and T, where T is A extended
with types for splice variables. The syntax distinction makes it clear that splice definitions (S) and
environments (¢) only capture A, which are type contexts elaborated from the source language
and so contain no splice variables.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:15
program pgm = def D;pgm |spdef S;pgm|e:r
definition D = k:t=e
splice definition S = A¥s:rt=e
expression e = i|lk|s|x|Ax:7relere;|Aae|er][e],
splice environment ¢ = e|pAs:r=¢
type T = al|lnt| 7 > 1o |Var | Coder
program context (€] = o|0,k:7|0,s: (A 1,n)
context A = eo|Ax:(r,n)|Aa
r = eo|,x:(r,n)|T,a|T,s: (A ,n)
(Typing programs)
C-PGM-DEF C-PGM-SPDEF C-PGM-EXPR
O, +FD 40, O, + pgm O;+FS 40, O, + pgm Oee:1
O + def D; pgm O + spdef S; pgm Ore:r

(Typing definitions) (Typing splice definitions)

C-DEF
Qe e:7

Ork:1=e401,k: 7

C-SPDEF

;A" e:Coder A>n
OrAHs:r=e40,s: (A 1,n+1)

(Typing expressions)
C-VAR C-KVAR C-SVAR
C-LIT x:(r,n) €T k:te® s:(At,n) €T ACT
;T ¥i:Int ;T x:r ;T k:r OT¥s:r
C-TOP-SVAR C-ABS
s:(A,r,n) € © ACT O;T,x: (r,n)Fe:n
O;T¥s:t O T Ax:Tye:1y >
C-APP C-TABS C-TAPP
OTHe:ng > O;THe:n O;T,ae: 1 O;T¥e:Var
O;THee:n O;T ¥ Aae:Var O;THer :nla 1]
C-QUOTE
. n . I n+1 _ .
&I'F ¢ g Fe:r (,’)r converts ¢ into a context.
;T ¥ [e] s : Coder of =
(A s r=e) = ol s:(Arn+1)
0Ty 2 0,T+HpAp=n||O;TF¢ (Typing splice environments)
C-$-CONS
C-S-EMPTY O;T+ ¢ O;T,A " e:Coder A>n

O;TFe

O; T+ (AHs:T=e¢)

Fig. 4. Syntax and typing in Fll

4.2 Typing Rules

Figure 4 presents the typing rules for FII. The judgment © + pgm type-checks a core program. As
before, top-level definitions (rule c-pGM-DEF) and top-level splice definitions (rule c-PGM-SPDEF)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:16 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

extend the program theory © which is used to type-check subsequent definitions. Rule c-pPGM-EXPR
type-checks the expression.

Rule c-sppEF checks top-level splice definitions A ' s : 7 = e by checking that e has type Code 7
at level n under the current program context ® and the context A. Notice that the program context
O is extended with s : (A, 7,n+ 1). The level of s is n + 1 as it represents the spliced expression. In
the example of [e; s].0.,—., which expresses [e; $(e3)], the splice variable s stands for $(e3). The
precondition A > n ensures that all variables in A have levels greater than n (§4.4.1). We use dotted
binary operators (e.g., >, = etc) to indicate level comparison.

The expression typing rules for the core expressions are for the most part the same as those in
the source language. One observation is that since the language does not contain splicings, the
level during typing can only increase (when typing quotations in rule c-QUOTE) but never decrease.

Rules c-svAR and c-TOP-sSVAR retrieve the type of splice variables from the context. Note that,
as with expression variables, splice variables must be used at the level where they are introduced.
Moreover, the local type context A captured by s must be a subset of the current type context I’
so that all free variables in e remain well-typed after substituting s with e. I' may contain more
variables, including splice variables that are not in A.

Rule c-quoTE, which type-checks quotations with splice environments, is of particular interest.
First, it checks that a splice environment is well-typed by the judgment ©;T ¥ ¢, which is based
on the judgment ©;T" + ¢ but in addition requires ¢ to contain only splice variables of level n
(§4.4.1). An empty splice environment is always well-typed (rule c-s-EmpTY). Otherwise the splice
environment is well-typed if each of definition is well-typed (rule c-s-cons), where the context T is
extended with the local type context A to type-check e.

After type-checking ¢, rule c-QUOTE converts the splice environment ¢ into a list of splice
variables ¢T. The definition of ¢! is straightforward and is given in the same figure. Then, rule c-
QUOTE adds all those splice variables ¢' into the context T, as they may be used inside e. One way
to think about splice environments is that they attach splice variable bindings to the quotation
whose body is e. And thus their concrete names do not matter and we can consider quotations
equivalent up to alpha-renaming, e.g., [s]aws.r—e, =a [$'] A5/ r—c, . Finally, the rule type-checks e at
level n + 1, and concludes with the type Code 7.

4.3 Dynamic Semantics

Figure 5 presents the definition of values and dynamic semantics in FII. Note that evaluation is not
level-indexed, as splice environments make the evaluation order of the core calculus evident.

Values v include literals i, lambdas Ax : 7.e, type abstractions Aa.e, and quotations with splice
environments [e]; . Notably, quotation values ([e];) can quote arbitrary expressions (e), but
require the splice environment to be a value (¢,). A splice environment value ¢, simply requires all
bindings to be values (i.e. A V' s : 7 = v). As we will see from the dynamic semantics shortly, this
avoids the need to look inside quotations, as the splice environment corresponds exactly to the
splices inside quotations that need to be evaluated.

The program evaluation judgment (pgm, — pgm,) evaluates declarations in turn from top to
bottom. Top-level definitions are evaluated (rule cE-PGM-DEF) to values and substituted into the
rest of the program (rule cE-PGM-DBETA). Similarly, rule cE-PGM-SPDEF evaluates a top-level splice
definition to a value of the form [e] ;. We must then insert splices back into the program, which is
done in rule CE-PGM-SPBETA by substituting s with [¢,]e. The notation [¢,]e, defined at the top of
the figure, further inserts splices in ¢, back into the expression e. To understand the process, let us
first consider the case when ¢, is empty, giving us [e]e = e, and suppose n = —1 then we have:

spdef A ' s 7= [e].; pgm — pgm[s > e]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:17

value v = i|Ax:te|Aae][e]y,

splice environment value ¢, = eo| ¢, A s:7=0
[¢,]e inserts splices in ¢, back into e.
[e]e = e
[po A s 7= e[y,]e [90](e[s = [¢.]e’])

pgm; — pgm, ‘ (Program reduction)
CE-PGM-DEF CE-PGM-EXPR
D — D’ CE-PGM-DBETA e — ¢
def D; pgm — def D’; pgm def k:7=0v;pgm — pgm[k > v] e:t—e' T
CE-PGM-SPDEF
S S/ CE-PGM-SPBETA
spdef S; pgm —> spdef S’; pgm spdef A V' s 27 = [e], s pgm — pgm[s — ([¢.]e)]
Dy — D, (Definition reduction) (Splice definition reduction)
CE-DEF CE-SPDEF
e— e e—e¢
k:t=e—k:t=¢ As:r=e—Als:7=¢
— €2 | CE-BETA CE-TBETA (Reduction)
(Ax : 1.e1) ey — e1[x > €3] (Aae)t — e[a 1]
CE-APP CE-TAPP CE-QUOTE
e; — €] e— e’ b — ¢’
PApR— Pr—], — [l
(Splice environment reduction)
CE-S-HEAD CE-S-TAIL
(lﬁl) 4 (/")I e — e,
GAVs:T=e— ¢ A¥s:T=¢ A s:T=e— ¢, A s:T=¢

Fig. 5. Values and dynamic semantics in Fll

Essentially, A " s : 7 = [e]. corresponds to the expression $[e] in the source level, whose splicing
result is bound to s. The position of s inside pgm indicates where the source program $[e] was
originally found, and by substituting s with e we successfully insert the splicing result back into
that position. Rule cE-PGM-SPBETA deals with the more general case where ¢, can be non-empty,
which corresponds to nested splices, i.e., the source expression e (as in $[e]) may itself contain more
splices, and those splices (of the corresponding level, in this case —1) are reflected as the splice
environment ¢, associated to [[e]](lr,(_. In this case, we need to first insert those splice definitions back
into the expression, i.e., as [¢,]e, and then we conclude by substituting s with [¢,]e.

After we evaluate all definitions and splice definitions, we can then start evaluating the expression
(rule ce-pGM-EXPR). Expression reductions (e; — e;) are mostly standard. Rule cE-BETA uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule ceE-QUOTE, which says that to evaluate [[e]](,«,, we leave e as is, and all we need to do is
to evaluate ¢, which simply evaluates all expressions it binds (rules ce-s-HEAD and CE-s-TAIL).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:18 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

Note that there is no reduction rule which reduces inside a quotation. Now the benefits of splice
environments become clear: we can treat a quoted expression (the e part in [e] ;) opaquely, giving
the implementation freedom about its concrete form.

4.4 Well-Stagedness and Type Soundness

In this section, we discuss the metatheory of FII. Before we present the type soundness result, we
first discuss well-stagedness of splice environments.

4.4.1 Well-Staged Splice Definitions and Environments. Our typing rules are designed carefully to
allow only well-staged programs. As splice definitions and environments are novel in this calculus,
great care needs to be taken to guarantee their well-stagedness. To this end, the typing rules have
imposed the following restrictions on levels of splice definitions and environments:

(1) A splice definition A V' s : 7 = e requires A > n as in rule c-spDEF (similarly, rule c-s-cons).
That is, all splice variables in the local type context captured by a splice variable must have a
level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation ©; A ¥ [e] s requires ©;T ¥ ¢, as in rule c-QUOTE, which implies

¢ = n,. That is, all splice variables that bind level n are introduced at level n.*

1

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.
(a) L '_0 [[e]],\':tCod(‘I11t.()l#‘s:lnt:\' : Code 7 breaks (1) as x: (COde |l’lt, O) ?é 0
(b) o e K [[He]]ﬂ‘szlnt:(Z)'z(‘ud(‘Int.v\') 1HZL.IH° : Code (COde T) breaks (2) ase /s Int £1

Essentially, the first restriction applies the level restriction of variables described in §2.1 to splice
definition and environments; and the second lifts the level restriction to splice variables. In particular,
consider the counterexample (a). What happens is that in the splice environment x is used at level
0, but inside e we can never introduce x at level 0 (recall that during typing the level monotonically
increases)! So such an example is rejected because x is not well-staged.’

The level restriction to splice variables requires that a splice variable that binds level n is
introduced at level n. The splice variable level restriction ensures that splice variables are evaluated
at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because
the splice environment is a value and we do not inspect inside the quotations, we will conclude that
it is a value. But note that s is bound at level 0, which means the expression (1y : Code Int.y) ([2].)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject
this example as s is not well-staged.

4.4.2 Type Soundness. With well-staged splice definitions and environments, we can now prove
that FII enjoys type soundness, by proving type preservation and progress.

First, we show that any reduction preserves the type information. For space reasons, we only
present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) Ife; e \" ¢ : 1, then either e is a value, ore — €’ for somee’.
(2) If ® + pgm, then either pgm isv : T, or pgm —> pgm’ for some pgm’.

4 An alternative is to represent a splice environment entry as A + s : 7 = e (i.e. without levels), and then rule c-QUOTE, just
like rule c-aBs, could directly take the current level from the typing judgment (which also means ¢T would need to take a
level as input). However, that representation does not work for global splice variables (i.e. in rule c-sPDEF where typing is
not level-indexed). Moreover, the representation of ¢ is also used during elaboration, where it is important to track the
levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.

5Tt may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of
the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope
of the splice environment (i.e. is not local). For example, the well-typed source program Ax : Code Int.[$x] elaborates to

Ax : Code Int.[s] while the source program [Ax : Int.$[x]] elaborates to [Ax : Code Int.s]

o s:Int=x> x:(Int,1)Os:Int=[x] e *

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:19

o

S-INJ-CONS

S-INJ-EMPTY (,/)1 'H'Az ~ <f/)2
o+HHA~> e PN siT=et Ay~ g (Ao, Ay H s T =e)
\pgml # o~ pgm, \ (Collapse)
S-CLAP-REC
S-CLAP-EMPTY spdef 9/’-”;Pgm1 '_nfl L(//)J/l ~ pgmz
pgm ' e ~> pgm pgmy ¥ ¢~ pgmy

Fig. 6. Auxiliary definitions used in elaboration: injection used in Figure 1, and collapse used in Figure 3

Now we show that well-typed programs cannot go wrong, by proving that a well-typed expression
(and definition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If©;A ¥ e: 7, ande — €', then ©;A ¥ e’ : 7.
(2) If© + pgm, and pgm — pgm’, then © + pgm’.

5 ELABORATION FROM Al=1 1O FlI

In this section we describe the process of type-directed elaboration from the source language A[=]
into the core language FII. There are three key aspects of the elaboration procedure:

(1) Splices are removed in favour of a splice environment. The elaboration process returns a
splice environment which is attached to the quotation form (§5.1).

(2) Type class constraints are converted to explicit dictionary passing. We describe how to
understand staged type class constraints CodeC C in terms of quotation (§5.2).

(3) Splices at non-positive levels that are not attached to a corresponding quotation are elaborated
to top-level splice definitions, which are put before the rest of the program (§5.3).

5.1 Elaborating Expressions with Splice Environments

The elaboration of expressions appears in gray with the source typing rules in Figure 1. The
judgment ©;T # e : 0~ e | ¢ states that, under the program context ® and the context T', the
source expression e at level n with type o is elaborated into a core expression e whilst producing
the splice environment ¢». As we will see, since splices at level n create splice variables at level n — 1,
and quotations at level n capture all inner splice variables at level n, we maintain the invariant on
the judgment that ¢ < n (§5.4.1).

At a high level, all splice variables are initially added to the splice environment when elaborating
splices (rule s-spLICE), and then propagated through the rules, until captured by quotations (rule s-
QUOTE); uncaptured splice variables are discussed in §5.3. Let us first take a look at rule s-sprLicE. To
elaborate a source splice $e, rule s-spLICE generates a fresh splice variable s which is returned as the
elaboration result. It then extends the splice environment ¢» with s that binds an empty local context
(as every variable is still in the scope of the splice at this moment), the level of the expression n — 1,
the core type 77, and the core expression e. This way we effectively insert s as a splice point, with
the expression to be spliced bound to s in the splice environment. Splice environments are captured
by quotations in rule s-QUOTE. In particular, a quotation at level n captures only the splices at level
n; the notation ¢.n denotes the projection of the splices contained in ¢ at level n. We then truncate
¢ by removing ¢.n from it using the notation | ¢|".

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:20 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

Importantly, we need to ensure well-scopedness of splice environments during this process.
When a splice variable gets out of a scope, e.g. in rule s-aBs, we cannot directly return ¢,, as ¢,
may refer to x and directly returning ¢, would cause it to be ill-typed! To this end, whenever a
splice variable gets out of a scope, it captures the scope in its local context. In other words, a splice
variable captures the local context from its introduction point up to the point where it is bound by a
quotation. This is done by the injection judgment ¢; ++ A ~> ¢,, defined at the top of Figure 6, and
is used in for example rule s-aBs. Specifically, the judgment ¢, ++ A ~» ¢, inserts A into the local
context of each splice variable in ¢, producing a new splice environment ¢,. As we will prove, the
injection process is crucial to establish elaboration soundness.

The remaining rules elaborate source expressions in an expected way, while propagating splice
environments, e.g. rule s-App elaborates a source application into a core application, and collects
splice environments from preconditions. We talk more about elaborating type classes (rules s-caBs
and s-cAPP) in the next section.

5.2 Dictionary-Passing Elaboration of Constraints

Figure 2 presents the elaboration of types and constraints. Well-formed source types elaborate to
well-formed core types (I' - 0~ 7).

Type classes are translated away by dictionary-passing elaboration [Jones 1994]. In particu-
lar, well-formed constraints elaborate to well-formed core types (I' F C ~ 7). Note that a class
constraint TC 7 elaborates to its method type, as an instance of the constraint provides an imple-
mentation of the method.® Accordingly, rule s-caBs elaborates an expression with a constraint into
a dictionary-taking function, and rule s-capp elaborates class resolution as function applications.

The last judgment ©;T F* C ~» e | ¢ is of particular interest: resolving a type class constraint C
returns an expression e as evidence for the constraint, with a splice environment ¢. Rules s-soLVE-
GLOBAL and s-SOLVE-LOCAL are standard elaboration rules of normal type class resolution, where
the former uses an instance declaration in the program context, and the latter uses a local instance
(as introduced in rule s-caBs).

Rules s-SOLVE-INCR and s-SOLVE-DECR concern staged type class constraints. Rule s-SOLVE-DECR
elaborates staged type class constraints into values of type Code 7. Therefore resolution elaboration
of staged type class constraints must be understood in terms of quotations. Rule s-SOLVE-DECR is
implemented by a simple quotation and thus similar to typing quotations (i.e., rule s-QUOTE). Rule s-
SOLVE-INCR conceptually introduces a splice; as in rule s-spLICE, it achieves this by extending the
splice environment, since the core language does not have splices. These rules explain the necessity
of level-indexing constraints in the source language: the elaboration would not be well-staged if
the stage discipline was not enforced.

5.3 Elaborating Programs with Top-Level Splice Definitions

We elaborate programs as shown in gray in Figure 3. For space reasons, we only present the
elaboration for programs of the form e : 7 (rule s-PGM-EXPR); elaborations of other forms apply
the same idea to the standard elaboration of type class and instance declarations [Bottu et al. 2017;
Jones 1994]. The full rules can be found in the appendix.

If a splice occurs at a non-positive level without corresponding surrounding quotations, then it
should be evaluated at compile time, and in our formalism, it becomes a top-level splice definition.’

SThis is a simplification of elaboration for multi-method type classes, which produces a record with a field for each method.
"In general, non-positive splices can still have surrounding quotations. There are two cases. (1) The quotation is not
at the corresponding level, then the splice is lifted to top-level splice definition. For example, [$($e)] elaborates to
spdef e ! s, : Code Int = ¢;[[s1] : Code Int, where s; has a surrounding quotation but becomes a spdef. (2) The
quotation is at the corresponding level, then the splice will be attached to a quotation even if it is non-positive. For example,

o¥sy:Int=sy

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:21

This process can be seen from rule s-PGM-EXPR, where we start by elaborating the source expression
e at the default level 0, which returns the core expression e and the splice environment ¢. As we
have mentioned in §5.1, elaborating expression at level n maintains the invariant ¢ < n (§5.4.1).
Since in this case the expression is elaborated at level 0, we have ¢ < 0; namely, the result ¢ returned
from elaborating the expression contains non-positive splice variables that should be evaluated at
compile time. Hence, we turn those splice environments into top-level splice definitions and put
them before e : 7, using the collapse judgment pgm, ¥ ¢ ~> pgm,, given in Figure 6. The collapse
process takes the current program pgm,, and creates top-level splice declarations for each splice
in ¢, generating pgm,. To guarantee a stage-correct execution, the splices are inserted in order
of their levels, decreasing from n; for rule s-PGM-EXPR, we have n = —1. Now pgm returned from
rule s-PGM-EXPR contains exactly what we want: a sequence of top-level splice definitions, followed
by the elaborated core expression.

Example 5.1 (Elaboration). The derivation below shows the elaboration of a source program
$(k), where k is a top-level definition defined as [show] whose typing derivation has been given in
Example 3.1. This illustrates two particular points of interest: CodeC (Show a) is elaborated into
quoted evidence using rule c-SOLVE-DECR, and the injection ensures the splices are well-typed.

1

¢y =eF s:a— String =ka[ev].
© = k: Ya.CodeC (Show a) = Code (a — String) B
¢y =ev: (a— String,0) F 's:a— String = ka[ev].
T'=a, ev: (Showaq,0) N
$3=a,ev: (a— String,0) ' s: a— String = ka[ev].
k : Ya.CodeC (Show a) = Code (a — String) € © ev: (Showa0) €T
S-KVAR S-SOLVE-LOCAL
©;T ¥! k: Va.CodeC (Show a) = Code (a — String) ~» k | o ;T F Showa ~» ev | »
S-TAPP S-SOLVE-DECR
;T F! k: CodeC (Show a) = Code (a — String) ~ ka | » ©;T E! CodeC (Show a) ~ [ed]. | »

S-CAPP
©;T F! k: Code (a — String) ~» ka[ev]. | »

$-SPLICE

. 0 . . I S- -CH S
O:T 7 8(k) :a = String = s [y ¢y +ev: (a— String,0) ~ ¢, e
S-CABS
©;ar $(k) : Show a = a — String ~» Aev : a — String.s | ¢, g+ a~> S-INJ-CONS

S-TABS
©; ¥ $(k) : Va.Show a = a — String ~> Aa.Aev: a — String.s | ¢,

Having obtained the main expression, we can apply rule s-PGM-EXPR and use collapse to turn ¢,
into a top-level splice definition and form the resulting program:
(Aa.Aev : a — String.s) : Ya.(a — String) — a — String F' ¢, ~»> spdef a, v : (a — String,0) ¥ ' s : a — String = ka [ev];

(Aa.Aev : a — String.s) : Ya.(a — String) — a — String

5.4 Elaboration Soundness

In this section, we prove that elaboration preserves types, which, together with type soundness of
FII establishes type soundness of AI=1 . To this end, we first need to show how the well-stagedness
restrictions in FUI (§4.4.1) are satisfied during elaboration.

5.4.1 Well-Staged Splice Environments. The first restriction says that every A V' s : 7 = e has A > n
(rules c-spDEF and c-s-cons). During elaboration, we have seen that a splice variable captures
the local context from its introduction point up to the point where it is bound by a quotation.
The restriction holds trivially when a splice variable is created with an empty local context, but
since the local context can later be extended by injection we must prove that injection respects the

$[$e] elaborates to spdef e ' s, : Int = [s3],-1.., . ;sS4 : Int, where s3 appears at non-positive level but is attached to a
P oF ls3:Int=e pp P

quotation. Note that the evaluation order is still correct: since s4 is evaluated at level —1, its splice environment is evaluated

at —1, and thus sj3 is evaluated at —1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:22 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

restriction. This can be shown by first proving the invariant that the splice environment produced
from typing has level smaller than the current typing level:

Lemma 5.2 (Level Correctness of ¢). If ;T e:7~> e | ¢, then ¢ < n.

This can be easily seen from rule s-sprLicE that produces only splice variables with smaller levels;
and rule s-QUOTE captures all splices at the current level.

We then use Lemma 5.2 to show that injection produces well-staged splice environments. Con-
sider rule s-ABs as an example. By Lemma 5.2 we have ¢, < n, and therefore ¢; < x : (z,n), so
injection as in ¢; ++x : (r,n) ~ ¢, preserves the restriction. Formally, we can prove

Lemma 5.3 (Context Injection). If©; Ay, Ay F ¢y, and ¢, < Ay, and ¢+ Dy ~> ¢, then ©; A1 F ¢,

The second restriction requires that an elaborated quotation ©; A ¥ [e];, has ©;T ¥ ¢. We
generate quotations at rule s-QUOTE. As the rule binds ¢.n which by construction has level n, we
only need to show ©; A + ¢, which can be proved making use of Lemma 5.3. In the following
lemma statement, the notations © ~ © and I' ~ A elaborate contexts in a unsurprising way;
their definitions can be found in the appendix.

Lemma 5.4 (Well-staged ¢). If©;T #e:t~e|¢,and©® ~ O, andT ~ A, then ©;A + ¢.

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of
splice environments, we are ready to prove that A[=1 is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
1) Ife;THe:t~e|d,and®~ O ,andT ~ A, andT + 7~ T,then@;A,g‘)F He:r.
(2) IfOF pgm:0~ pgm,and© ~ © , then®© + pgm.

6 AXIOMATIC SEMANTICS

Our goal in designing A= and FII is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.

In this section, we prove this crucial property by establishing axioms and axiomatic semantics
of AI=1 and FII respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The definitions of axiomatic semantics and the proofs in this section
follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) A[=] has elaboration-based
semantics, and thus the correctness of its axioms are built on that of FII, and this indirection poses
extra complexities in the proofs; and (2) for F I, we define the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice definitions.

6.1 Duality of Splices and Quotations in A[=]

The property we seek to establish is captured by the two axioms of AI=! given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory
of A[=1; they can be thought of as context-independent pattern-based rewriting rules.

Consider an axiomatic equivalence relation between AI=1 programs that is the contextual and
equivalence closure of the axioms, which we denote as pgm, =4, pgm,. Our goal now is to prove

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:23

©;T'¥ e:Coder ~ e | ¢ OTe:r~eld
[[$e]] ax € $-SPLICE S-QUOTE
$[[eﬂ =ax € OT Plge:r~s |dells:ir=e ;T ! [e] : Coder ~ lelg.n1 | Lop]1™
—— S-QUOTE S-SPLICE
(a) Axi ©;T ¥ [$e] : Codet ~ [s]ore0 | & T $e]:t~s| o) e sir=elyn:
a xXioms
(b) Quote splices (c) Splice quotations

Fig. 7. Axioms and elaboration derivations in =1

axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the
same result and thus can be used in an interchangeable way. As the dynamic semantics of A[=1 is
defined based on elaboration to FII, we build the proofs based on the axiomatic semantics of F i,

6.2 Axiomatic Semantics of FII

The axiomatic semantics of FI is guided by the elaboration of the A[=1 axioms. Supposing source
e elaborates to core e with ¢, Figures 7b and 7c present elaboration derivations of [$e] and [$e]
respectively. Looking first at Figure 7b, what is needed to show the first A[=] axiom is a FII axiom
that models the equivalence between expression [[s]s.s.,—. With ¢ (the elaboration result of [$e])
and e with ¢ (the elaboration result of e). Since the two ¢s are the same, it is sufficient to introduce
a core axiom [[s]eprs.r—c =gx €.

The case for splicing quotations (Figure 7c) is more challenging: in this case we cannot directly
compare the elaborated expressions, as the generated splice environments are different. Instead,
we need to consider equivalence between two core quotations where the splice environments
are bound. To derive the axiom, let us first consider the case where both expressions are bound
immediately to a quotation. That leads to [s]| = 1 o 1c.r-c],, , =ax [€] |47 .40 1. Abstracting
over the specific shape of splice environments gives us [s], «s.~[¢], =ax [€]s,.s- In the case when
s is not immediately bound, we then have [[elﬂ(;,l,.w,\»;f:w,, =ax [e1[s — el .- However, there are
still some wrinkles to this axiom. First, s could have a non-empty splice environment ¢, to its right,
as until s is bound there can be more splices. Second, s could have a non-empty local context A,
as until s is bound it may have got out of some scopes and so have applied the injection process.
Finally, if s has a non-empty local context, then after it is substituted away on the right hand side,
we cannot directly discard its local context A and leave ¢, since ¢) now becomes ill-typed as it loses
the scope of the variables from A. Therefore, we need to inject A into ¢.

Summarizing our discussion, we end up with the axiomatic semantic of FII as defined below.
Note that splicing quotations also leads to the equivalence axiom between spdef.

Definition 6.1 (Axiomatic Semantics of FII). Axiomatic semantics of FI models f-equivalence, as
well as the following axioms.

[[SH-—“S:T*V =ax €
[[elﬂ(,%l,\w,s-:r:ﬂc’,,,(,sz =ax [eils — e]]]gal,q/,(,uz where g + A ~> ¢’
spdef A ' s .7 = [e]4;pgm =oc spdef @’;pgm[s > e] whered ++ A~ ¢’

Now consider an axiomatic equivalence relation between FII programs that is the contextual
and equivalence closure of the axioms, denoted as:

© F pgm; Lax pgm, = Ok pgmy A Ok pgmy A pgmy =ax pgm,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our definition of axiomatic semantics of FII indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (A[=] =, to FII). If pgmy =ax pgm,, where © + pgm, : 0 ~> pgm, , and © +
pgmy 1 0 ~> pgm, , and © ~> © , then © + pgm, gy pgm,.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence

We define contextual equivalence in FII as below.

Definition 6.3 (Contextual Equivalence in FII).
T e oy e:7 2 oTfe A0 He:T
A (YC: o 7~ o501 Int, Cle] —" i & Clez] —" i)
O F pgm, Sy pgMy T = O F pgm ANOF pgm, A (VS,-,Z)]-U (OFT— ek,
(spdefS; defD; s pgm, —* €1 : T = spdefS;; defD; s pgm, —* €, : 1)
A (.;. 1 €1 Zctx €2 T))

Expression contextual equivalence says that two core expressions e; and e; are contextually equiv-
alent, if for any computation context C, C[e;] and C|[e,] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[e] to plug in the expres-
sion e into the hole of C. The notation C : ;T ¥* 7 ~» e; e { Int means that if ;T * ¢ : 7 then
o; 0 i C[e] : Int. Program contextual equivalence is defined in a similar manner and is built using
expression contextual equivalence.

The final piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of FII to prove the Church-Rosser property, which is then used to prove
equivalence between FII axiomatic semantics and operational semantics.

Lemma 6.4 (FII = to FII). IfOF pgm; 2 pgmy, then © + pgm, Loy pgMy = T.
Combining Lemma 6.2 and Lemma 6.4 yields our final goal:
Theorem 6.5 (AI=1 =, to FIl «,). If pgm, =4 pgm,, where © v pgm, : o~ pgm, , and

O+ pgm, : 0 ~> pgm, ,and© ~> O ,ande o~ T ,then® - pgm, Loy pgM, : T.

7 TODAY’S TYPED TEMPLATE HASKELL

The behavior of Typed Template Haskell in GHC differs from our calculus. Table 1 summarizes the
key examples from §2, comparing the results from the latest GHC (9.0.1) to A[=1. The Haskell code
examples are in the appendix.

At a high level, GHC’s implementation is close to the description in §2.4: it delays type class
elaboration until splicing, and excludes local constraints for top-level splices. This is sufficient to
accept the definitions of print1 (and gnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness after dictionary-passing elaboration.
X means the definition itself is accepted but its use is restricted; and O means not applicable.

printl printInt print2 topLift trim cancel qnpower/npower5

C1 C2 S1 TS1 A1 A2 §1 S2
Well-staged? X v v X v 4 Xl X 4
A= x v v X v XX IV

GHC 9.0.1 X v 0] X X X X/ X o

raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
definition site and the splicing site have different instances in scope.

Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly
rejects topLift (and npower5) but wrongly rejects cancel. We argue that topLift should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC

The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
briefly here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modification is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule s-soLVE-INCR or by rule s-sOLVE-DECR. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
given CodeC C at level 0, the context can record the spliced evidence for C at level 1) so that
constraint solving only needs to consider rule s-SOLVE-DECR.

Local constraints. Local constraints can be introduced by (for example) pattern matching on
GADTs [Peyton Jones et al. 2006], and we anticipate that they can be treated similarly to type class
constraints: the constraint solver needs to keep track of the level at which a constraint is introduced
and ensure that the constraint is only used at that level.

Quantified constraints. The full Haskell language supports more elaborate forms of type classes
than the essence modeled in A[=]. For example, GHC supports quantified constraints [Bottu et al.
2017], which include forms such as Yx.Show x = Show (f x), a constraint that converts Show
instances for x into Show instances for f x. Future work is required to study more formally the
interaction between staged constraints and implication constraints; we envisage that constraint
entailment should deduce that CodeC (C; = ;) entails CodeC C; = CodeC C,.

Representation of quotations. In today’s GHC implementation, untyped code representations are
built compositionally using combinators, and type-checked at splice sites. With our development,
code representations contain type information, especially dictionaries, and must therefore corre-
spond to one of GHC’s post-typechecking term representations. One option is GHC Core terms,
which is the simplest representation that retains type information and has existing serialization
support (for inlining definitions across modules).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:26 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

Our development also requires changing the implementation of splicing to support performing
substitution at splices inside quotations. In today’s GHC, substitution is performed implicitly
during translation from expressions to combinators. With the new representation of quotations,
the substitution needs to be represented explicitly and performed explicitly during deserialization
of the quotation body. Substituting splices takes two steps. First, a quotation body is traversed and
each splice is replaced by a splice variable where the evaluated splice term needs to be inserted.
The splice variable is maintained in the splice environment. Second, the splicing operation itself
involves checking the splice environment for each splice variable and performing the substitution.

9 RELATED WORK

Since its introduction [Taha and Sheard 1997, 2000] multi-stage programming with quotation has
attracted both theoretical and practical interest. Several languages, including MetaOCaml [Kiselyov
2014], Haskell and Scala [Stucki et al. 2018], include implementations of typed quotations.

Considering that implementations of multi-stage languages have supported polymorphism
from the very beginning, there is surprisingly little work that formally combines multi-stage
programming with polymorphism: most multi-staged calculi are simply-typed. An exception, by
Kokaji and Kameyama [2011], involves a language with polymorphism and control effects; their
primary concern is the interaction of the value restriction and staging. Another, by Kiselyov [2017],
considers the tripartite interaction of polymorphism, cross-stage persistence and mutable cells.

Several works examine the interaction of quotation with individual language features, particularly
with various forms of effects, such as control operators [Oishi and Kameyama 2017] and mutable
cells [Kiselyov et al. 2016]. Work by Yallop and White [2015] is more closely related to the present
work, since there is a well-known correspondence between ML modules and type classes [Wehr and
Chakravarty 2008]; it examines the interaction between typed compile-time staging and modules.
However, since modules are written explicitly rather than introduced by elaboration, the dictionary
level problem does not arise. In a similar vein, Radanne [2017] studies the interaction of ML modules
with a different modality, client-server programming, where the distinction between client and
server functors corresponds to our distinction between unstaged and staged type class constraints.

Several researchers have combined multi-stage programming and dependent types. Kawata and
Igarashi [2019] impose a stage discipline on type variables as on term variables, reflecting the
fact that checking types involves evaluating expressions. Pasalic [2004] defines a dependently-
typed multi-stage language Meta-D but doesn’t consider constraints or parametric polymorphism.
Concogqtion [Fogarty et al. 2007] extends MetaOCaml to support Coq terms within types; it is
based on the dependently-typed Ax [Pasalic et al. 2002], which is motivated by removing tags
in generated programs. Brady and Hammond [2006] combine dependent types and multi-stage
programming to turn a well-typed interpreter into a verified compiler, but do not consider either
parametric polymorphism or constraints.

We are not aware of any work that considers the implications of relevant implicit arguments
formally, but there is an informal characterization by Pickering et al. [2019], who also advocated
persisting dictionaries between stages, using the fact that dictionary values have top-level names.
Unfortunately, that scheme, based on extending the constraint solver to select dictionary representa-
tions using both type and level, does not readily extend to local constraints. An alternative approach
that the authors later considered, passing constraint derivation trees to allow local construction of
future-stage dictionaries, was judged to carry too much run-time overhead to be practical.

Formalising Template Haskell. Sheard and Jones [2002] give a brief description of Untyped
Template Haskell. The language is simply-typed and does not account for multiple levels. The
language has since diverged: untyped quotations are no longer typechecked before conversion

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:27

into their representation. Some aspects of their formalism, notably the Q monad which supports
reification of types and declarations, are more suited to the untyped metaprogramming than the
typed multi-stage programming we consider here. [Berger et al. 2017] give a more formal study
of a core calculus that models some aspects of Untyped Template Haskell, focusing on levels and
evaluation rather than these additional features.

Code generators often make use of effects such as let insertion or error reporting so it is useful
for to consider the interaction of quotation with effects. In GHC releases since 8.12, the type of
quotations is generalised [Pickering 2019] from Q (TExp a) to a minimal interface Vm.Quote m =
m (TExp a) giving users more control over which effects are allowed in code generators. We leave
formalising this extension to future work.

Modal Type Systems. Several type systems motivated by modal logics have modeled the interaction
of modal operators and polymorphism. Attention has turned recently to investigating dependent
modal type theories and the complex interaction of modal operators in such theories [Gratzer et al.
2020]. It seems likely that ideas from this research can give a formal account of the interaction of
the code modality [Davies and Pfenning 2001] and the parametric quantification from System F
which can also be regarded as a modality [Nuyts and Devriese 2018; Pfenning 2001].

10 CONCLUSION

We have proposed a resolution to a longstanding problem in Typed Template Haskell arising from
the interaction beteen two key features, code quotation and type classes. In our view, the mysterious
failures that can arise when writing large-scale multi-stage programs are one reason for the limited
adoption of Typed Template Haskell. Although it is used in a few developments (e.g. Pickering
et al. [2020]; Willis et al. [2020]; Yallop et al. [2018]), take-up is low, despite the many use cases for
type-safe optimizing code generators. We hope that the resolution of the shortcomings we have
described and the reasoning principles we have established will encourage broader adoption.
Although our work is inspired by Haskell, there is reason to believe that it has wider applications.
The recent release of Scala 3 added support for typed code quotations to the language [Stucki et al.
2018]. Preliminary experiments suggest that these quotations suffer from surprising interactions
with implicit arguments: implicit resolution within quotations sometimes fails mysteriously. Simi-
larly, it is anticipated that OCaml will soon acquire support both for typed code quotations [Yallop
and White 2015] and for implicit arguments [White et al. 2014]. We hope that our work will help
to guide the integration of these features and avoid problems with unsoundness from the outset.

ACKNOWLEDGMENTS

We thank Dimitrios Vytiniotis, and the anonymous reviewers for their insightful comments. The
work is partly supported by EPSRC Grant SCOPE: Scoped Contextual Programming with Effects
(EP/S028129/1) and Grant EXHIBIT: Expressive High-Level Languages for Bidirectional Transforma-
tions (EP/T008911/1).

REFERENCES

Martin Berger, Laurence Tratt, and Christian Urban. 2017. Modelling Homogeneous Generative Meta-Programming. In 31st
European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74), Peter
Miller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 5:1-5:23. https://doi.org/10.4230/LIPIcs. ECOOP.2017.5

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Quantified Class
Constraints. In Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell (Oxford, UK) (Haskell 2017).
Association for Computing Machinery, New York, NY, USA, 148-161. https://doi.org/10.1145/3122955.3122967

Edwin Brady and Kevin Hammond. 2006. A Verified Staged Interpreter is a Verified Compiler. In Proceedings of the 5th
International Conference on Generative Programming and Component Engineering (Portland, Oregon, USA) (GPCE 06).
Association for Computing Machinery, New York, NY, USA, 111-120. https://doi.org/10.1145/1173706.1173724

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

https://doi.org/10.4230/LIPIcs.ECOOP.2017.5
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/1173706.1173724

61:28 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Implementing multi-stage languages using ASTs,
Gensym, and reflection. In Proceedings of the 2nd international conference on Generative programming and component
engineering (Erfurt Germany) (GPCE03). Association for Computing Machinery, 57-76. https://doi.org/10.5555/954186.
954190

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. 2005. Associated Type Synonyms. SIGPLAN Not. 40, 9
(Sept. 2005), 241-253. https://doi.org/10.1145/1090189.1086397

Rowan Davies and Frank Pfenning. 2001. A Modal Analysis of Staged Computation. J. ACM 48, 3 (May 2001), 555-604.
https://doi.org/10.1145/382780.382785

Seth Fogarty, Emir Pasalic, Jeremy Siek, and Walid Taha. 2007. Concoqtion: Indexed Types Now!. In Proceedings of the 2007
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation (Nice, France) (PEPM °07).
Association for Computing Machinery, New York, NY, USA, 112-121. https://doi.org/10.1145/1244381.1244400

Daniel Gratzer, GA Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal Dependent Type Theory. (2020). In
submission.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip Wadler. 1996. Type Classes in Haskell. ACM Trans.
Program. Lang. Syst. 18, 2 (1996), 109-138. https://doi.org/10.1145/227699.227700

Yuichiro Hanada and Atsushi Igarashi. 2014. On Cross-Stage Persistence in Multi-Stage Programming. In Functional and Logic
Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings (Lecture Notes in
Computer Science, Vol. 8475), Michael Codish and Eijiro Sumii (Eds.). Springer, 103-118. https://doi.org/10.1007/978-3-
319-07151-0_7

M.P. Jones. 1993. Coherence for qualified types. Research Report YALEU/DCS/RR-989. Yale University, Dept. of Computer
Science.

Mark P. Jones. 1994. Qualified Types: Theory and Practice. Cambridge University Press.

Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Martin Odersky. 2014. Staged Parser Combinators
for Efficient Data Processing. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New
York, NY, USA, 637-653. https://doi.org/10.1145/2660193.2660241

Akira Kawata and Atsushi Igarashi. 2019. A Dependently Typed Multi-stage Calculus. In Asian Symposium on Programming
Languages and Systems. Springer, 53-72. https://doi.org/10.1007/978-3-030-34175-6_4

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml. In Functional and Logic Programming, Michael
Codish and Eijiro Sumii (Eds.). Springer International Publishing, Cham, 86-102. https://doi.org/10.1007/978-3-319-
07151-0_6

Oleg Kiselyov. 2017. Generating Code with Polymorphic let: A Ballad of Value Restriction, Copying and Sharing. Electronic
Proceedings in Theoretical Computer Science 241 (Feb 2017), 1-22. https://doi.org/10.4204/eptcs.241.1

Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo. 2016. Refined Environment Classifiers - Type- and Scope-Safe Code
Generation with Mutable Cells. In Programming Languages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi,
Vietnam, November 21-23, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 10017), Atsushi Igarashi (Ed.). 271-291.
https://doi.org/10.1007/978-3-319-47958-3_15

Yuichiro Kokaji and Yukiyoshi Kameyama. 2011. Polymorphic multi-stage language with control effects. In Asian Symposium
on Programming Languages and Systems. Springer, 105-120. https://doi.org/10.1007/978-3-642-25318-8 11

Neelakantan R. Krishnaswami and Jeremy Yallop. 2019. A Typed, Algebraic Approach to Parsing. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).
Association for Computing Machinery, New York, NY, USA, 379-393. https://doi.org/10.1145/3314221.3314625

Aleksandar Nanevski. 2002. Meta-Programming with Names and Necessity. (2002), 206-217. https://doi.org/10.1145/
581478.581498

Andreas Nuyts and Dominique Devriese. 2018. Degrees of Relatedness: A Unified Framework for Parametricity, Irrelevance,
Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). Association for Computing
Machinery, New York, NY, USA, 779-788. https://doi.org/10.1145/3209108.3209119

Junpei Oishi and Yukiyoshi Kameyama. 2017. Staging with control: type-safe multi-stage programming with control
operators. In Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences, GPCE 2017, Vancouver, BC, Canada, October 23-24, 2017, Matthew Flatt and Sebastian Erdweg (Eds.). ACM,
29-40. https://doi.org/10.1145/3136040.3136049

Emir Pagalic. 2004. The role of type equality in meta-programming. Ph.D. Dissertation. OGI School of Science & Engineering
at OHSU.

Emir Pasalic, Walid Taha, and Tim Sheard. 2002. Tagless Staged Interpreters for Typed Languages. In Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming (Pittsburgh, PA, USA) (ICFP °02). Association
for Computing Machinery, New York, NY, USA, 218-229. https://doi.org/10.1145/581478.581499

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

https://doi.org/10.5555/954186.954190
https://doi.org/10.5555/954186.954190
https://doi.org/10.1145/1090189.1086397
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/1244381.1244400
https://doi.org/10.1145/227699.227700
https://doi.org/10.1007/978-3-319-07151-0_7
https://doi.org/10.1007/978-3-319-07151-0_7
https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1007/978-3-030-34175-6_4
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.4204/eptcs.241.1
https://doi.org/10.1007/978-3-319-47958-3_15
https://doi.org/10.1007/978-3-642-25318-8_11
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1145/581478.581498
https://doi.org/10.1145/581478.581498
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3136040.3136049
https://doi.org/10.1145/581478.581499

Staging with Class 61:29

Simon Peyton Jones, Mark Jones, and Erik Meijer. 1997. Type classes: an exploration of the design space. In Haskell Workshop.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. 2006. Simple Unification-based Type
Inference for GADTs. In Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional Programming
(Portland, Oregon, USA) (ICFP *06). ACM, New York, NY, USA, 50-61. https://doi.org/10.1145/1159803.1159811

Frank Pfenning. 2001. Intensionality, extensionality, and proof irrelevance in modal type theory. In Proceedings 16th Annual
IEEE Symposium on Logic in Computer Science. IEEE, 221-230.

Matthew Pickering. 2019. Overloaded Quotations. GHC proposal. https://github.com/ghc-proposals/ghc-proposals/blob/
master/proposals/0246-overloaded-bracket.rst

Matthew Pickering, Andres Loh, and Nicolas Wu. 2020. Staged sums of products. In Proceedings of the 13th ACM SIGPLAN
International Symposium on Haskell, Haskell @ICFP 2020, Virtual Event, USA, August 7, 2020, Tom Schrijvers (Ed.). ACM,
122-135. https://doi.org/10.1145/3406088.3409021

Matthew Pickering, Nicolas Wu, and Csongor Kiss. 2019. Multi-Stage Programs in Context. In Proceedings of the 12th ACM
SIGPLAN International Symposium on Haskell (Berlin, Germany) (Haskell 2019). Association for Computing Machinery,
New York, NY, USA, 71-84. https://doi.org/10.1145/3331545.3342597

Gabriel Radanne. 2017. Tierless Web programming in ML. (Programmation Web sans-étages en ML). Ph.D. Dissertation. Paris
Diderot University, France. https://tel.archives-ouvertes.fr/tel-01788885

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code Generation
and Compiled DSLs. In Proceedings of the Ninth International Conference on Generative Programming and Component
Engineering (Eindhoven, The Netherlands) (GPCE ’10). ACM, New York, NY, USA, 127-136. https://doi.org/10.1145/
1868294.1868314

Evgeny Roubinchtein. 2015. IR-MetaOCaml: (re)implementing MetaOCaml. Master’s thesis. University of British Columbia.
https://doi.org/10.14288/1.0166800

Philipp Schuster, Jonathan Immanuel Brachthauser, and Klaus Ostermann. 2020. Zero-cost Effect Handlers by Staging.
(2020). In submission.

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A Quick Look at Impredicativity.
Proc. ACM Program. Lang. 4, ICFP, Article 89 (Aug. 2020), 29 pages. https://doi.org/10.1145/3408971

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for Haskell. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02). ACM, New York, NY, USA, 1-16. https://doi.org/
10.1145/581690.581691

Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A Practical Unification of Multi-Stage Programming and
Macros. In Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences (Boston, MA, USA) (GPCE 2018). Association for Computing Machinery, New York, NY, USA, 14-27. https:
//doi.org/10.1145/3278122.3278139

Walid Taha and Tim Sheard. 1997. Multi-stage Programming with Explicit Annotations. In Proceedings of the 1997 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation (Amsterdam, The Netherlands)
(PEPM °97). ACM, New York, NY, USA, 203-217. https://doi.org/10.1145/258993.259019

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming with explicit annotations. Theor. Comput. Sci. 248,
1-2 (2000), 211-242. https://doi.org/10.1016/S0304-3975(00)00053-0

Walid Taha, Tim Sheard, et al. 1998. Multi-stage programming: Axiomatization and type safety. In International Colloquium
on Automata, Languages, and Programming. Springer, 918—929.

Walid Mohamed Taha. 1999. Multistage programming: its theory and applications. Oregon Graduate Institute of Science and
Technology.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X) Modular Type Inference
with Local Assumptions. J. Funct. Program. 21, 4-5 (Sept. 2011), 333-412. https://doi.org/10.1017/S0956796811000098

Phillip Wadler and Stephen Blott. 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc. In Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL °89). ACM, New York,
NY, USA, 60-76. https://doi.org/10.1145/75277.75283

Stefan Wehr and Manuel M. T. Chakravarty. 2008. ML Modules and Haskell Type Classes: A Constructive Comparison. In
Programming Languages and Systems, 6th Asian Symposium, APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings
(Lecture Notes in Computer Science, Vol. 5356), G. Ramalingam (Ed.). Springer, 188-204. https://doi.org/10.1007/978-3-540-
89330-1_14

Leo White, Frédéric Bour, and Jeremy Yallop. 2014. Modular implicits. In Proceedings ML Family/OCaml Users and Developers
workshops, ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014 (EPTCS, Vol. 198), Oleg Kiselyov and Jacques
Garrigue (Eds.). 22-63. https://doi.org/10.4204/EPTCS.198.2

Jamie Willis, Nicolas Wu, and Matthew Pickering. 2020. Staged selective parser combinators. Proc. ACM Program. Lang. 4,
ICFP (2020), 120:1-120:30. https://doi.org/10.1145/3409002

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

https://doi.org/10.1145/1159803.1159811
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0246-overloaded-bracket.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0246-overloaded-bracket.rst
https://doi.org/10.1145/3406088.3409021
https://doi.org/10.1145/3331545.3342597
https://tel.archives-ouvertes.fr/tel-01788885
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.14288/1.0166800
https://doi.org/10.1145/3408971
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/258993.259019
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/75277.75283
https://doi.org/10.1007/978-3-540-89330-1_14
https://doi.org/10.1007/978-3-540-89330-1_14
https://doi.org/10.4204/EPTCS.198.2
https://doi.org/10.1145/3409002

61:30 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

Jeremy Yallop. 2017. Staged Generic Programming. Proc. ACM Program. Lang. 1, ICFP, Article 29 (Aug. 2017), 29 pages.
https://doi.org/10.1145/3110273

Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially-Static Data as Free Extension of Algebras. Proc. ACM
Program. Lang. 2, ICFP, Article 100 (July 2018), 30 pages. https://doi.org/10.1145/3236795

Jeremy Yallop and Leo White. 2015. Modular Macros. OCaml Users and Developers Workshop.

A APPENDIX OVERVIEW

Appendix B presents the code examples used for testing in §7. Appendix C includes a preliminary
experiment with Scala.

Appendix D include those omitted rules from the main paper.

The rest sections are for proofs. Appendix E proves type soundness of FII, and Appendix F
proves elaboration soundness from A[=1 to FII.

Appendix G gives an overview of the axiomatic semantics, and Appendix H includes the list of
lemmas and Appendix I presents the proofs.

The correspondence between lemmas in the paper and proofs in the appendix are given below.

Lemmas in the paper Lemmas in the appendix

Theorem 4.2 Theorem E.1
Theorem 4.3 Theorem E.2
Lemma 5.2 Lemma 5.2
Lemma 5.3 Lemma 5.3
Lemma 5.4 Theorem F.4
Theorem 5.5 Theorem F.4
Lemma 6.4 Lemma H.4
Theorem 6.5 Theorem H.5

B CODE EXAMPLES IN TYPED TEMPLATE HASKELL

The Haskell code used for tests in §7 is given below. Path-based cross-stage persistence is modeled
in our calculi using top-level definitions, and is implemented in GHC using the module restriction,
which dictates that only identifiers bound in other modules can be used inside top-level splices.
Therefore, the examples are based on two modules: Toplevel and Examples.

-- Toplevel.hs
-- Separated compiled because of module restrictions.
{-# LANGUAGE TemplateHaskell #-}

module Toplevel where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax

data C = C

printl :: (Quote m, Show a) = Code m (a — String)
[|| show |[|]

printl

printInt :: (Quote m) = Code m (Int — String)
printInt = [|| show ||]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

https://doi.org/10.1145/3110273
https://doi.org/10.1145/3236795

Staging with Class 61:31

readInt :: (Quote m) = Code m (String — Int)
readInt = []|| read ||]

trim :: Quote m = Code m (String — String)
trim = [|| $$(printInt) . $$(readInt) ||]

gnpower :: (Quote m, Num a) = Int » Code m a — Code m a
gnpower @ agn = [|| 1|1
gnpower k gn = []| ($3(gn) * $$(gnpower (k - 1) an)) ||]

class MyShow a where
myshow :: a — String

instance Show a = MyShow [a] where
myshow = show

printListInt :: (Quote m) = Code m ([Int] — String)
printListInt = [|| myshow ||]

-- Examples.hs
{-# LANGUAGE TemplateHaskell, FlexibleInstances, FlexibleContexts #-}

module Examples where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax
import Toplevel

-- rejected:

-- No instance for (Show a) arising from a use of 'printl'
-- In the expression: printi

splicePolyPrintl :: Show a = a — String

splicePolyPrintl = $$(print1)

-- Monomorphic splice is OK
spliceMonoPrint1 :: Int — String
spliceMonoPrint1 = $$(print1)

-- rejected:

-- No instance for (Lift C) arising from a use of 'liftTyped'
topLift :: Lift C = C

topLift = $$(1liftTyped C)

-- rejected:

-- No instance for (Show a) arising from a use of 'show'
cancel :: Show a = a — String

cancel = $$([|| show 1)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:32 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

-- rejected:

-- Ambiguous type variable 'b@' arising from a use of 'show'
-= prevents the constraint '(Show b@)' from being solved.
strim :: String

strim = ($$(trim) "123")

-- The module Toplevel defines an instance for MyShow [a] using normal show.
-- This example is to show the inconsistent behavior when the splicing site and
-- the definition site has given different instances.
instance {-# OVERLAPPING #-} MyShow [Int] where
myshow _ = "hello"
usePrintListInt :: String
usePrintListInt = $$(printListInt) [1,2,3] -- "hello"

-- rejected:

-- No instance for (Num a) arising from a use of 'gnpower'
-- In the expression: gnpower 5 ([|| n [|1)

gnpower5 :: Num a = a — a

gnpower5 n = $$(gnpower 5 ([|| n ||1)) -- Error!

C PRELIMINARY EXPERIMENTS IN SCALA

We have tested examples with implicits in Scala3. While implicits are rather different to type classes,
we observe similar difficult-to-explain behaviors of interaction between implicits and staging.
Specifically, we discuss our attempts to define the power example introduced in the introduction.
Scala does a good job rejecting the directly translated power example. As we can see below, the
implicit argument is introduced explicitly as a binding, so Scala can identify the ill-stagedness.

import scala.quoted.*

import math.Numeric.Implicits.infixNumericOps

// rejected:
// case k => "{ ${cn} * ${power (k - 1, cn) } }

// A

// access to parameter num from wrong staging level:
// - the definition is at level 0,

// - but the access is at level 1.

def power [A] (using Quotes) (x : Int, cn : Expr[Al)(implicit num: Numeric[A],
t:Type[A]l) : Expr[A] =
x match
case 0 => '{ num.fromInt(1) }
case k => "{ ${cn} * ${power (k - 1, cn) } }

We then tried different ways to move the parameter at level 1. Scala is not happy about the
following definition. In this case, Scala complains about a type mismatch between quotations, while
the implicit num is bound in a well-staged manner.

// rejected:
// Found: quoted.Expr[(Numeric[A]) ?=> A]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:33

// Required: quoted.Expr[A]
import scala.quoted.*
import math.Numeric.Implicits.infixNumericOps

def power [A] (using Quotes) (x : Int, cn : Expr[A]) (implicit t:Type[A]) :
Expr[Numeric[A] => A] =
’{ implicit num : Numeric[A] =>
${x match
case 0 => '{ num.fromInt(1) }
case k => "{ ${cn} * ${power (k - 1, cn) } } }}

Surprisingly, Scala accepts the code if the implicit argument is supplied explicitly.

// accepted
def power[A: Typel(using Quotes)(x: Int, cn: Expr[A]): Expr[Numeric[A] ?=> A] =
x match
case @ => ’'{ Numeric[A].fromInt(1) }
case k => "{ ${cn} x ${power(k - 1, cn)}(using Numeric[A]) }
// OR
// case k => "{ num ?=> ${cn} * ${power(k - 1, cn)}(using num) }

Our preliminary conclusion is that like Typed Template Haskell, the interaction between quota-
tion and overloading haven’t been fully worked out in Scala, either. More systematic investigations
are needed to identify the exact problem and possible solutions.

D COMPLETE RULES

This section contains the omitted rules for A1=1 and FII.

D.1 Complete Rules for A[=]

program context © = e |0, k:0|0, ev: Vﬁii.aj =C
context r o |T,x:(r,n) | T,a|T,(Cn)

D.1.1 Elaborating Contexts.

T~ A (Elaborating Contexts)
S-CTX-VAR S-CTX-TVAR
S-CTX-EMPTY I~ A F'rr~ 1 I~ A
PRSP [x:(r,n)~ Ax:(7/,n) ILa~ Aa
S-CTX-EV

'~ A TrC~ 1
I, ev:(C,n)~ Aeov:(r,n)

0~ 0 (Elaborating Program Contexts)
$-PCTX-EV ‘

S-PCTX-EMPTY SépiigiAR ot I OE e~ 0 Eiil_cj'\’) & : @G'rCrot

— O.k:io~>Ok:t 0. eviVa' () = Co @ ev:T -1

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:34 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

D.1.2 Elaborating Programs.

OF pgm: o~ pgm (Typing programs)
S-PGM-DEF
pgmy; ©1+ D 40, ~ pgm, O, pgm: o ~> pgm,
O, + def D; pgm : o ~ pgm,
S-PGM-CLS
pgmy; ©1 + C 40y ~> pgm, Oy F pgm: 0~ pgmy
©4 + classC; pgm : 0~ pgm,
$-PGM-INST
pgmy; ©1 + 1 40, ~ pgm, Oy + pgm: o ~> pgm,
O +instT;pgm: o~ pgm,
S-PGM-EXPR
Qe ec:0~e|d eto~>T e:TF)~ pgm
OFre:o~ pgm
pgmy; ©1 F D 40, ~ pgm, (Typing definitions)
S-DEF
Q;elec:0~el|d oo~ T defk:7=e;pgm, F' ¢ ~> pgm,
pgm;; O+ k=e40,k: 0~ pgm,
pgmy; ©1 +C 40, ~ pgm, (Typing class definitions)

S-CLS
arp~>T

pgm; © F TC awhere{k: p} 410,k:VYaTCa= p ~ def k:Var — 7= Aa.lx: z.x;pgm

pgmy; ©1 + 1 410, ~ pgm,

(Typing instance definitions)

S-INST
TC awhere {k : p}
E-jzftv(r) Fjji—Ci'\»r,-l @;Ej,milge:p[aHr]Me|qﬁl
etplaml~r Freshen g+ (5 eor (50)) ~ oy
defev: VEj.Ei —T= AEj.)Lmi e;pgmy Ky~ pgmy fresh ev

pgmy; O a-i = TCrtwhere{k=e} 410, ev: ngj.a-i = TC 1~ pgm,

D.2 Complete Rules for FlI

context C OlAx:7.C|Ce|eC|AaC|Crz|[C]y | [e]

splice context S = H, A s:7=C|SAs:r=¢

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:35

D.2.1 Axiomatic equivalence.

Axioms
leils szt g, =ax lerls = el g6, where §++A~> ¢’
[[S]]-F”S:r:c =ax €
(Ax:T.e1) ep =ax e1[x > eg]
(Aa.e)t =u ela 1]

€1 =ax €2 is the axiomatic equivalence relation between F Il expressions that is the contextual
and equivalence closure of the axioms.

(Axiomatic equality)

EQ-SYMM EQ-TRANS EQ-CTX
EQ-REFL _ — _ — —
Q €1 =ax €2 €1 =ax €2 €2 =ax €3 €1 =ax €2 Ci =ax Gy
€ =gx € €2 =ax €1 €1 =ax €3 Cile1] =ax Cale2]

pPEM, =qx PEM, is the axiomatic equivalence relation between F [I programs.

pPEM =ax PgM, (Axiomatic equality)
PEQ-DEF
€1 =ax €2 PEMy Zax PEM,
def k:7=ey;;pgm, =4 def k: 7 =ey;pgm,
PEQ-SPDEF PEQ-EXPR
€1 =ax €2 pPEMy =ax PEM, €1 =ax €2
spdef A ' s : 7= ey;pgm; =qx spdef A ' s 7 = ey; pgm, €1:7T =qx €2: T

PEQ-SPDEF-AX
OHA~ <f'>/

spdef A 1" s : 7 = [e]4; pgm =ax spdef ¢; pgm[s — e]

E PROOFS FOR TYPE SOUNDNESS OF FlI

E.1 Progress

Theorem E.1 (Progress).
(1) Ifo; A ¥ e : 7, where A > n, then either e is a value, ore —> e’ for some e’.
(2) If o; A ¥ b, where A > n, then either ¢ is ¢, or —> ¢’ for some ¢'.
(3) If e + D 4 O, then either D isk : T =v, or D —> D’ for some D’.
(4) If o+ S 40O, then either S is A " s : 7 = [e] , or§ — S’ for some S’.
(5) If ® pgm, then either pgm isv : 7, or pgm — pgm’ for some pgm’.

Proor. By induction on typing.

Part 1 e Case rule c-LIT. i is a value.
o Case rule c-var. Impossible case, since A has no level-n items.
e Case rule c-xvaR. Impossible case, since the program environment is e.
e Case rule c-svar. Impossible case, since A has no level-n items.
o Case rule c-ToP-svAR. Impossible case, since the program environment is .
o Case rule c-aBs. The expression Ax : r.e is a value.
. g_%s}’% rule c-App.

@;an€11T1—>T2 @;rl—negtﬁ

o;T L e ey : Ty

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:36

Part 2

Part 3

Part 4

Part 5

Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

By LH., we have either e, is a value, or e; — e] for some e].
— e is a value. Then we know that e; must be Ax : 7.e for some e. So by rule CE-BETA we
have (Ax : 7.e) e; — e[x > ey].
- e; — e]. By rule cE-APP we have e; e; — e] e;.
o Case rule c-TaBs. The expression Aa.e is a value.

e Case rule c-TAPP.
C-TAPP

O:T¥e:Varn
O;THer :nla 1]
By LH., we have either e is a value, or e — ¢’ for some e’.
— e is a value. We know that e must be Aa.e; for some e. So by rule CE-TBETA
— e — ¢’. By rule ce-tarp we have e 1y — €’ 13.
e Case rule c-QUOTE.

C-QUOTE
O:ry O et
;T 1 [e] s : Coder

By Part 2, we know that either ¢ is ¢, or ¢ —> ¢’ for some ¢’. In the first case, the

expression [e], is a value. In the second case, by rule cE-QuOTE we have [e] ; — [e] .
e Case rule C-s-EMPTY. @ is ¢,
. g%ggorgsle C-S-CONS.

O;T+ ¢ O;T, A e:Coder A>n

O;TH, (A s:T=0¢)
By LH., we know either ¢ is some ¢,, or) — ¢’. In the first case, by Part 1, we know that
either eis avalue, ore — e’ for some e. If e is a value, we know that ¢,, A V' s : 7 = e is some
¢,". If e reduces, then by rule ce-s-TAIL we have ¢,, A ' s:7=¢e —> ¢, A s:7=¢.
In the second case, by rule CE-s-HEAD we have ¢, A ' s : 7 =¢ —> ¢', A s: 7 =e.
We have
C-DEF

Qe e:1
Ork:t=e403,k:7
By Part 1, we know that e is either a value, or e — ¢’. In the first case, we have proved the

goal. In the second case, by rule CE-DEF we have k: 7 =e — k: 7 =¢".
We have

C-SPDEF
;A e:Coder A>n
OrAHs:r=¢e40,s: (A 1,n+1)
By Part 1, we know that e is either a value, or e — ¢’. In the first case, since e is of type Code 7,
we know that e must be [e’]; , which proves the goal. In the second case, by rule CE-sPDEF
wehave AV s:r=¢e— A s:7=¢.

e Case rule c-PGM-DEF.
C-PGM-DEF

®1|'1)-|®2 @gl—pgm
O + def D; pgm
By Part 3, we know that either D is k : 7 = v, or D — D’. In the first case, by rule ce-rcm-
DBETA we have def k : 7 = v; pgm — pgm[k — v]. In the second case, by rule CE-PGM-DEF
we have def D; pgm — def D’; pgm.
e Case rule c-PGM-SPDEF.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:37

C-PGM-SPDEF

O, +SH40, O, + pgm

O + spdef S; pgm
By Part 4, we know that either Sis A " s : 7 = [¢]y , or & — S’. In the first case, by
rule CE-PGM-SPBETA we have spdef A " s : 7 =[], ; pgm — pgm[s — [¢,]e]. In the
second case, by rule cE-PGM-SPDEF we have spdef S; pgm — spdef S’; pgm.

e Case rule c-PGM-EXPR.
C-PGM-EXPR

Qe e:r
Ore:1

By Part 1, we know that either e is a value, or e — ¢’. In the first case, we have e : 7 which
proves the goal. In the second case, by rule CE-PGM-EXPR we havee : 7 — €’ : 7.

]

E.2 Preservation
Theorem E.2 (Preservation).
(1) Ifo; A e:1,ande — €, then©; A ¢’ : 1.
) IfO;A ¥ ¢, and p —> ', then ©;A ¥ ', and o7 = ¢'".
(3) I_f@l FDA @2, and D — D’, then @1 FD A @2.
4) If©1+S402,and S — S’, then©; + §” 4 O.
5 F pgm, an m— pgm’, then® + pgm’.
(5) If© F pgm, and pg pgm’, then © v pgm’
Proor. By induction on typing.
Part 1 e Case
CE-APP
e1 — e

e1e; — ej e

;A ee:1 given
O; A ¥ e : 17 — 15 | inversion (rule c-aApp)
;A e :1
;AP el 1y = 1, | LH
;A ele; 1y rule c-app
e Case

CE-BETA

(Ax : 1.e1) e — ey [x — €3]

;A (Ax:1.e1)ey: 1y given
;A Ax :1.ey : Ty — T, | inversion (rule c-APp)
;AW e 1

O; A, x: (r,n) e 1y inversion (rule c-ABs)
;A e [x> e by substitution
e Case
CE-TAPP
e—e

er—e'T

;A er i pla 1q] ‘ given

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:38 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

;A e :Var, inversion (rule c-TAPP)
O;A ¥ el :Var LH.
O;A ¥ el 1y : [a > 1] | rule c-TAPP

e Case
CE-TBETA

(Aa.e)t — e[a> 1]

O;A ¥ (Aae)T:1[ar 1] | given
O;A ¥ Aa.e :Var inversion (rule c-TAPP)
O;Aafe:1 inversion (rule c-TABS)
O;A ¥ e[a 7] : 11[a > 7] | by substitution
e Case
CE-QUOTE
b—

[ely — lels

O;A " [e]s: 7 | given

;A ¢ inversion (rule c-QUOTE)
O;A ¢F e T

O;A ¥ ¢’ Part 2

ol =o't Part 2

©;A ¥ [e]y: 7 | rule c-QuoTE

Part 2 e Case
CE-S-HEAD

o — (f)'

’
G A s:T=e— ¢ AP s:r=¢

A PP, AN s T=e | given

;A1 ¥ inversion (rule c-s-CONSs)
A>n

O;I' " e:Coder

O;A; ¥ ¢’ LH.

O;A; P ¢/, AV s:7=e¢ | rule c-s-CONS

e Case
CE-S-TAIL

e— e

AP s:T=e— ¢, AP s:r=¢

A PP, AN s T=e | given

;A1 ¥ inversion (rule c-s-CONSs)
A>n

O;I' " e:Coder

O;T e :Coder Part 1

;A1 P p, AN s 7 =¢" | rule c-s-cons

Part 3 Case

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:39

CE-DEF
e— e

kit=e—k:7=¢

O1+k:T=e40,k:7 | given
Qe e:r inversion (rule c-DEF)
Opele i1 Part 1

O;rk:7=¢€" 40y, k: 7| rule c-DEF

Part 4 Case
CE-SPDEF

e— e

Alls:t=e— AHs:7=¢

O1+F(A¥s:t=¢)40q,s: (A,r,n+1) | given

A>n inversion (rule c-SPDEF)
O;;A e:Coder
O;AH e :Coder Part 1

O+ (AP s:7=¢")40y,s: (A, 7,n+1) | rule cC-SPDEF

Part 5 e Case
CE-PGM-DEF

D— D
def D; pgm —> def D'; pgm

O + def D; pgm | given

0:+-D 40, inversion (rule c-PGM-DEF)
O, + pgm
@1 FD' A @2 Part 3

O + def D’; pgm | rule c-PGM-DEF

e Case
CE-PGM-DBETA

defk:7=0;pgm — pgmlk — v]

O +defk:7=0;pgm | given
O +k:7=040yk: 7 | inversion (rule c-PGM-DEF), rule C-DEF

Opel0:T inversion (rule c-DEF)
O, k: 7+ pgm
O1 + pgm[k — v] by substitution

o Case

CE-PGM-SPDEF

S— 8
spdef S; pgm —> spdef S’; pgm

©; + spdef S; pgm | given

0:+FS 40, inversion (rule c-PGM-SPDEF)
O, + pgm
0, FS’ 40, Part 4

O, + spdef S’; pgm | rule c-PGM-SPDEF

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:40 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

e Case
CE-PGM-SPBETA
spdef A V' s 7= [e]y ; pgm — pgm[s = ([$.]e)]
Op +spdef A ¥ s : 7 =05 pgm given
O F (A s:t=]ely)40ys: (A r,n+1) | inversion (rule c-PGM-SPDEF), rule C-SPDEF
O1; A ¥ [e],, : Coder inversion (rule c-sPDEF)
AP [ple: T by substitution
O1,5: (A,r,n+1) F pgm
O1 + pgm[s — [¢P,]e] by substitution
e Case

CE-PGM-EXPR
e — ¢

e:tr—e i1
OiFe:r given
©1;0 ¥ e: 7 | inversion (rule c-PGM-EXPR)

Op;00 ¢’ : 7 | Part 1
Ore 7T rule C-PGM-EXPR

F PROOFS FOR ELABORATION
Definition F.1 (4" and ¢°).

.r = L] .6

(A s r=e) = ¢fs:(Arn+1) (), A s:7=e)®

[]
¢ s (Ar,n+1)

Lemma 5.2 (Level Correctness of ¢). If ;T ¥ e: 7 ~> e | ¢, then p < n.

Proor. By induction on typing. Most cases follow straightforwardly from LH., the only two

interesting cases are:
e Case
S-QUOTE
O;rle:r~elo

;T ¥ [e] : Coder ~ [e] s, | 41"

¢p<n+1|LH
|¢|" < n | by definition

e Case
S-SPLICE
;T 'e:Coder~e|d Trr~>7 freshs
OTH$e:r~>s|d, (o s =¢)
p<n-—1 LH.
p<n follows

¢, (e 157" =€) < n | by definition

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:41

The cases for constraint solving are exactly the same.
|

Lemma 5.3 (Context Injection). If©; Ay, Ay F ¢y, and ¢, < Ay, and o+ Ay ~> ¢, then ©; Ay + .

Proor. By induction on ¢.
¢ = o. Then ®; A; + e by rule c-s-EMPTY.

[]
e p=¢,A¥s:T=e

(P A s:T=e)+H Ay~ gy, (A, A s T =¢) | given

Oy +H Ay~ P, inversion (rule s-INJ-CONS)
O; A, ApF P, A st =e given

O; A1, Az + ¢y inversion (rule c-s-coNs)
A>n above

O;A, Ay, A e:Coder above

O; A+ LH.

Ay > ¢ given

Ay, A>n follows

O; A1+ Py, (A, AV s T =¢) rule c-s-coNs

O
Lemma F.2 (g’)r to 9’)6). If e, <,’>r,1“ ' e : 7, then O, g’)g;l“ £ e : . Similarly, if ©; g’)r,l" F ¢, then
0,9 T F ¢

Proor. by induction on typing. Most cases are straightforward. The only interesting case is
C-SVAR

s:(A,,n) €T ACT
O;T¥s:tT
If s € ¢, then it is now moved to ©, q’)@, and we can apply rule c-TOP-sVAR; or otherwise we can
still apply rule c-svar.
The left requirement is to show from A C g”)r, I' that A C T'. The observation here is that since A
does not have any splice variables, so removing ¢ does not affect the subset requirement.

]

Lemma F.3 (g’)r moves to left). If ©;13, A, (/)r, L *e:r,andA > ¢, and ¢ ++A ~ ¢ then
G;Fl,(/J)’r,A, I, ¥ e : 7. Similarly, if ©;17, A, <,’>F, L b ¢, and A > ¢, and ¢ ++A ~> ', then
T, ¢ AT+ ¢

Proor. By induction on typing. Most cases are straightforward. The only interesting cases are
the cases for splice variables. Most importantly, we need to show that the subset constraint A C T
in rules c-svAR and c-TOP-sVAR is still satisifed in the modified context.

The observation here is that since A does not have splice variables, so moving ¢! does not affect
the subset requirement.

]

Theorem F.4 (Elaboration Soundness).
(1) Ife;TPe:t~e|d,and® ~ O, andl ~ A, then ;A + .

(2) Ife; T l——"C'\»e|gﬁ,and@«»@),andl“'\»A,then@;Al—g’).Ifl“FC'\»r,then@;A,qﬁr H
e:T.
(3) If@;I‘I—"e:T«»e|g’),and@f\»@,andl"'\»A,andFl—T«»T,then@;A,(f)F He:r.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:42 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

(4) If pgmy; ©1 F D 4 O, ~ pgm, , and ©1 ~ O , and Oy ~ O, , and O, + pgm,, then
O1 F pgm,.

(5) If pgm;; ©; + C 4 Oy~ pgm, , and ©1 ~> O, and O, ~> Oy , and O, + pgm,, then
O + pgm,.

(6) If pgmy; ©1 + I 4 Oy~ pgm, , and ©1 ~ Oy, and O, ~> Oy , and O, + pgm,, then
O1 F pgm,. .

(7) If pgm, ¥ ¢ ~> pgm,, and ¢ < n, and ©;e \ ¢, and ©, ¢ pgm,, then © + pgm,.

8) IfOF pgm:0 ~ pgm,and©® ~ O , then® + pgm.

Proor. By induction on typing.

Part 1 e Case rule s-L1T. Follows trivially from rule c-s-EmPTY.
e Case rule s-vAR. Follows trivially from rule c-s-EmpTY.
o Case rule s-kvAR. Follows trivially from rule c-s-EmpTY.

e Case
S-ABS

OLx:(t,n)Fe:~>el|d; F'r1 o~ 1 ¢y +Hx: (7,n) ~> P,

. n . . o = 1
O T Ax: ey =~ Ax: e |,

O;A, x: (1),n) F ¢y LH.

¢ <n Lemma 5.2
¢y +x:(1,n) ~ ¢, | given
O;A+ ¢, Lemma 5.3
e Case
S-APP
OTHe:nn >n~e | O;THe: 1~ e,

n
;T eer:m~eel|d,d,

O;A+ ¢, LH.
;A + ¢, LH.

A+ ¢y,
e Case
S-TABS
@;F,ak"e:a«»e|g§1 by Ha~ o,
O;T ¥ e:Va.o~ Aae| ¢,
O;A ar ¢, LH.
¢y <n Lemma 5.2
¢y +Ha~ §, | given
O;A+ ¢, Lemma 5.3
e Case
S-TAPP
;T e:Vaoc~eld T'rz~o 1
O;THe:clamr]~er |
O;AF¢ | LH.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:43

e Case
S-QUOTE

Tl e:r~el|d

©;T ¥ [e] : Coder ~> [e],, | 141"

OAF§ LH.

;A [4]"
e Case
S-SPLICE
;TP le:Coder~e|d Trr~1 freshs
OTHSe:r~s|d (o s 0 =0
AF P LH.
;A 1e:Coder’ Part 3
O;AF ¢, (e ! 57" =¢) | rule c-s-cONs
o Case
S-CABS
O ev: (Cn)Fe:p~elq
rr+C~r $y+rev: (t,n) ~ d, fresh ev

OTHe:C=p~> lev:te|

O;A,ev: (1,n) F ¢y LH.

$;<n Lemma 5.2
¢, +Hev:(1y,n) ~ §, | given
;A ¢, Lemma 5.3
e Case
S-CAPP

OTfe:C=p~e | O;THF C~ e,

;T He:pr~ere| o,

O;AF ¢y LH.
O;A+ ¢, Part 2
O;AF ¢y, P,

Part 2 e Case
S-SOLVE-GLOBAL

ev:Va.ai=>C€® Trr~> 1 ;T P Cilar 1] ~ e | §;

O;TE Clar 1] ~ evr'g ' | c,Tl

1

O;AF), LH.
F'rCi~ 1 let
I'tCr let
ev: Va.a-l =Ce0 given

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:44 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

i .
ev:VaTr' — 1" rule C-KVAR
i

—

O; A, ¢,

—
O; A, gs’)ir e :r[a '] LH.

L '
0O; A, (,Sir Hevt'e ' : 7 [a 1'] | rules c-TaPP and c-APP

e Case
S-SOLVE-LOCAL
ev: (C,n)el
OTH C~ev|e
O;Ar e rule c-s-EMPTY
'rrC~r let

ev: (C,n) €T | given
;A ev:T rule c-VAR

o Case
$-SOLVE-DECR
O;THE*" Cel g
©;T F CodeCC ~ [e], . | 14"
O;THle:r~el|d given
Q; A, g’)r e r ILH.
O;AF ¢ LH.
O;AF | ¢]" follows
;A p.n follows
O:A, (|4 pon weakening
p<n+1 Lemma 5.2
d=¢.n|p|" follows
;A (¢ ¥ [e] s : Coder | rule c-uoTE

e Case
S-SOLVE-INCR

O;T ! CodeCC~e| ¢ TrC~ 1 fresh s

OTHEH C~s|d, (o s:r=¢)
O; A, q’)r,s (e, r,n) st ‘ rule c-sVAR

Part 3 e Case for rule s-L1T follows directly from rule c-L1T.

e Case
S-VAR

x:(r,n) €T

T x:t~x|e
x:(r,n) € T | given

x:(7’,n) € A | follows
A x: T’ rule c-vAR

e Case

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:45

S-KVAR

k:oce®
T k:c~k|e

k:o € ® | given
k:t€0© follows
O;A ¥ k: 7| rule c-kvar
e Case
S-ABS
O;I,x:(r,n)Fe:mp~> el Tk1 o~ ¢y +Hx: (7,n) ~> O,

OTH Ax:ne:ry >~ Ax:g.e | ¢,

O;Ix:(r,n)Pe:p~e|d; | given

;A x: (t),n), ¢, Me:1 LH.
Q; A, g’)lr, x:(r,n)Pe:r, context reorder
. SN S no, ..’ :
Q; A, g)zr, x:(r,n)Pe:1, strengthening
O;A ¢, P Ax:T]e:T > 1, rule c-ABs
e Case
S-APP
OTe:mm >~ e | O T e:m~ el

n
;T Fejey:my~eres| ¢y,

O;T¥e :1y > 12~ e | ¢, |given
Q; A, g’)lr He i1 —1, LH.
Q; A, g’)lr,gﬁzr He 1) — 1, weakening
O;THe:1~ e, given
Q; A, g’)zr M oey T, LH.
0; A, gﬁlr, (lbzr ¥ ey : 1) weakening
0; A, (¢4, (;’)Z)r Heley:, rule c-App
o Case
S-TABS
O;T,ale:o0~e| b+ a~> o,

O;T ¥ e:Va.o~ Aae| ¢,

O;T,ae:o~e| ¢, |given
O;Aad, Pe:r LH.
Q; A, gﬁzr, atle: 1 Lemma F.3
Q; A, 952r ' Aa.e :Va.r rule c-TABS
o Case
S-TAPP
;T e:Yao~eld Tt~

O;THe:clar]~er |

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:46 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

O;THe:Yao~e|d given
O;A, ¢ e :Var LH.
Q; A, (/)r Het:1[ar 7] | rule c-tapp
o Case
S-QUOTE
T Ml e:r~el|d
O;T ¥ [e] : Coder ~> [e]l s, | [£]"
;T e:r~eld given
;A ¢TIl T LH.
O;AF P Part 1
;A p.n follows
O;A, (oM v g weakening
p<n+1 Lemma 5.2
¢ =¢.n|p]" follows
O;A, (| g]MF [e]s.n : Coder | rule c-QuoTE

e Case
S-SPLICE

;T le:Coder~e|¢d Trr~s1 freshs

OTHSe:r~s|d (o st/ =0
Q; A, g’)r,s (e, 7/,n) s ‘ rule c-svARr

e Case
S-CABS

O ev: (Cn)Fe:p~elq

T'rC~r $y+rev: (T,n) ~ ¢, fresh ev

OTHe:C=p~ lev:te|

O; A ev: (1, 71),(/>1r He:r LH.
Q; A, (,s’)zr,ev (oon) et Lemma F.3
0; A, (,s’)zr ' dev : 1.e: 7 — 7’ | rule c-ABS

e Case
S-CAPP
OTHe:C=p~e |y T C~e|d,
O THe:p~ere| o,
O; A, g’)lr e :1p >0 ILH.
O; A, (¢4, q‘)z)r He: 1y — 1 | weakening
O; A, gz)zl" Hey:1y Part 2
O; A, (¢4, gﬁz)r Hey:m weakening
O; A, (¢4, g’)z)r Hele: 1 rule c-aprp

Part 4 Case

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:47

S-DEF
Q;ele:o~se|d oo~ T defk:7=e;pgm, F' ¢~ pgm,
pgm; O+ k=e40,k: 0~ pgm,
O,k:1F pgm, given
O;e ¢ Part 1
;¢ Pe:r Part 3
0,0%ele: 1 Lemma F.2
@,g’)gl—k:T:e-{@,g')@,k:T rule c-DEF
©,4% k: 1+ pgm, weakening
©,4° rdefk: 7= e; pgm, rule C-PGM-DEF
$<0 Lemma 5.2
O pgm, Part 7

Part 5 Case
S-CLS

arp~>rtT

pgm; © + TC awhere{k: p} 40,k :VaTCa= p ~ def k:Var — r = Aadx: r.x; pgm

o-VaTCa=p~Var—>r1 rules S-K-FORALL, S-K-CARROW, and S-K-TC
O,k:Yar—> 1+ pgm given
O;e ¥ Aalx:t.x:Yar— T rules c-TABS, c-ABs, and C-VAR
Ork:VYar—>1t=AaAx:7.x40,k:Va.r — 7 | rule c-DEF
O rdefk:Var — r=Aalx:1.xpgm rule c-PGM-DEF
Part 6 Case
S-INST

TC awhere {k : p}
i

Ejzftv(f) Ejl—Cif\«)T,- @;Ej, ev,-:(Ci,O)iIQe:p[al—)T]'\f)e|g51
etpla]~ fresh evii ¢y +H (?J ev; : (13, 0) i) ~ B,
defev: VEJ.Ei = F= AEj.A v s T, .e;pgmy Ky ~> pgm, fresh ev

pgmy; O + a—i = TCrwhere{k=¢}40, ev: VE].ai = TCr~ pgm,

O, ev: VE].?,-" — Tk pgm; given

@;Fj], ev; : (1, 0)1 F o, Part 1

¢, <0 Lemma 5.2

O;e F ¢, Lemma 5.3

@;E], ev; : (13,0) l, g‘)lr Pe:r Part 3

¢y <0 by definition

Q; g’)zr,gjj, ev; : (13, O)l Pe:r Lemma F.3

0, (,")2@;5], ev; : (13 0)l Pe:r Lemma F.2

o, g‘)ze; o0 AEJ.A ev; Tl .e: VEJ.Ei -7 rules c-TABS and c-ABS
o, g’)zg Fev: VEJ.Ei — = AEJ.)L e0; 7 .e 0, g’)zg, ev: VEJ.Ei — 7 | rule c-DEF

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:48 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

0, (,’)29, ev: \/E].Fji — T pgm, weakening
0, 9626 +def ev: VEJ.Ei —T= AE].Ami .e;pgm, rule c-PGM-DEF
O+ pgm, Part 7
Part 7 e The case for rule s-cLap-EMPTY holds trivially.
e Case
S-CLAP-REC
spdef ¢.n; pgm, 71 [$]" ~> pgm,
pgmy ¥ ¢ ~> pgm,

O;e+ ¢ given
O;e []" follows
O;e " $.n follows
0] <n given
6" <n—1 follows
©,¢° r pgm, given
¢ =1¢]"¢.n psn
0, (Lo1™M®, (p.n)° + pgm, follows
O, (| ¢]™M® r spdef ¢.n;pgmy | rule c-PGM-SPDEF
O+ pgm, LH.

Part 8 e Case
S-PGM-DEF

pgmy; ©1 + D 40, ~ pgm, Oy F pgm: o~ pgm,

O + def D; pgm: o~ pgm,

O, + pgm, | given
O+ pgm, | Part4
e Case
S-PGM-CLS
pgmy; ©1 + C 4 0z ~ pgm, Oy F pgm: o~ pgm,
O, + class C; pgm : 0 ~ pgm,
O, + pgm, | given
©1 + pgm, | Part5
e Case
S-PGM-INST
pgmy; ©1 + 1 40, ~ pgm, O, F pgm: o ~> pgm,
Oy +inst.1; pgm: o~ pgm,
O, + pgm, | given
O+ pgm, | Part 6
e Case
S-PGM-EXPR
Qele:o~eld erOo ST e:TF)~ pgm

OFre:o~ pgm

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:49

O;8 ¢ Part 1

$<0 Lemma 5.2
©;¢"Pe:r | Part3

©,¢% e e:7 | LemmaF.2

0, gﬁe Fe:T Rule c-PGM-EXPR
OF pgm Part 7

G OVERVIEW OF AXIOMATIC SEMANTICS

In this section we outline the proofs for axiomatic semantics Appendix H includes the list of lemmas,
and Appendix I presents the proofs. An overview figure that shows the relation between definitions
and lemma is given in Figure 8. First, we present some definitions, and then discuss about the
proofs in Appendix G.2.

G.1 Axiomatic Equivalence

We have axioms between FII expressions:

[[5]]-#’57:« =ax €
[[elﬂg'rl,,\k”szr:ut’i(,,(,'72 =ax [[el [S — e]]](/’vl,g'r',(")z Where (1’) HA (11),

An axiomatic equivalence relation e; =45 e; between F Il expressions that is the contextual and
equivalence closure of the axioms. In particular, we extend the axioms with

(Axiomatic equality)

EQ-SYMM EQ-TRANS EQ-CTX
EQ-REFL — _ — —_ —
Q €1 =ax €2 €1 =ax €2 €2 =ax €3 €1 =ax €2 Ci =ax C;
€ =ax € €2 =ax €1 €1 =ax €3 Cile1] =ax Calez]

Similarly, the axiomatic equivalence relation pgm, =, pgm, axioms for FIl programs are the
contextual and equivalence closure of the following axioms:

pPEM =ax PEM, (Axiomatic equality)
PEQ-DEF
€1 =ax €2 PEMy =ax P&M,
def k:7=ey;;pgm, =a def k: 7= ey;pgm,
PEQ-SPDEF PEQ-EXPR
€1 =ax €2 pPEMy =ax PEM, €1 =ax €2
spdef A ' s : 7= ei;pgm; =qx spdef A ' s 7 = ey; pgm, €1:T =gx €2: T

PEQ-SPDEF-AX
dHA~ P

spdef A 1" s : 7 = [e]4; pgm =ax spdef ¢; pgm[s — e]

Definition G.1 (Axiomatic Equivalence).
O F pgmy Cax pgm, = ©OF pgmy AO+ pgmy A pgmy =ax pgM,
O;THe wppe2:7T 2 OTHe :TAOTHe:TAe =g €2

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:50 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

PEMy =ax PN,
Figure 7a

Theorem H.

O+ pgm Ccix pgmy T Lemma Hd (O F pgmy 2ax pgmy
Definition 6.3 Definition G.1

Lemma H.1

defined upon defined upon

Y Yy .

O;T ¥ e; vy e :7) Theorem H7 (@;A P 61 vyy €3: 7 K Church-Rosser !
———————— |
Definition 6.3 Definition G.1 . (Theorem H.12) |

defined upon Lemma H.10 | | Corollary H.13 -~ __________________ -
7 4 Confluence (Theorem H.20) I
- - N o e ____ V)
\ - \
— < <

e Lemma H.14 el. © LemmaH.22 . ©2 “1 e

natural axiomatic =~ ————> parallel closes complete
reduction Lemma H.15 reduction [emma H.23 reduction {emma 26 development

(Figure 5) (Appendix G.3) (Appendix G.4) (Appendix G.5)

Lemma H.29 | | Lemma H.28

Lemma H.35 N
e] “» ey
parallel reduction
with complexity
(Appendix G.6)

Fig. 8. Overview of the proofs

G.2 Outline

To prove our goal that source =, leads to core =24, , we need two steps:

(1) Source =, leads to core =,; and
(2) Core =,y leads to core 2y.

The first step is by an inductive step on source =,4. The related lemmas are given in Appendix H.1
(for programs) and Appendix H.2 (for expressions).

The second step is more involved. We first define axiomatic reduction (—) (Appendix G.3) derived
from core axiomatic equivalence. Now that we can first relate =4, to <. This part is proved in
Appendix H.3. One important property we need there is Church-Rosser (Theorem H.12), which is
proved in Appendix H.4. The proof of Church-Rosser is based on the notion of parallel reduction
(Appendix G.4), whose proofs are based on the notion of complete development (Appendix G.5). The

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:51

proofs regarding parallel reduction are given in Appendix H.5, and regarding complete development
are given in Appendix H.6.

Now we can relate core =244 to core ., by relating axiomatic reduction to operational semantics.
That is done via a definition of parallel reduction with complexity (Appendix G.6). And the related
lemmas are given in Appendix H.7.

G.3 Axiomatic Reduction
From axioms we can derive a reduction semantics:
e < ey (Axiomatic Reduction)

CE-AX-SPLICEQUOTE
b+ A~ (/,)/ CE-AX-QUOTESPLICE

oy lei[s = e]], [sewsre — e

0
P19 P2

[[elﬂ @AM s:T=

ey

CE-AX-CTX
CE-AX-BETA CE-AX-TBETA e = ey
(Ax : 1.e1) e3 = er[x > e3] (Aa.e) T — e[a> 7] Cleq] = Cle]

We write e; <= e, to mean the reflexive, transitive and context closure of <. Formally,

e; " ey (Reduction)

CE-AX-C-TRANS

CE-AX-C-REFL e > e ey <" e
e —"e e > e3
G.4 Parallel Reduction
e; <> ey (Parallel Reduction)
CE-AX-PA-LIT CE-AX-PA-VAR CE-AX-PA-SVAR CE-AX-PA-KVAR
ie»i X “» X se>»s k—»k
CE-AX-PA-ABS CE-AX-PA-TABS CE-AX-PA-APP CE-AX-PA-TAPP
e ™ e €1 ™ e € = e3 €2 ey €1 ™ e
Ax : 7.6 =» Ax : T.ey Aa.e; = Aa.ey e1 ey “—» eszey e1T» e T
CE-AX-PA-BETA CE-AX-PA-TBETA
€ = e3 €2 ey €1 = e
(Ax : T.e1) ey = e3[x > eq] (Aa.e)) T = ez[a > 7]
CE-AX-PA-SPLICEQUOTE
, / o where e; <= [e'] A ¢+ A~ 7
e»e b, =

A ¥ o1 =e! wheree; <> ei

[e]

e el A DL o

CE-AX-PA-QUOTESPLICE
€] =™ e

[sﬂ ols:T=¢; —» e

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:52

G.5 Complete Development

Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

e —» ey (Complete Development)
CE-AX-CP-LIT CE-AX-CP-VAR CE-AX-CP-SVAR CE-AX-CP-KVAR
p—» i X o X So» s k—» k
CE-AX-CP-ABS CE-AX-CP-TABS CE-AX-CP-APP
e; < ey e; < ey e; < e3 €y “» ey e1 £ Ax:T.e
Ax : 1.6 —» Ax : T.ey Aa.e; —» Aa.ey €16y ™ e3 ey
CE-AX-CP-TAPP CE-AX-CP-BETA CE-AX-CP-TBETA
e1 <™ ey e1 # Aa.e e1 “» e3 ey —» ey e1 —» e
e1T M eyT

CE-AX-CP-SPLICEQUOTE

(Ax : 1.e1) ey = e3[x — eq]

(Aa.e)) T = ex[a—> 1]

e~»e'

N
, P

n; . _
Ai¥isiTi=¢e;

where e; —»

[[e”ﬂ(, /\(,’) +H A~ ’”
wheree; —» e/ Aej # [e] ﬂ "

[[eﬂml * [[S]] oilig:T=¢""

el

,(’

—» [e'[si el

gy

CE-AX-CP-QUOTESPLICE
€1 ™ e

[[S]] olls:T=¢ —» e

G.6 Parallel Reduction with Complexity

N ; . Lo .
e = ey (Parallel Reduction with Derivation Complexity)
CE-AX-PPA-LIT CE-AX-PPA-VAR CE-AX-PPA-SVAR CE-AX-PPA-KVAR
0 0 0 0
P> X = X sE» s k<> k
CE-AX-PPA-ABS CE-AX-PPA-TABS CE-AX-PPA-APP CE-AX-PPA-TAPP
N N M N N
e1 “» ey e1 “» ey e <—» e3 €y “» ey €1 “» ey
N N M+N N
Ax:T1.6; “» Ax : T.ey Aa.e; =» Aa.ey €16 “» e3ey
CE-AX-PPA-BETA

M N
€] “» e3 €y “» ey
M+#(x,e3)«N+1
(Ax : 7.e1) e <> e3[x — eq]
CE-AX-PPA-SPLICEQUOTE
N
e=>»e
124 N 244
. é; wheree; = [e]'];. Ae]’ <> e
P = M;
Ai¥ s i1 =e¢! wheree; <> e/

e1T<» ey T
CE-AX-PPA-TBETA

N
€1 “» ez

(Aa.ey)) T & ey[a 1]

’

Li ’ ’ ’”
ANdy = @i NP+ A~ P

le] i

i
SiiTi=€;

N+#(spe') N +M; +L; +1
<

e'[si— e e’”

1l

CE-AX-PPA-QUOTESPLICE

N

€1 “ ez

N+1
[[3]] Pigir=e, P €2

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022

Staging with Class 61:53

N
¢y = ¢, (Parallel Reduction with Derivation Complexity)
CE-AX-PPA-S-CONS
CE-AX-PPA-S-EMPTY 1. N 14 M
P12 Do €1 > €
0 1 n .. . N+M L n .. -
o= 0 P AF s:T=e =» ¢, AF s:T=¢

For simplicity we also write e; < e; when the absolute complexity does not matter.

H LIST OF LEMMAS FOR AXIOMATIC SEMANTICS
H.1 Elaboration of Source Programs
Lemma H.1 (A[=] =, to FIIl).
o If pgm, =qx pgm,, where © + pgm, : 0 ~ pgm, , and © + pgm, : 0~ pgm, , and © ~ O ,
then ® F pgm, “ax pgm,.
o Ife;=axe2, where ;T ey : o~ ey |y, andO;T P ey : 0~ ey | ¢, , and©® ~ O, and
T~ A,ande+ o~ 1 thenife; : t #1 ¢, ~ pgm,, ande; : T 71 ¢, ~> pgm,, then
PEMy =ax PEM,.

Lemma H.2. [fe;e " ¢; : 7, and e; — e;, then ;0 ' e 2, e : 7.

*

Lemma H.3 (— Preserves 2,y). o Given e + pgm; g pgm,, if pgm; —" e : T or
pgm, —" ey : T, then there exists pgm; and pgms, such that (1) either pgm; = pgm =10y : T,
or pgm, —* pgmj; (2) either pgm, = pgm = vy : 1, or pgm, —* pgm;; (3) and e

7 7
pEMy Zax PEM;.
o Givene;e I e; v,y e : 7, ife; —™ vy, thene; —™ vy, and o; 8 ¥ v1 2, v, : 7, and vice
versa.

Lemma H.4 (FII v, to FII ;). IfOF pgm; 2 pgm,, then © v pgm, Lo pgM, : T.

Theorem H.5 (A2] =, to FIl «..,). If pgm, =ux pgm,, where © v pgm, : o~ pgm, , and

O+ pgm, : 0 ~> pgm, ,and® ~ O ,ande o~ T ,then® pgm; Loy pgM, : T.

H.2 Elaboration of Source Expressions

Lemma H.6 (Substitution for =,).
o If pgmy =ax pgM,, and vy =qx Vo, then pgm, [k — v1] =g pgm, [k — v;].
o If pgmy =ax pgM,, and vy =qx Vo, then pgm, [s +— v1] =qx pgm,[s = v2].
o Ifleids., =ax lezls,,s then [Porler =ax [Pos]es-

Theorem H.7. Ife;T' ¥ e; gy €3 : 7, then ;T 1 €1 gy €31 T,

H.3 Axiomatic Reduction

Lemma H.8 (Transitivity). Ife; <™ e; and e, <™ es, then ey —" e;.
Lemma H.9 (Congruence). Ife; <" ey, then C[e;] —* C[es].

Lemma H.10 (< to =4x). Given ©;A ¥ ey : 7, ife; <> e; then ©; A ¥ e gy €5 T.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:54 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

Lemma H.11 (Confluence). Given ®;A ¥ e : 7, ife <™ e and e <™ ey, then there exists e’ such
thate; —* e’ and e, —* ¢e’.

Theorem H.12 (Church-Rosser). If©; A ¥ e; w4y e : T, then there exists e such that e; —* e and
ey " e.

Corollary H.13. Given ®;A ¥ e : Int, if O; A ' e gy i:Int thene —7* i.
Lemma H.14. Ife —" v, thene —" v.
Lemma H.15. Given ©;A ¥ e : 7, ife <" v, then e —™ v’ for some v’.

Corollary H.16. Given ®; A\ e : Int, then we have ®; A ' e 2,y i: Int if and only ife —™ i.

H.4 Church-Rosser
Lemma H.17 (Substitution).

o Ife; —» ey, and e3 —» eq, then e[x > e3] = ex[x > e4].
o Ife; = ey, thenej[a 7| —» e;[a— 1].
o Ife; = ey, and e3 —> eq, then ey [s > e3] = e3[s > eq].

Lemma H.18 (Diamond Lemma). Given ©;A ¥ e : 7, ife < e;, and e < ey, then there exists e’
such that e; —» e’ and e; —>» ¢’.

Lemma H.19 (Strip Lemma). Given ©; A {* e : 7, ife = ey, and e =™ e,, then there exists e’ such
that ey =—»* ¢’ and ey, —» ¢’.

Theorem H.20 (Confluence of «<»). Given ©; A ¥ e : 7, ife <»* ey, and e <™ e,, then there exists
e’ such that e; —»* ¢’ and ey —»™ ¢’.

H.5 Parallel Reduction

Lemma H.21 (Reflexivity). e < e.
Lemma H.22 (< simulates <). Ife; < e, then e; = e.
Lemma H.23 (—* simulates «<»). Ife; = e;, then e; —" ey.

Theorem H.24 (Equivalence of Parallel Reduction and Axiomatic Semantics). e; <™ e if and
only ife; =" ey.

H.6 Complete Development

Lemma H.25 (<—» exists). For any e, there exists e’ such that e —» e’.

Lemma H.26 (—» closes <»). Given ®; A e : 7, ife =—» e, and e <> e;, then e; —> e;.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:55

H.7 Parallel Reduction with Complexity

Lemma H.27 (Reflexivity). e =< e.
Lemma H.28 (= simulates <). Ife; < e,, then e; = ey.
Lemma H.29 (—" simulates <). Ife; < ey, thene; —" e;.

Lemma H.30 (Substitution).
N N,) M
o Ife; = e;, and es <> ey, then there exists M, such that e;[x — e3] = e;[x > e4], where
M § N1 + #(X, 62) £ Nz.

N N
o Ife; =» ey, thenei[a 1] = ey[a— 7).
Lemma H.31 (Monotonicity). Ifv < e, then e is also a value.
Lemma H.32 (Transition). Ife < v, then there exists vy, such that e —" vz, and v; = v.

Lemma H.33 (Permutation). Given ©;A ¥ e; : 7, ife; = ey, and e, — es, then there exists ey,
such that e; —* ey, and ey <> es.

Lemma H.34 (Push Back). Given ©;A ¥ ey : 7, if e; = ey, and e, —™ vy, then there exists v,
such that e; —"* vy, and vy <> vy.

Lemma H.35 (—" simulates =»*). Given ©; A ¥ ¢ : 7, ife =»" v, then there exists vy such that
e —* vy, and vy <»* v.

I PROOFS FOR AXIOMATIC SEMANTICS
1.1 Elaboration of Source Programs

Lemma H.6 (Substitution for =,).

o If pgmy =qx pgM,, and vy =gy vy, then pgm, [k — v1] =45 pgm, [k — v;].
o If pgmy =qx pgM,, and vy =qx Uy, then pgm, [s = v1] =4 pgm,[s — v2].
i If[[el]]zﬁ,l =ax [[32]]4‘)“.2, then [$y1]e1 =ax [Poq]es.

The first two parts follows straightforward by induction on pgm, and pgm,. The third part can
then be proved by repeating part 2. O
Lemma H.1 (A[=] =, to FII).

o If pgm, =qx pgm,, where © + pgm, : 0 ~ pgm, , and © + pgm, : 0~ pgm, , and © ~ O ,
then ® F pgm, “qx pgm,.

o Ife;=ax €2, where ;T ' ey : o~ ey |y, andO;T P ey : 0~ ey | ¢, , and® ~ O, and
I~ A,ande+ o~> 1 thenife; : v 7' ¢, ~ pgmy, andey : T 1 , ~> pgm,, then
PEMy =ax PEM,.

Proor.Part 1 By induction on pgm; =4 pgm,.

o pgm, = def k = e; pgm,, and pgm, = def k = e;; pgm,, and e; =4 €2, and pgmy =45 pgm,.

O+ def k = ey; pgms : 0 ~> pgm, given

pgMy; O+ k=e; 40,k: 7~ pgmy inversion (rule s-PGM-DEF)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:56 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

O,k:TF pgm,: 0~ pgms
Qe e o1~ e |
ero~> T
defk:7t=e;;pgms F' ¢y ~ pgm,
pgm, = spdef ¢ ;def k: v =eg;pgm,
O + def k = ey; pgm, : 0 ~> pgm,
pgmy; O k=e40,k: 7~ pgm,
O,k:7F pgmy: o~ pgm,
Qe ey 01~ ey |y
o0 >T
def k : 7 = ey; pgm, F! ¢y ~> pgm,
pgm, = spdef ¢5;def k : 7 = ey; pgmy,
Or pgm3 Dax PEMy
g) ~> spdef ¢f;e; : T

crE! €’2 ~> spdef ¢; e; :
spdef/ Le1: T =qx spdef ¢riep: T
P71, Py fresh w.rt. pgms and pgm,

inversion (rule s-DEF)

inversion
given
inversion (rule s-PGM-DEF)

inversion (rule s-DEF)

inversion
1LH.

Part 2
above
above

O + spdef ¢j;def k : 7 = e1; pgmy 2qx spdef ¢y;def k : 7= ey; pgm, | follows

o pgm; = class TC awhere {k : p}; pgms,, and pgm, = class TC awhere {k : p}; pgm,, and

PEM3 =ax PEMy.
O + class TC awhere {k : p}; pgm, : 0 ~ pgm; | given

0,k:VaTCa= pt pgm,: 0~ pgms inversion (rule s-PGM-CLS)

pgms; © F TCawhere{k: p} 40,k:VaTCa= p ~ defk:Var — r=Aalx:7.x;pgm,

arp~>7T
pgmy =def k:Var — 7 =Aalx:1.x;pgm,
O + class TC awhere {k : p}; pgm, : 0 ~ pgm, | given

inversion (rule s-cLs)

0,k:VaTCa= pt+ pgm, : 0~ pgm, inversion (rule s-pPGM-CLS)

pgmy; © - TC awhere{k: p} 10,k :VaTCa= p ~ def k:Var — t = Aalx: v.x;pgm,

pgm, =def k:Var — 7 =Aalx:7.x;pgm,
O,k :Var — 1+ pgms Lo pgmy LH.
OF pgmy Ygax pgm, follows

inversion (rule s-PGM-CLS)

o pgm, = 1nstC = TCrwhere {k = e, }; pgm,, and pgm, = 1nstC = TC rwhere {k =

ex}; pgmy, and e =gy €z, and pgm, =g pgmy.

Or instC_',-i = TCrwhere{k=-e};pgm,: 0~ pgm
@,VE].al = TCt+ pgm,: 0 ~> pgms

given

inversion (rule s-PGM-INST)

pgM,; O ai = TCrwhere{k=e¢e} 40, \/Fjj.ai = TCt ~ pgm,

@;EJ, ev; : (C,-,O)l Re :plar 1]~ e | ¢

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

inversion (rule s-INST)

Staging with Class 61:57

G+ (b evr (1,0)) ~ ¢

pgm; = spdef<,>3, defev: Vb Tl o= Ab P €v s T, .e1; pgMy

© + instC; = TCrwhere {k = ex}; pgmy 1 0 ~> pgm, given

o, VEj.ai = TCtt+ pgmy: 0 ~> pgmy inversion (rule S-PGM-INST)

pgmy; O ai = TCrwhere{k=e¢e} 40, Vyjj.ai = TC 1~ pgm,

inversion (rule s-INST)
;5 m © e plars]~ e |

by ++ (b evp: (750)) ~> 2

pgm, = spdefo4,def ev: Vb Tl or= Ab Aevl 7' ez pgm,

O,ev: Vbj T o TEpgmy D pgmy, LH.

1 TF ¢~ spdef ¢7sep : T Part 2
Flg, ~ spdef(ﬁé;ez T above

spdef 1e1: T =qx spdef ¢j;e; : above

¢3¢y fresh Wrt pgm3 and pgmMy }
spdef ¢;;def ev : Vb K7L T= Ab Aev;:1; T, el,pgm3

=axspdef ¢j; def ev : Vb o= Ab Aev;i ;' .ep; pgm, | follows
O+ pgm, Dax pgm, namely

o pgm, = eq, and pgm, = e,. and e; =4 ey.

OFe o~ pgm given
oo~ T inversion (rule s-PGM-EXPR)
@'0}—061'0'«» er| ¢,
st~ pgm,
@ key:o~> pgm, given
Qe e, : 0~ ey | d, | inversion (rule s-PGM-EXPR)
1
$y ™ pgmy
pPEM, =ax PEM, Part 2
OF pgmy Dy pgm, follows

Part 2 By induction on e; =4 €.
e The case for e; = e; = i, and x, and k are trivial.
® ¢ = Ax: T.e3,and e; = Ax : T.eq, and e3 =4 €4.

O;I,x:(r,n) P e3:1~> e | Py given

by Hx:(1,m) ~ Py

O;I,x:(r,n) e :1~> ez | ¢y given

by -H-x (Tll, n) ~ ¢,

er:TH 1, ~> spdef pjser i T ¢1 is sorted ¢,

ey:TH (,52 ~> spdef (,52, e: T ¢ is sorted ¢,

spdef <,’>;, e1: T =gx spdef Pasez LH.

(/1x Te) T > T, o spdefn3,(/1x T.e1) : T > T | ¢5 is sorted ¢,
¢l +Hx (Tl,n) ~ (,>3 follows

(Ax:7'.e) : T > 1 , ~> spdef s (Ax : 7.e1) : T/ — 7 | ¢} is sorted ¢,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:58 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang
Py +Hx: (T],n) ~> dy ‘ follows
We can then derive the conclusion spdef ¢5; (Ax : 7/.e;) : o/ — 7 =4, spdef ¢; (Ax :
7’.e;) : T’ — 7 by first applying the same sequence of equivalence rules as for spdef ¢1; e; :
T =4« spdef ¢5;e; : 7, until we need to prove the equivalence of two expressions. At
that point we apply rule EQ-cTX to remove the lambda, then we can apply again the
same sequence of equivalence rules as for proving the equivalence of two expressions in
spdef ¢];e1 : T =4 spdef 7€z : 7.
e The case for rule s-TaBs and rule s-caBs is the same as the above one.
e ¢; =e3eq, and ey = e5 e, and e3 =gy es, €4 =ax €.
O;THes:1y > 1~ es| sy given
O;THe:1~> ey given
O;THes:1y — 13~ es | s given
@;F H € - T1 ™ € I (156 given
e3: 7 — 12 1y~ spdef ¢5se5 1 11 — 1 ¢35 is sorted ¢,
es i1 1 ¢, ~> spdef ¢jseq : 1y ¢y is sorted ¢,
. n-1 1 ’. . 17
e5: T = T BT g~ sp/def Pgies T = Ty </>§ is sorted ¢
€6 : 71 H1 g ~> spdef (g eq : 1y ¢g is sorted ¢
spdef ¢5;e3 1 71 — 12 =4y spdef ¥lse5 171 > 1 | LH.
spdef ¢j;es : 71 =ox spdef ¢g;e6 : 71 1LH.
eses: T2 B (g, 0y) ~> pgmy let
eses: T2 HL (s,) ~> pgm, let

Assume the level range of ¢, ¢4, @5, ¢4 is n to n’, then spdef (,s’)é;e3 : 71 — T, can be
represented as:
spdef¢.,.n;spdefo,.n+1;...;spdefp..n’;es : 1 — 7.
So pgm, = spdef¢.,.n;spdef,.n;spdef,.n + 1;spdefo,.n +1;..;
spdef¢..n’;spdefp,.n';eseq : 1
pgm, = spdef¢..n;spdefp .n;spdefp..n + 1;spdefp,.n+1;..;
spdef¢..n’;spdefo,.n';es e : 1
Our goal is to prove pgm; =4 pgm,.
We can proceed by applying the interleaving sequence of rules used to prove the equiv-
alence of the splice definitions for spdef ¢5;e3 : 77 — 72 =4 spdef ¢lse5 : 77 — 75 and
spdef ¢;es : 71 =45 spdef ;6 : 71, until we need to prove the equivalence of expressions,
which are applications.
Note that since every time we generate fresh splice variables, substituting splice variables
in ¢, with their expressions in e, keeps e4 unchanged. Similarly, substituting ¢, in e; and
substituting ¢ to eg, and substituting ¢, to es will keep the expression unchanged.
Therefore at the point when we need to prove the equivalence of the applications, the
application we get is simply e; eq with e; substituted by some splice variables with their
expressions in ¢, e4 substituted by some splice variables with their expressions in ¢,; and
es e with similar substitutions. Note the result expressions (substituted es, ey, es, €5) are
the same as the substituted one we got in the derivation tree in I.H.
Now we can first apply rule EQ-TRANS, rule EQ-cTx to split the applications into two
subexpressions and prove the equivalence of the two subexpressions respectively, i.e., the
equivalence between substituted e; and es, and between substituted e4 and e.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class

61:59

Now we can again apply the same sequence of rules applied in the I.H. to complete the

proof.

o The case for rule s-Tapp and rule s-capp is the same as the above one. The case for rule s-
CAPP requires a similar lemma for constraint solving. As the form of rules for constraint
solving is essentially the same as expression typing, the lemma can be proved in a similar

way.

e ¢ = [[63]], and e, = [[64]], and e3 =, €.

O;T e 1 7~ 3| (g given
©;T ¥ [es] : Coder ~> [es]s . | [0, 1" | given
O;T ey i1~ 63| oy given
©:;T ¥ [es] : Coder ~> [es]ss , | [0, 1" | given
e3: T pg~o pgms let
eg :TH Py~ pgm, let
PEM3 Zax PEMy LH.

According to the definition, suppose ¢ is the sorted | ¢, |” and ¢, is the sorted | ¢, |". Then
pgm, can be represented as:

spdef ¢.;spdef ¢..n;e5 : 7.

And pgm, can be represented as:

spdef ¢;spdef ¢,.n;e4 : 7.

Now our goal is to prove

spdef ¢; [es] s, . : Code T =4, spdef ¢¢; [es], , : Coder

We can proceed by applying the sequence of rules used to prove the equivalence of the
splice definitions for pgm, =4 pgm,, until we need to prove

lesl s : Codet =4x [e]s; , : Coder

whereas in I.H., we have

spdef ¢ .n;e; : T =4 spdef ¢/ .n;e; : 7.

where ¢.n, ¢ .n, e; and e} are (5, ¢, e3 and e, after the substitution caused by rule PEQ-
SPDEF-AX.

At this point, LH. will further apply a mix of rule PEQ-sPDEF and rule PEQ-SPDEF-AX (with
refl, symm, trans, congruence in between). We can corresponding apply rule EQ-cTx (with
rule EQ-TRANS) and rule EQ-sPLICEQUOTE (and refl etc respectively).

If the LH. applies rule PEQ-sPDEF, for example between spdef A 1 s : 7 = e5; spdef ¢ ;] :
T =ax spdef A " s : 7 = eg;spdef ¢ n;e; : T where es =4« €6, then our goal is to prove

leslvsi—e. g7 : Code T =ax [leg] avrsir—e, 7. : Codet.

We then apply rule EQ-TRANS with an intermediate expression [ej] ...~ 4/, : Coder.
Note that [e]] 1., 47, : Code 7 =4 [€5]ains:r—c, 47 : Code 7 holds by rule o-cTx. And
now our goal is to prove [ef]ys..—c, 47, : Code =ax [ef]ns—c, 470 : Coder.

In this case, we have assumed s is the first splice variable in the splice definition of e; and
e;, but it does not have to be. That means, the s may appear in the middle of the splice
definitions.

Note that while rule PEQ-SPDEF eliminates one definition at a time, to prove our goal we
don’t eliminate the splice definition but we introduce an intermediate expression so that
our new goal will have the same splice definition at that place eliminated by rule PEQ-SPDEF
(like in the above case).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:60

Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

On the other hand, if the L.H. applies rule rule PEQ-SPDEF-AX, then we will apply rule EQ-
SPLICEQUOTE. Note the similarity between rule PEQ-sPDEF-AX and rule EQ-SPLICEQUOTE.
The only difference is that rule EQ-spLICEQUOTE allows splices definitions in front of the s
the rule is applied on. But since in the first step we have already make all splice definitions
in the front of s equivalent, we can safely apply rule EQ-sPLICEQUOTE.

Of course if the LH. applies the refl, symm or trans, we will apply refl, symm, trans
correspondingly.

Through this sequence of rules we can finally end up comparing the expressions e;’ and e;’
(which are e; and e;” after further substitution caused by rule PEQ-sPDEF-AX and rule EQ-
SPLICEQUOTE respectively). And we can then apply the same rules used in the L.H. to prove
our final result.

e ¢; = $e3, and e; = $ey, and e3 =, ey4.

O;T ' e3: Coder ~ €3 | ¢y given
;T $63:r~>s|g’>3,ol—”71 s:7=e; |given
O;T ey : Coder ~ ey | 05 given
@;Fl—"$e4zrf\»s|¢)4,0|—”_]5:1'264 given
es : Codet 1 5 ~> pgm, let
es : Codet t ¢, ~> pgm, let
pgMy =ax PEMy LH.

O;THe:1~> e | P

;T ¥ $fe] : i~ s | [Py)0 " s 7 = [len] s, i

According to the definition, suppose ¢ is the sorted | ¢, |” and ¢ is the sorted [¢, |”. Then
pgm, can be represented as:

spdef ¢c;e5 : Coder.

And pgm, can be represented as:

spdef ¢¢;e4 : Code .

So our LH. is

spdef ¢5;e3 : Code T =4, spdef ¢¢;es : Coder.

Now our goal is to prove

spdef ¢c;spdef e V' s i 7= ey55: T =4, spdef ¢ spdefe ' s T =eps:T

We can prove our goal by first following the proof of the L.H., until we need to prove
spdefe ' ' 5.7 =el;s: 7 =4 spdefe s =¢)55: T

where e; and e; are e; and ey after the substitution introduced by rule PEQ-SPDEF-AX.

At this point we can apply rule PEQ-sPDEF and uses the same proof used by the L.H. to
prove es =gy e4. Furthermore we have s =4, s by rule EQ-ReFL. That concludes our proof.

o ¢; =$ef,and e; =e.

given

given

er:TH ¢, ~ spdef [¢]|" ';spdef ,.n — 1;¢; : Coder | let

st [P " e

1 1

SiT= Helﬂ(,'n.nfl ~> SPdefé’,’iﬂ - 1;Spdef. H
‘ let

s:7=[e]g n-1:8:7

Our goal is to prove
spdef [¢)]" ';spdef ¢,.n — 1;¢; : Coder
=ax spdef | .n — I;spdef e ' s 0= [ey]y 58T

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:61

We can prove the goal by a sequence of rule pEQ-sPDEF, followed by one rule PEQ-SPDEF-AX.
o ¢; =[$e],and e; = e.

O;T' ¥ e: Coder ~> e | ¢ given
O;T ¥ [$e] : Code ~> [[s]owsre, | &y given
e1 : Coder 1 ¢, ~> spdef ¢];e; : Coder let

[s]eis:c=e, : CodeT ¥ ¢ ~> spdef ¢7; [s]ers:r—e, : Codert | let

Our goal is to prove

spdef ¢1;e; : Code 7 =4 spdef ¢7; [s]errs:r—¢, : Codet.

We can prove the goal by a sequence of rule PEQ-sPDEF, followed by one rule PEQ-EXPR,
which is then proved by rule EQ-QUOTESPLICE.

[m}
Lemma H.2. [fe;e {" ¢; : 7, and e; — e;, then ;0 ' e 0, e, : 7.
Proor. By a straightforward induction on e; — e;, making use of rule EQ-TRANS.
[m}
Lemma H.3 (— Preserves = ,y). o Given ® + pgm; g pgm,, if pgm; —* e : T or

pgm, —" ey : T, then there exists pgm]| and pgms, such that (1) either pgm; = pgm =0y : 7,
or pgm; —* pgm}; (2) either pgm,, = pgm = vy : T, or pgm, —* pgmy,; (3) and e F
pEM| Lax PEM,.

o Given e;e {' ¢; o, ey : 7T, ife; —" vy, then ey —™ vy, and e; @ ¥ vy 4, vy & T, and vice
versa.

Proor.Part 1 By case analysis on =g.

— Case
PEQ-DEF
€1 =ax €2 PEMy =ax PEM,
defk:r=e;pgm; =4 def k: 7 =ey;pgm,
e; —" v Part 2
es —" vy

;0" v L VT
def k: 7 =ey;pgm; —" def k: 7 = v; pgm,; | By rule CE-PGM-DEF
def k: 7 =ey; pgm, —" def k : 7 = vy; pgm, | By rule CE-PGM-DEF

def k: 7 =0y;pgm; — pgm[k — v;] rule CE-PGM-DBETA
def k : 7 =vy; pgm, — pgm, |k — v;] rule CE-PGM-DBETA
Lemma H.6
- Case
PEQ-SPDEF
€1 Zax €2 PEMy =ax PEMy

spdef A ' s : 7 = e; pgm; =qx spdef A ' s : 7 = ey pgm,

er —" [e1]s., Part 2

€2 —" ﬂeé]](/”nz

o; 0 " [er]s,, 2ax [e3]s,, : Coder

spdef A V' s 7 =e;;pgm; —* spdef A " s : 7 = [e]],, ; pgm; | By rule CE-PGM-DEF
spdef A ' s : 7 = ey; pgm, —" spdef A ' s 7= [e]]; ;pgm, | By rule CE-PGM-DEF

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:62 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

spdef A V' s 7 = [e]]y, s pgmy — pgmy[s = [d,]e]] rule CE-PGM-SPBETA
spdef A ' s 7 =[]], s pgmy, — pgmy[s = [¢.y]e;] rule CE-PGM-SPBETA
Lemma H.6
- Case
PEQ-EXPR
€1 =ax €2

€1 :T =gx €2:T
« Ife; : 7 =0y : rand e; : T = v, : 7, then by rule PEQ-EXPR we have ;0 ' v; v vy : T
and we are done.

* Ife; : 7 =0y : T and ey is not a value. Then by progress we have e; — e;. By preservation
we have e; e " ¢/ : 7. By Part 2, we have e; @ V' e; e/ : 7. By rule EQ-TRANS, we have
o;0 I ¢; v, e, : 7. Then by rule PEQ-EXPR we have @ 01 : 7 g, e; : 7 and we are
done.

The case when e; is not a value and e, is a value is the same as the previous case.

If neither e; nor e, is a value, then similar as the above case, we have e; — e/ and
o;0 " e, e :7,and also e; — e) and e; @ ¥ e; o, e] : 7. By rule EQ-TRANS, we
have o;e I e; v, e : 7. Then by rule PEQ-EXPR we have @ e} : T ©g, e} : 7 and we

*

*

are done.
- Case
PEQ-SPDEF-AX
OHA~ P

spdef A " s 7 = [[e] 5; pgm =qax spdef ¢'; pgm[s — e]
b —" ¢, Part 2
spdef A V' s 27 = [e]4; pgm
—" spdef A V" s : 7 = [e], ; pgm | rules CE-PGM-SPDEF and CE-QUOTE
—* pgm[s — [P,]e] rule CE-PGM-SPBETA
On the right:
(/;)/ ¥ (IJ)U/
o+ A~ P GHA~ P
spdef ¢'; pgm([s — e]
—>* spdef ¢,"; pgm[s +— €] rule CE-PGM-SPDEF
(dom (¢,") #fv (pgm)) program well-typed, dom (¢,") = dom (¢)
—* pgm[s > [$,]e] rule CE-PGM-SPBETA
= pgmls = [¢o]e] b A~)

Part 2 By induction on e; =4, ez, making use of Lemma H.2.

Lemma H.4 (FII «, to FIl «~,,). IfOF pgm, 2 pgm,, then © + pgm, Lo pgM, & T.
Proor. We prove the direction from pgm, to pgm,, and the other direction is the same.
O F pgm; Cax pgmy given
Si,—i)jw €0 assume
spdT»;def’%'i’j;ngrm1 —*e T
pgm = spdefS;: defD; s pgm, | let

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:63

pgm}, = spdefS; defD; s pgm, | et

o pgm Dux pgNL, follows
pgm; — e : T after substitution
pgm; — e : T Lemma H.3

e :T—"e T

pgm, —" ey : T

ohel T D i T above

oelel et by inversion
oeile g€t by Lemma H.2
oolle vy ey T by rule EQ-TRANS
o0l e v ep: T Theorem H.7

]

Theorem H.5 (A2] =, to FIl «.). If pgm, =4x pgm,, where © v pgm, : o~ pgm, , and
O+ pgm, : 0 ~> pgm, ,and© ~> O ,ande o~ T ,then® - pgm, Loy pgM, : T.

Proor. Follows by Lemma H.1 and Lemma H.4. O

1.2 Elaboration of Source Expressions
Theorem H.7. Ife;T ¥ e; gy €3 : 7, then ;T ¥ e oy €31 T,

Proor. We prove the direction from e; to e;, and the other direction is the same.

o;I'He wu €2:7T given
o;0 ® Cle;] wax Cley] : Int | follows
Cle)] —* i assume
o;0 ' Cley] wux i:Int Corollary H.16
o;0 1 Cley] =gy i:Int by rules EQ-TRANS and EQ-SYMM
Cle)] —* i Corollary H.16
[m]
1.3 Axiomatic Reduction
Lemma H.8 (Transitivity). Ife; <= e; and e; <" es, then ey —* es.
Proor. By a straightforward induction on e; <—* e;. O
Lemma H.9 (Congruence). Ife; <" ez, then Cle;] —* Clez].
ProoF. By a straightforward induction on e; <" e;. O

Lemma H.10 (< to =,5). Given ©; A ¥ ey : 7, ife; <> e, then ©; A ¥ e ux €5 : T.

ProOF. As < is the semantics derived from =,, the goal follows straightforwardly. Note the
type is preserved according to Preservation (Theorem E.2). O
Lemma H.11 (Confluence). Given ®;A " e : 7, ife <" e; and e =" ey, then there exists e’ such
thate; —* e’ and ey —* ¢e’.

PrOOF. Given e —* e; and e <" e,, by Theorem H.24, we have e =" e; and e <»" e,. By
confluence of «—» (Theorem H.20), we know there exists an e’ such that e; —»* ¢’ and e; —»* ¢’.
By Theorem H.24, we have e; <—* ¢’ and e; <—* ¢’ and we are done.]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:64 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

Theorem H.12 (Church-Rosser). If©; A V' e; w4y e : T, then there exists e such that e; —* e and
ey " e.
Proor. By induction on =4

e For the four axioms, the goal follows directly by choose e = e;, as e; < e,.

e Rule EQ-REFL. The goal follows trivially as e; = e,.

e Rule EQ-symm. The goal follows directly from LH..

e Rule EQ-TRANS. There is one e; such that e; =4 e3 and es =45 ez. By LH,, there exists e’ such
that e; <" ¢’ and e3 <" ¢’. Also by LH., there exists '’ such that e; <" ¢’ and e, <" ¢"’.
By Lemma H.11, there exists e, e’ <" e and e’ <—* e. Therefore e; < e and e; <" e.

e Rule EQ-cTx. By LH., there exists e’ such that e; <™ e’ and e; <" e’. By rules CE-AX-C-TRANS
and CE-AX-CTX, we have C[e;] —* C[e’] and C[e;] —* C[e’].

O

Corollary H.13. Given ©; A ¥ e : Int, if O; A ¥ e gy i:Int thene —7 i.
Proor. Follows directly from Theorem H.12. O
Lemma H.14. Ife —" v, thene —" 0.

Proor. The goal can be derived from: if e; — e;, then e; < e;. The later can be proved by a
straightforward induction on e; — e;.]

Lemma H.15. Given ©;A ¥ e : 7, ife <" v, then e —™ v’ for some v’.

Proor. Given e —”* v, by Lemma H.28 we know e «<»* v. By Lemma H.35, we have e —™ v’
for some v’.]

Corollary H.16. Given ©; A ¥ e : Int, then we have ©; A ! e 4y i : Int if and only ife —" i.

Proor. From right to left follows directly from Lemma H.14 and Corollary H.13. From left to
right:

;A e g,y i:Int | given

e—"i Corollary H.13
for some v, Lemma H.15

e —" v

e —* vy Lemma H.14
for some v, Lemma H.11

i "0, above

01 " vy above

vy =1 by inversion
v > by substitution
vy =i follows

1.4 Church-Rosser
Lemma H.17 (Substitution).

o Ife; = ey, and es —» ey, then e [x > e3] —» ex[x > e4].
o Ife; = ey, thenei[a 1] = ey[a 7).
o Ife; —» ey, and e3 —» ey, then eg[s > e3] = ey[s > eyq].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:65

This can be proved using the similar techniques as the substitution lemma for parallel reduction
with complexity (Lemma H.30). O

Lemma H.18 (Diamond Lemma). Given ©; A ' e : 7, ife < eq, and e < ey, then there exists e’
such that e; —» e’ and e; —» ¢’.

PRrRoOF. Suppose e —» e; (Lemma H.25). Let ¢’ = e3. By Lemma H.26, we know e; < e3 and
€y ™ es.
m]

Lemma H.19 (Strip Lemma). Given ©; A ' e : 7, if e <» ey, and e —»* ey, then there exists e’ such
that ey =—»* ¢’ and ey —» ¢e’.

ProOF. By induction on e =»" e;.

e Case e = e; and e =—»™ e. Let ¢’ = e; and we are done.

e Case e —» e3 and e3 =™ ey. By Lemma H.18, there exists e, such that e; < e4 and e3 — e;.
By LH., there exists e’ such that e, <»* ¢’ and e, < e’. By e; «~» e4 and e; —»" ¢’, we have
e; =™ e’ so we are done.

O

Theorem H.20 (Confluence of «<»). Given ©; A ¥ e : 7, ife =»™ ey, and e <" e,, then there exists
e’ such thate; —»* e’ and e, —»* ¢’.
Proor. By induction on e =" e;.

e Casee =¢e; and e =—»"* e. Let ¢/ = e; and we are done.

o Case e = e3 and e =" e;. By lemma H.19, there exists e4 such that e; =" €5 and e; = 4.
By LH., there exists e’ such that e; <»* ¢’ and e4 =" ¢’. By e, =» e4 and ¢4 <»* ¢’ we have
e, “»™* e’ so we are done.

O
1.5 Parallel Reduction
Lemma H.21 (Reflexivity). e < e.
Proor. By a straightforward induction on e. O

Lemma H.22 (—» simulates <). Ife; < e,, then e; < e;.

Proor. By induction on e; < e;. The key observation is that in e; < e, fewer subterms are
reduced, so we employ Lemma H.21 to fill in necessary identity reductions to obtain e; = e,. O

Lemma H.23 (—" simulates <»). Ife; < e,, then e; <" e,.

Proor. By induction on e; < ez, making use of Lemma H.8 and Lemma H.9.

o Cases for rules CE-AX-PA-VAR, CE-AX-PA-SVAR, and CE-AX-PA-KVAR follow directly by rule ck-
AX-C-REFL.

e Rule CE-AX-PA-ABS where Ax : 7.e; = Ax : 7.e;. By LH., we have e; <" e;. By Lemma H.9,
we have Ax : r.e; =& Ax : T.e,.

o The case for rule CE-AX-PA-TABS is similar as the previous one.

e Rule CE-aAX-PA-APP where e; e, <> e3e4. By LH., we have e; <" ¢35, and e, <" e4. By
Lemma H.9, we have e; e; <™ e5 e,. Also by Lemma H.9, we have e; e; <" e5 e4. Thus by
Lemma H.8, we have e; e; <" e3 eq.

e The case for rule CE-AX-PA-TAPP is similar as the previous one.

*

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:66 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

e Rule CE-AX-PA-BETA where (Ax : 7.e1) e, = es3[x +— e4]. By LH., we have e; <% e3
and e, —* e4. So by Lemma H.9, we have (Ax : 7.e;) e <" (Ax : 7.e3) e, and also
(Ax : 1.e3) €2 —* (Ax : 1.€3) e4. Further (Ax : 7.e3) e <" e3[x > e4] by rules CE-AX-C-REFL
and CE-AX-BETA. So by Lemma H.8, we have (A1x : 7.e1) e2 <> e3[x > e4].

o The cases for rule CE-AX-PA-TBETA is similar as the previous case.

e Rule CE-AX-PA-SPLICEQUOTE where [e] i [e/[si—> el]]—l By LH., we have

Ai'is;:Ti=e;
e =" ¢’,and e; =" e’ for expressions going through the first branch and e; <" e/ for
expressions going through the second branch. Then through Lemma H.9, Lemma H.8, and

rule CE-AX-SPLICEQUOTE, we can get [e]- —* [e’[si > e]}]f,

e —
\iHtis;Ti=e;

e Rule CE-AX-PA-QUOTESPLICE, where [[s]].ws:r,‘.] <» e, By LH., we have e; <" e;. By
Lemma H.9, we have [s]eus..—c; <" [s]eis5.0—¢,. Then, by rule CE-AX-QUOTESPLICE, we have

[s]es:r—e, =* €2. Therefore by Lemma H.8, we have [s]og.r—c, <™ €.
O
Theorem H.24 (Equivalence of Parallel Reduction and Axiomatic Semantics). e; <»* e; if and
only ife; —* ey.

Proor. Follows directly by Lemma H.22 and Lemma H.23. O

1.6 Complete Development
Lemma H.25 (<—» exists). For any e, there exists e’ such that e —» e’.
Proor. By straightforward induction on e. Of particular interest is when e is a quotation. Then

depending on its shape we can apply rule CE-AX-CP-SPLICEQUOTE or rule CE-AX-CP-QUOTESPLICE
correspondingly. O

Lemma H.26 (=—» closes =»). Given ©; A {* e : 7, if e =» ey, and e = ey, then e, —» ey.

Proor. By induction on e <—» e;.
e Rule cE-ax-cp-vAR. Then e = e; = e; = x. The goal follows by rule CE-Ax-PA-VAR.
o Cases for rules CE-AX-CP-sVAR and CE-AX-CP-KVAR are similar as the previous case.
e Rule cE-AX-cP-ABS where e = Ax : 7.e’ and e; = Ax : T.¢]

Ax:T.e’ <» Ax :T.e] | given

e/ —» e inversion (rule CE-AX-CP-ABS)
e =Ax:T.e inversion (rule CE-AX-PA-ABS)
e/ —» e, above

e, < e] LH.

Ax :T.e; =» Ax: r.e] | rule CE-AX-PA-ABS

e The case for rule CE-AX-CP-TABs is similar as the previous case.
e Rule cE-AX-cP-APP where e = e3 e4 and e; = e5 ;.

e3eq < es e | given
e3 —» es inversion (rule CE-AX-CP-APP)
ey ™ e above
e3 # Ax:1.e’ | above
e; = e;eg inversion (rule CE-AX-PA-APP)
e3 < e7 above
ey <> eg above

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:67

e7 < es LH.
eg < e LH.
e7eg “» es5es | rule CE-AX-PA-APP

o The cases for rule cE-Ax-cp-TAPP is similar as the previous case.
e Rule CE-AX-CP-BETA, where e = (Ax : T.e3) e, and e; = e5[x > ¢g].

(Ax : 1.e3) e4 = es[x > eg] | given
e3 “» es inversion (rule CE-AX-CP-BETA)
ey ™ eg above

There are two subcases for the derivation e < e,.
(1) Rule CE-AX-PA-BETA

ey = e7[x > eg] inversion (rule CE-AX-PA-BETA)
e3 < e; above

ey > eg above

e7 = €5 LH.

eg < e LH.

(Ax : 7.e3) e4 = e;[x > eg] | rule CE-AX-PA-BETA

e7[x > eg] = es[x +— es] | Lemma H.17

(2) Rule ce-AX-PA-APP

e, = ey eg inversion (rule CE-AX-PA-BETA)
e3 < e; above

ey < eg above

e7 = €5 ILH.

eg = é€q4 LH.

e7eg < es[x > eg] | rule CE-AX-PA-BETA

o The cases for rule CE-AX-CP-TBETA is similar as the previous case.

e ¢; goes through rule cE-Ax-cp-sPLICEQUOTE and e; goes through rule CE-AX-PA-QUOTESPLICE.
Impossible case as rule cE-ax-cpP-sPLICEQUOTE rules out the form of e that rule ce-ax-pa-
QUOTESPLICE can be applied.

e Rule CE-AX-CP-sPLICEQUOTE where e = [[es]
PA-SPLICEQUOTE.

We have e; = [[e{[mi]]]

T and e; also goes through rule ce-ax-

" and e3 =—» e;. Also, e; = [[eé[mi]ﬂ(/’—ﬁi and e3 <> eJ.
By LH. e, < e;.
In this case, we aim to show that by one step of rule CE-AX-PA-SPLICEQUOTE, e; can get the
same set of substitutions and quotation environments as e;, then the goal can be established
by the substitution lemma (Lemma H.17).
We know that during the derivation, for each A; " s; : 7; = ¢;, it may go through the first
branch in rule cE-Ax-cP-sPLICEQUOTE, or the second branch.
Namely, for some e;, e; < [e}’ g A ¢i A~ ¢ for some e;, A Vs = el
For each A; V"' s; : 7; = ¢;, we discuss the cases of its reduction in e; and in e,. There are four
subcases.
(1) e; goes through the first branch in rule cE-AX-cp-sPLICEQUOTE and rule CE-AX-PA-SPLICEQUOTE

respectively.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:68 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

Then for ey, it has applied the substitution s; > e/’, and left the splice environment ¢;’.
Then for ey, it has applied the substitution s; — e/”’, and left the splice environment ¢

i

ei < [e]]y inversion (rule CE-AX-CP-SPLICEQUOTE)
PLH A~ Y above
ei < ;"] inversion (rule CE-AX-PA-SPLICEQUOTE)
¢+ Ay~ ¢ | above

[[el{//ﬂff5li/, —» [[e;’ﬂd)/i LH.

~ Suppose [e;""] s < [e;] 4 has gone through rule CE-AX-PA-SPLICEQUOTE.
Then in the goal when applying rule ce-ax-PA-sPLICEQUOTE we will choose the same
branch for each splice variable in ¢;"”" as we did for it in ¢;”". Then effectively we can
generate a bunch of substitutions that when applied turns the substitution s; — e;" into
s; > e’’. This also leaves us with the environment ¢;".
— Onthe other hand, suppose [e;”’] ;» < [e]’] s has gone through rule CE-AX-PA-QUOTESPLICE.
Then in this case we have [e]”"] s = [sj]eirs =7, and €] <> [e]"] ..
Namely, e; has made a substitution s; > s; and left the splice environment A; 1 s; : 7 = e/”"’.
Then in the goal when applying rule ce-ax-Pa-sPLICEQUOTE we will choose the first
branch for s; with e/ < [e]'] ;.
This generates a substitution s; — e]’, which when applied turns the substitution s; - s;
into s; = e/’, and this also leaves us (ﬁ;’.
(2) e; goes through the first branch in rule ce-ax-cp-spLICEQUOTE, and goes through the
second branch in rule CE-AX-PA-SPLICEQUOTE.
Then for ey, it has applied the substitution s; - e/’, and left the splice environment ¢;’.

Then for ey, it has applied no substitution, but left the splice environment A; ' s; : 7; = e!”.

ei = [e/']s; | inversion (rule CE-AX-CP-SPLICEQUOTE)
P+ A~ ¢ | above
e; —» e}’ inversion (rule CE-AX-PA-SPLICEQUOTE)
e < e/l | LH.
Then by applying the first branch in rule cE-AX-PA-SPLICEQUOTE, we can obtain the substi-
tutions s; - e’ and the splice environment ¢;’.
(3) e; goes through the second branch in rule cE-ax-cp-sPLICEQUOTE and rule CE-AX-PA-
SPLICEQUOTE respectively.
Then for ey, it has applied no substitution, but left the splice environment A; ¥ s; : 7; = e/’
Then for ey, it has applied no substitution, but left the splice environment A; ' s; : 7; = e!”.

ej —» e inversion (rule CE-AX-CP-SPLICEQUOTE)
e/’ is not a quotation | above
e; —» e;”’ inversion (rule CE-AX-PA-SPLICEQUOTE)

e/ —» e/ LH.

Then by applying the second branch in rule cE-Ax-PA-SPLICEQUOTE, we can transform

from A; s = el to Ay ¥ s T = el

(4) e; goes through the second branch in rule cE-ax-cp-sPLICEQUOTE, and goes through the
first branch in rule CE-AX-PA-SPLICEQUOTE.
Then for ey, it has applied no substitution, but left the splice environment A; ' s; : 7; = e/’
Then for ey, it has applied the substitution s; > e]”’, and left the splice environment ¢}

i

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:69

e; —» e] inversion (rule CE-AX-CP-SPLICEQUOTE)
e!’ is not a quotation | above
ei < ;"] inversion (rule CE-AX-PA-SPLICEQUOTE)
P H A~ 9l above

1’ 14
le;" Ty = e LH.

By inversion we know [e]"’]» < e/’ goes through rule ce-ax-QuOTESPLICE. Therefore,
e/ = s’. As the expression is well-typed, so s" must have the same level and type as s;. We

then rewrite the above reasoning as:

e; —» e inversion (rule CE-AX-CP-SPLICEQUOTE)
e;’ is not a quotation above
e; < [[s']ernisrreer inversion (rule CE-AX-PA-SPLICEQUOTE)
o iy =el A~ A s" 7=l | above

[[S/Ilo}»”rx’:ﬂ*(‘: —» e;, ILH.

7’ 144 . .
e; —» e] by inversion (rule CE-AX-QUOTESPLICE)

Namely for e, it has applied the substitution s; — s’, and left the splice environment
Ais"cri=e].
By « renaming, this is equivalent to that for ey, it has applied no substitution, and left the
splice environment A; s = el.
Then by applying rule CE-AX-PA-SPLICEQUOTE, we can transform from A; V' s; : 7; = e to
A; HY Sit T = CI-H.

o Rule CE-AX-CP-QUOTESPLICE where € = [s]aprs.r—c, .

e1=ey inversion (rule CE-AX-CP-QUOTESPLICE)
e3 <—» ey | above

There are two subcases for the derivation e = e,.
(1) Rule CE-AX-PA-QUOTESPLICE

e = es inversion (rule CE-AX-PA-QUOTESPLICE)
e3 < e5 | above
es —» eq | LH.

(2) Rule cE-ax-pA-sPLICEQUOTE. There are further two subcases.

— The first branch
ey = [s[s = es]]s = [es], | inversion (rule CE-AX-PA-SPLICEQUOTE)
es = [es] above
les]y = es LH.

- the second branch

e = [s]orrsir—e. inversion (rule CE-AX-PA-SPLICEQUOTE)
e3 < e above
€5 —» ey LH.

[s]ews:r=e. < €4 | rule CE-AX-PA-QUOTESPLICE

]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:70 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

1.7 Parallel Reduction with Complexity

Lemma H.27 (Reflexivity). e =< e.

ProoF. By a straightforward induction on e.

Lemma H.28 (= simulates <). Ife; < e,, then e; = ey.

Proor. By induction on e; < e;. Just like for Lemma H.22, the key observation is thatin e; < e;
fewer subterms are reduced, so we employ Lemma H.27 to fill in necessary identity reductions to
obtain e; <» e,.

]

Lemma H.29 (—" simulates <»). Ife; <» e;, thene; —" e;.

Proor. By induction on e; < e,, making use of Lemma H.8 and Lemma H.9. The proof is the
same as Lemma H.23. O

Lemma H.30 (Substitution).

N N, M
o Ife; < ey, and e; < ey, then there exists M, such that e, [x — e3] =» ey[x > e4], where
M < N1 + #(X, ez) * Nz.

N N
o Ife; =» e;, thenej[a 7] =» ey[a > 7).

Proor.Part 1 By induction on the size of e;, then we do a case analysis on e; Cﬁl» es.
— rule CE-AX-PPA-LIT, where e; =i = ey, and N; = 0.
Soi[xt> e3] =i,and ey[x > e4] = i.
The goal follows by rule cE-ax-PPA-LIT where M = 0.
— rule CE-AX-PPA-VAR, where e; = x = e, and N; = 0.
So N; +#(x,e3) * Ny =0+ 1% Ny = N,.
The goal follows by letting M = N;.
— The cases for rule CE-AX-PPA-VAR where e; = y # x, and for rule CE-AX-PPA-SVAR, for
rule CE-AX-PPA-KVAR are similar as the case for rule CE-AX-PPA-LIT.
— rule CE-AX-PPA-ABS, where e; = 1y : T.e5, e, = Ay : T.¢€g, and e5 “Aj» €s.
By LH.,, es[x > e3] 2 es[x — e4], where M < Ni + #(x, e5) * No.

M

By rule CE-AX-PPA-ABS, we have (1y : T.es)[x +— e3] «» (Ay : 1.6)[x > eq]. As

#(x,e5) = #(x, 1y : 7.€6), we have M < Nj + #(x, e5) * Ns.
— The case for rule CE-AX-PPA-TABs is similar as the previous case.

N: N,
— rule CE-AX-PPA-APP, where e; = e5 €4, €3 = €7 eg, and es FAEN e7, € FAN eg, and N; = N3 + Ny.
M,
By LH.,, e5[x > e3] - e7[x — e4], and M; < N3 + #(x, e7) * No.
M,
Also by LH., eg[x > e5] <3 eg[x — eq] and My < Ny + #(x, eg) = Nj.

My+M;
So by rule ce-ax-ppA-APP, we have (es e5) [x > e3] LA (e7eg)[x — eq]. Let M = My +M,,

we have M < N3 + Ny + #(x, e7 eg) * N.

— The case for rule CE-AX-PPA-TAPP is similar as the previous case.
N; Ny
— rule CE-AX-PPA-BETA, where e; = (1y : 7.e5) €5, €2 = e7[y > eg], and e5 =» e7, eg <> eg,

and N1 = N3 + #(y, 67) * N4 + 1.
M,
By LH.,, es[x > e3] < e7[x — e4], where M; < N3 + #(x, e7) = N,.

M
Also by LH., eg[x > e5] <% eg[x - e4] and My < Ny + #(x, eg) * Ny.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:71

M +#(y,e7[x—>es])*Ma+1
By rule cE-AX-PPA-BETA, (1y : T.e5[x — e3]) (es[x — e3]) > (e7[x —

es])[y — es[x > eq]]
With y fresh (alpha-renaming), we have #(y, e;[x > eq]) = #(y, e7)
By substitution, we have (e;[y — eg])[x > eq] = (e7[x > eq]) [y > es[x > e4]].
Mi+#(y,e7)*Mp+1
Namely, ((Ay : 7.es5) eg) [x — e3] < (e7[y — es])[x > eq].
My +#(y,e7) = M + 1
S N3 + #(x, 67) * N2 + #(y, 67) * (N4 + #(x, eg) * Ng) +1
=N +#(y,e7) * No+ 1+ (#(x, €7) + #(y, €7) = #(x, €5)) * N
=N;+#(y,e7) * Ny + 1+ #(x,e7[y — es]) = N2

— The case for rule CE-AX-PPA-TBETA is similar as the previous case.

— N
Nt [e’l 51'—>e'”]]—z and e <>

— rule CE-AX-PPA-SPLICEQUOTE, where e; = [e]
e .and N = N+ #(sp ¢/) * N; +M; +1L; +1.
M
By LH,, e[x > €3] <> e’[x — ey], where M; < N + #(x, ¢’) * Ny.
Ni N
(1) If ¢, = ¢}, where e; = [e]'] 5., e’ <> e/, ¢, => ¢}, and] + A; ~> ¢’
By LH,, e;'[x + e3] < e/ [x+ ey] and N] < N;+#(x,e]”) * N,.
L
By Part 2, ¢;[x > e3] =» ¢[x > e4] and LI < Li+#(x, ¢7) * No.
M,
(2) Ifp; = A; " s 1 = e, where ¢; s e
M;
By LH., e;[x > e3] <> e][x > eq] and M] < M; + #(x, e]) * N,.
. . 7 —l , —l
By substitution, we have (e’[s; — e/’])[x > es] = ((e'[x > eq])[si > e/’ [x > eq]]).

S (s el Dlxe el

By rule CE-AX-PPA-SPLICEQUOTE, [e[x > €3]] TTme”
Pi 4

where M = My + #(s;, e’ [x > e4]) * Ni’l+ﬁi’l +]:fl +1
With s; fresh (alpha-renaming), we have #(s;, e’[x > e4]) = #(s;, €’).
Also, #(x, ¢7) = #(x, 7).

M
=M1+#(s,-,e’[xi—>e4])*Ni’i+]\7i'i+L_lfi+l
_M1+Wi+ﬁi+7i+l

N+#(xe’)*N2+#(sl, e’) x (N +#(xe”’)*N2) +M +#(xe)*N2 +L +#(xr’>)*N2 +1
—N+m +M; +L +1+(#(x ¢') +#(sie’) x #(x,) +#(xe) +#(x07)) Ny
—N+#G,e) N, + M, +1, 1t (B[[sim e]]]f,))*Nz

N
— rule CE-AX-PPA-QUOTESPLICE, where e; = [s]ou..—.., and es < e;. and N; = N + 1.
M,
By LH.,, es[x > e3] <> ey [x — e4], where M; < N +#(x, ;) * Nj.

Mi+1
By rule CE-AX-PPA-QUOTESPLICE, we have [[s]eys.r—c. [xise,] ©> €2[X > e4].

My + 1<N+#(X’,€2)*Ng+1.

N
Part 2 By a straightforward induction on the size of e; and a case analysis on e; = e.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:72 Ningning Xie, Matthew Pickering, Andres L6h, Nicolas Wu, Jeremy Yallop, and Meng Wang

Lemma H.31 (Monotonicity). Ifv < e, then e is also a value.
Proor. By a straightforward induction on v = e. O
Lemma H.32 (Transition). Ife = v, then there exists vy, such that e —" vy, and v, = v.

Proor. By induction on the derivation complexity of e =» o.

e Case rule ce-ax-pPA-LIT. The goal follows directly by letting v, = e. The cases for rule ce-ax-
PPA-ABS, rule CE-AX-PPA-TABS are similar.
e The cases for rule CE-AX-PPA-VAR, rule CE-AX-PPA-SVAR, rule CE-AX-PPA-KVAR, rule CE-AX-PPA-
APP, rule CE-AX-PPA-TAPP are impossible cases as they don’t result into values.
e Case rule CE-AX-PPA-BETA, where e = (Ax : T.e1) ez, €1 <» e3, e; <» eq, and e3[x — ey] = 0.
According to Lemma H.30, e;[x > €3] = e3[x > e4] = 0.
Then by LH., we have e;[x — e;] —" v; =» v.
Therefore (Ax : 7.e1) e —> e1[x > es] —* vy <» 0.
Namely, (Ax : 7.e1) e —* v3 <» 0.
e The case for rule CE-AX-PPA-TBETA is similar as the above case.
o Case rule CE-AX-PPA-SPLICEQUOTE, where e = v is
[e ﬂwm — > [e'[si— e”’l]ﬂz,
Since the right hand side is a value, we know ¢, are value splice environments.
(1) If §; = ¢, where e; = [e]']; , and e/’ = e”’ and ¢; =» ¢}, and ¢] +A; ~ ¢, then ¢/
are also value splice environments.
By LH. on every expression in ¢, we get ¢, —* ¢, and ¢,; =» ¢.
Letv; = [e/] s, .-
(2) If ¢, = A ¥ s; - 7; = e/, where e; = e/, then as we know ¢, is a value splice environment,
we know e is a value.
By LH, e; —" v;, and v; <> e].
—" el N < [e'[si > el el]]—,
e Case rule CE-AX-PPA-QUOTESPLICE, where [s]ous..—c, and e < v.

Then by LH., we have e —" vy = 0.
Therefore [s]eis.r-c —* [s]orrs:r—0, <» 0.

So we have [e] —

"x“:r,:e

]

Lemma H.33 (Permutation). Given ©;A ¥ e : 7, if e; < ey, and e, — es, then there exists e,
such that e; —" ey, and ey <» es.

Proor. By induction on the derivation complexity of e; = e,, and then on the size of e;. We do
a case analysis on e; <» e,.

e Case rule cE-ax-PPA-LIT. The case is impossible, as there is no es such that i — es.
e The cases for rule CE-AX-PPA-VAR, rule CE-AX-PPA-SVAR, rule CE-AX-PPA-KVAR, rule CE-AX-PPA-
ABS, rule CE-AX-PPA-TABS are all impossible.
e Case rule CE-AX-PPA-APP, where e; = e5 €6, €5 <» e, and e, <» eg, and e; = e7 eg.
Now we do a case analysis on e; — e3.
— e3 = eg eg, where e; — eo.
Then by LH., we have es —* €19 = e.
Therefore e5 e, —™ €19 €5 <> eg e3.
- e;=Ax:T.e9, and e3 = eg[x > eg].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

Staging with Class 61:73

We know e5 =» e; = Ax : 7.e9. By Lemma H.32, we have es —™ v, and v =» Ax : 7.e9. By
analyzing v =» Ax : 7.eg, we know that it must be v = Ax : 7.e1¢ (v cannot be a quotation
which is ill-typed.), and ey = ey.
Therefore es e —* (Ax : T.eqg) €6 — eqo[x > eg].
By Lemma H.30, we have ejg[x > eg] <» eg[x > es].
Namely es e —* e1g[x > e5] =< eg[x > eg].
o The case for rule CE-AX-PPA-TAPP is similar as the previous one.
e Case rule CE-AX-PPA-BETA where e; = (Ax : T.es5) €5, €5 <» e7, and eg < eg, and e; = e7[x
68].
Then e; — es[x — e].
By Lemma H.30, es[x > e5] <» e7[x > eg] — es3.
By LH., es[x — es] —" eg = e3 for some ey.
Therefore e; — e5[x > e5] —" eg < e3.
Namely e; —* eg < e3.
e Case rule CE-AX-PPA-TBETA where e; = (Aa.es) T, es <» eg, and e; = eg[a — 7].
Then e; — es[a > 7).
By Lemma H.30, es[a — 7] =» eg[a— 7] — e5.
By LH., es[a > 7] —" e; =» e5 for some e;.
Therefore e; — es[at> 7] —" e7 <» e3.
Namely e; —™ e7 = es.
e Case rule CE—AX—PPA—SPLICEQUOTE, where e; =<» e, is

[[e]}m [e’[si— e]Hgi.
We have [e’[s; — elf”l]]],—i — eg.Then it must be e3 = [e’[s; > e]”]]7,’ and (’> —]
(l

According to reduction, (/6 is g’)l , except for one As 1 55 : 75 = e5 € ¢b;, we have es — ef.

(1) ei = [e/'] 7, and e]" = e;”, and ¢} =» ¢ and ;" +A; ~> ;.

We denote ¢ as the sphce environment ¢;” after es — ef. Then ¢!+ A; ~> ¢'.
Therefore (ﬁi < 7" — @]
By LH. on e5, we know there is ¢}, such that ¢} —* ¢ «» ¢I""’.
Let e”" =¢;' for every index, except for i, where e =[e!]]
Therefore
—l
* 777 .
[[II\”'S T—L,l Hﬂ\ﬂ’rsr L”"lCL»H:e 51|—>€]]]ﬁl
(2) ¢;=As ¥ s5: 75 = e5, where e; <> es.
Namely, e; <» es —> el.
5 5
By LH., e; —" €5, and e; <> e;.
_i . . .
Lete; = e;' for every index, except for i, where e = e.
Therefore
) *
[e]]%ﬂ\»’ﬂwm:mx — [[eﬂi'\n“»sur, i es[e’[si— e/’ e/ ﬂfl
e Case rule CE-AX-PPA-QUOTESPLICE, where € = [s]og.r—c., and es <» ey, and e; — e3.

ByLH., es —" €4 = es.

Therefore [s]ovs;—o. —* [s]ers e,

If e5 is not a quotation, then by rule CE-AX-PPA-QUOTESPLICE, or otherwise by rule cE-Ax-ppa-
SPLICEQUOTE, [[s]eirs.r—e, < e3.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:74 Ningning Xie, Matthew Pickering, Andres Loh, Nicolas Wu, Jeremy Yallop, and Meng Wang

Lemma H.34 (Push Back). Given ©;A V¥ ey : 1, if e; = ey, and e; —™ vy, then there exists v,
such that e; —* vy, and vy <> v;.

Proor. We first virtualize the hypothesis, where e, —* v; corresponds to a chain of evaluation:
€1 “» ey — €3 — ...6j_1 —> € —> U1
Apply Lemma H.33, we have
e —" ey ey — ..ei_g —> e — Uy
Keep applying Lemma H.33 i — 2 times, then we get
% ’

ep —" ey —" e —" el | — el <»

Apply Lemma H.32, we have
ep —" ey —"e; —" el —" el —" vy “» 0y
Namely

e; —" vy =» vy
[}

Lemma H.35 (—" simulates =»"*). Given ©; A ¥ e : 7, if e <»* v, then there exists v, such that
e —" vy, and vy =»* v.

Proor. If e is a value, then let v, = e and we are done.
Otherwise, by Lemma H.31, e =»* v can be visualized as a chain of parallel reduction:
e <M e » ... <»e <» o <»Tp
where e; to e; are non-values.
By Lemma H.32, we have
e<» e C» .. »e — Uy e» o =»T Y
Namely,
e<» e <» .. <»e —F vy »Fy
By Lemma H.34, we get
e=» e “» .. e —F U3 e» vy <»Fo
Namely,
e<» e <» ... <»e_ — v3»¥0
Keep applying Lemma H.34, then we get
e —" Vg <»* 0

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Overview
	2.1 Multi-stage Programming
	2.2 The Level Restriction
	2.3 Type Classes and the Level Restriction
	2.4 Staging Type Classes: An Exploration of the Design Space
	2.5 Our Proposal: Staged Type Class Constraints
	2.6 Staging with Levels at Runtime
	2.7 Our Design: Splice Environments

	3 : Multi-Stage Programming with Type Classes
	3.1 Syntax
	3.2 Typing Expressions
	3.3 Constraint Resolution
	3.4 Program Typing

	4 F: Multi-stage Core Calculus with Splice Environments
	4.1 Syntax
	4.2 Typing Rules
	4.3 Dynamic Semantics
	4.4 Well-Stagedness and Type Soundness

	5 Elaboration from to F
	5.1 Elaborating Expressions with Splice Environments
	5.2 Dictionary-Passing Elaboration of Constraints
	5.3 Elaborating Programs with Top-Level Splice Definitions
	5.4 Elaboration Soundness

	6 Axiomatic Semantics
	6.1 Duality of Splices and Quotations in
	6.2 Axiomatic Semantics of F
	6.3 Contextual Equivalence

	7 Today's Typed Template Haskell
	8 Integration into GHC
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Appendix Overview
	B Code Examples in Typed Template Haskell
	C Preliminary Experiments in Scala
	D Complete Rules
	D.1 Complete Rules for
	D.2 Complete Rules for F

	E Proofs for Type Soundness of F
	E.1 Progress
	E.2 Preservation

	F Proofs for Elaboration
	G Overview of Axiomatic Semantics
	G.1 Axiomatic Equivalence
	G.2 Outline
	G.3 Axiomatic Reduction
	G.4 Parallel Reduction
	G.5 Complete Development
	G.6 Parallel Reduction with Complexity

	H List of Lemmas for Axiomatic Semantics
	H.1 Elaboration of Source Programs
	H.2 Elaboration of Source Expressions
	H.3 Axiomatic Reduction
	H.4 Church-Rosser
	H.5 Parallel Reduction
	H.6 Complete Development
	H.7 Parallel Reduction with Complexity

	I Proofs for Axiomatic Semantics
	I.1 Elaboration of Source Programs
	I.2 Elaboration of Source Expressions
	I.3 Axiomatic Reduction
	I.4 Church-Rosser
	I.5 Parallel Reduction
	I.6 Complete Development
	I.7 Parallel Reduction with Complexity

