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Multi-stage programming using typed code quotation is an established technique for writing optimizing code

generators with strong type-safety guarantees. Unfortunately, quotation in Haskell interacts poorly with type

classes, making it difficult to write robust multi-stage programs.

We study this unsound interaction and propose a resolution, staged type class constraints, which we formalize

in a source calculus 𝜆J⇒K
that elaborates into an explicit core calculus 𝐹 JK

. We show type soundness of both

calculi, establishing that well-typed, well-staged source programs always elaborate to well-typed, well-staged

core programs, and prove beta and eta rules for code quotations.

Our design allows programmers to incorporate type classes into multi-stage programs with confidence.

Although motivated by Haskell, it is also suitable as a foundation for other languages that support both

overloading and quotation.
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1 INTRODUCTION
Producing code with predictable performance is a difficult task that is greatly assisted by staging
annotations, a technique which has been extensively studied and implemented in a variety of

languages [Kiselyov 2014; Rompf and Odersky 2010; Taha and Sheard 2000] and used to eliminate

abstraction overhead in many domains [Jonnalagedda et al. 2014; Krishnaswami and Yallop 2019;

Schuster et al. 2020; Willis et al. 2020; Yallop 2017]. These annotations give programmers fine

control over performance by instructing the compiler to generate code in one stage of compilation

that can be used in another.
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The classic example of staging is power n k, where the value 𝑛𝑘 can be efficiently computed for

a fixed 𝑘 by generating code where the required multiplications have been unrolled and inlined.

The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a fixed value at

compile time, it remains a value of type Int.

power :: Int → Int → Int
power 0 n = 1

power k n = n ∗ power (k − 1) n

qpower :: Int → Code Int → Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ∗ $(qpower (k − 1) qn) K

Then in the definition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the

expression $(qpower 5 J n K) to generate n ∗ (n ∗ (n ∗ (n ∗ (n ∗ 1)))). By using the staged function,

static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int → Int
power5 n = $(qpower 5 J n K) -- power5 n = n ∗ n ∗ n ∗ n ∗ n ∗ 1
The code above is restricted to a fixed type Int, and it is natural to hope for a more generic version.

The incarnation of staged programming in Typed Template Haskell promises the benefits of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],

allowing a definition to be reused for any type that is qualified to be numeric:

npower :: Num a ⇒ Int → a → a
npower 0 n = 1

npower k n = n ∗ power (k − 1) n

qnpower :: Num a ⇒ Int → Code a → Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ∗ $(qnpower (k − 1) qn) K

Thanks to type class polymorphism, this works when n has any fixed type that satisfies the Num
interface, such as Integer , Double and countless other types.

It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ⇒ a → a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because

the type signature explicitly states that Num a may be assumed. But this is not the only problem

with this simple example: in the definition of qnpower , the constraint is bound outside a quotation

but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be

used to show that the current implementation of type classes in Typed Template Haskell is unsound.
This paper sets out to formally answer the question of how a language with polymorphism and

qualified types should interact with a multi-stage programming language, while preserving type

soundness. In particular, inspired by Typed Template Haskell, we offer the following contributions:

• We formalize a source calculus 𝜆J⇒K
, which models two key features of Typed Template

Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus 𝐹 JK
, a polymorphic lambda calculus extended with quotations

as a compilation target for multi-stage languages (§4). Splice environments, a key innovation

in 𝐹 JK
, make evaluation order evident, avoiding the need for level-indexed evaluation, and

support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from 𝜆J⇒K
to 𝐹 JK

, which combines our two key ideas:

dictionary-passing elaboration of staged type class constraints, and elaboration of splices into

splice environments (§5).
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• We prove key properties of our formalism: (a) 𝐹 JK
enjoys type soundness (§4.4), (b) well-typed,

well-staged source programs always elaborate to well-typed, well-staged core programs, and
thus 𝜆J⇒K

also enjoys type soundness (§5.4) and (c) splices and quotations are dual, building
on the axiomatic semantics of 𝐹 JK

(§6).

§7 provides a detailed comparison of our work here to the current implementation of Template

Haskell in GHC. The full proofs of the stated lemmas and theorems are available in the appendix.

While this work has been motivated by Typed Template Haskell, we believe our work will be useful

to designers and implementors of other languages which combine similar features and share many

of the same challenges.

2 OVERVIEW
This section gives an overview of our work. We start by introducing the fundamental concepts of

multi-staged programming, in the context of Typed Template Haskell.

2.1 Multi-stage Programming
Multi-stage programming provides two standard staging annotations that allow construction and

combination of program fragments:

• A quotation expression J e K is a representation of the expression e as program fragment in a

future stage. If e :: a, then J e K :: Code a.
• A splice expression $(e) extracts the expression from its representation e. If e :: Code a, then
$(e) :: a. By splicing expressions inside quotations we can construct larger quotations from

smaller ones.

Given these definitions, it may seem that quotes and splices can be used freely so long as the

types align; well-typed problems don’t go wrong, as the old adage says. Unfortunately, things are

not so simple: type soundness in multi-staged programming also requires programs to be well-staged.

2.2 The Level Restriction
The definition of well-stagedness depends on the notion of a level. Levels indicate the evaluation
order of expressions, and well-stagedness ensures that program can be evaluated in the order of

their levels, so that an expression at a particular level can only be evaluated when all expressions

it depends on at previous levels have been evaluated. Formally, the level of an expression is an

integer given by the number of quotes that surround it, minus the number of splices. In other words,

starting from level zero, quotation increases the level of an expression while splicing decreases it.

The level of an expression indicates when the expression is evaluated: (1) programs of negative

levels are evaluated at compile time; (2) programs of level 0 are evaluated at runtime; and (3)

programs of positive levels are at future unevaluated stages.

In the simplest setting, a program is well-staged if each variable is used only at the level in which

it is bound (hereafter referred to as the level restriction). Using a variable in a different stage may

simply be impossible, or at least require special attention. The following three example programs

are all well-typed, but only the first, timely, is well-staged:

timely :: Code (Int → Int)
timely = J 𝜆x → x K

hasty :: Code Int → Int
hasty = 𝜆y → $(y)

tardy :: Int → Code Int
tardy = 𝜆z → J z K

In timely, the variable x is both introduced and used at level 1. (Similarly, in the well-staged example,

qpower , in the introduction, the variables qpower , k and qn are introduced and used at level 0.) In

the second program, hasty, the variable y is introduced at level 0, but used at level −1. Evaluating
the program would get stuck, because its value is not yet known at level −1. In the third program,
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tardy, the variable z is introduced at level 0, but used at level 1. Using a variable at a later stage in

this way requires additional mechanisms to persist its value from one stage to another.

Relaxing the level restriction. Designers of multi-stage languages have developed several mecha-

nisms for relaxing the level restriction to allow references to variables from previous stages [Hanada

and Igarashi 2014; Taha and Sheard 1997]. Lifting makes a variable available to future stages by

copying its value into a future-stage representation. Since lifting is akin to serialisation, it can be

done easily for first-order types such as strings and integers, but not higher-order types. Cross-stage
persistence (CSP) is more general than lifting: it supports embedding references to heap-resident

values into quotations. Since it does not involve serialisation, CSP also supports persisting non-

serialisable values such as functions and file handles. Path-based persistence is a restricted form

of CSP for top-level
1
identifiers. Rather than persisting references to heap values, path-based

persistence stores identifiers themselves, which can be resolved in the same top-level environment

in future stages. For example, the top-level function power can be persisted in this way.

This work considers only path-based persistence. Fully-general CSP is limited to systems in

which all stages are evaluated in the same process, since it requires sharing of heaps between stages;

it is not available in systems such as Typed Template Haskell. Lifting is more broadly applicable,

but it is straightforward to add separately as a local rewriting of programs. For example, GHC

provides the Lift type class with a method lift, and instances of Lift for basic types like Int. Using
these facilities, the ill-staged tardy can be rewritten into the well-staged timelyLift:

class Lift a where
lift :: a → Code a

timelyLift :: Int → Code Int
timelyLift = 𝜆x → J $(lift x) K

2.3 Type Classes and the Level Restriction
The examples in the previous section demonstrate the importance of levels in a well-staged program

in the simplest setting. However, other features found in real-world languages sometimes interact

in non-trivial ways with multi-stage programming support. One such feature is type classes [Wadler

and Blott 1989], a structured approach to overloading. Unfortunately, naive integration of type

classes and staging poses a threat to type soundness. This section presents the problem, after a

brief introduction to type classes and their dictionary-passing elaboration.

Type classes and dictionary-passing elaboration. The following presents the elements of type

classes: the Show class offers an interface with one method show, the Show Int instance provides an
implementation of Show for the type Int with a primitive primShowInt, and the print function uses

the class method show; its type indicates that it can be used at any type a that has a Show instance.

class Show a where
show :: a → String

instance Show Int where
show = primShowInt

print :: Show a ⇒ a → String
print x = show x

Type classes do not have direct operational semantics; rather, they are implemented by dictionary-
passing elaboration into a simpler language without type classes (e.g. System F). After elaboration, a

type class definition becomes a dictionary (i.e. a record type with a field for each class member), an

instance becomes a value of the dictionary type, and each function that uses class methods acquires

an extra parameter for the corresponding dictionary:

data ShowDict a = ShowDict
{ show ′

:: a → String }
showInt = ShowDict

{ show ′ = primShowInt }
print ′ :: ShowDict a → a → String
print ′ dShow x = show dShow x

1
Do not confuse this use of “top-level” with the staging level.
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The problem of staging type class methods. Constraints introduced by type classes have the

potential to break type soundness, as implicit dictionary passing may not adhere to the level

restriction. For example, in the following program, the class method show appears inside a quotation.

Note the change of the function return type from a → String to Code (a → String)2.
print1 :: Show a ⇒ Code (a → String)
print1 = J show K

(C1)

Is print1 well-staged? It appears so, since print1 only uses the top-level class method show, which
is path-based persisted. However, a subtle problem reveals itself after type class elaboration:

print1′ :: ShowDict a → Code (a → String)
print1′ dShow = J show dShow K

After elaboration, print1′ takes an additional dictionary argument dShow :: ShowDict a. Notice that
the dictionary variable dShow is introduced at level 0, but is used at level 1! Naively elaborating

without considering the levels of constraints has introduced a cross-stage reference, making print1
ill-staged. As §2.2 outlined, one possible remedy is to persist dShow between stages, a solution

once advocated by [Pickering et al. 2019]. Although dictionaries are typically higher-order, they

are ultimately constructed from path-persistable top-level values. However, the additional run-time

overhead associated with this approach has led its erstwhile advocates to abandon it as impractical.

In contrast, the following monomorphic definition of printInt remains well-staged even after

dictionary-passing elaboration into printInt ′, since the constraint is resolved to a global instance

showInt (which can be path-based persisted) rather than abstracted as a local variable. But of course

this version does not enjoy all the benefits of type classes.

printInt :: Code (Int → String)
printInt = J show K

printInt ′ :: Code (Int → String)
printInt ′ = J show showInt K

(C2)

The problem of splicing type class methods. The interaction of splicing and dictionary-passing

elaboration can also be subtle. In particular, splices that appear in top-level definitions may require

class constraints to be used at levels prior to the ones where they are introduced. Consider the

definition of topLift:

data C = C
topLift :: Lift C ⇒ C
topLift = $(lift C)

topLift ′
:: LiftDict C → C

topLift ′ dLift = $(lift dList C) (TS1)

As with C1, although topLift appears to be well-staged, elaboration reveals that it is not, since it

produces a future-stage reference inside the splice: the dictionary dLift is introduced at level 0 but

is used at level −1. Unlike the case of C1, there is no remedy here, and the code should be rejected,

as dLift is not known until runtime, and thus cannot be used in compile-time evaluation.

2.4 Staging Type Classes: An Exploration of the Design Space
Up to this point we have focused on the problems of type unsoundness arising from the interaction

between quotation/splicing and type classes. We now turn to an exploration of potential solutions.

Since there is little formal work in this area, our remarks here focus on designs that have been

implemented in GHC. This section discusses the problems with each of these designs, and §7

includes a more detailed comparison with GHC.

Delaying type class elaboration until splicing. One approach to resolving Example C1 is to delay

dictionary-passing elaboration until the program is spliced. With this approach, code values

2
This example is an eta-reduced version of print1 = J 𝜆x → show x K. For simplicity, we omit the argument x.
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represent source programs rather than elaborated programs. For C1 this means that print1 is

not elaborated, and so the problem with its ill-staged elaboration print1′ does not arise. Instead,
splicing print1 first inserts its source code and then performs dictionary-passing elaboration, at

which point we can provide the dictionary as per normal.

universe :: String
universe = $(print1) 42

universe′ :: String
universe′ = show showInt 42

However, as Pickering et al. [2019] observe, not preserving dictionary information in quotations

can also threaten soundness. For example, the readInt function below uses the built-in function

read :: Read a ⇒ String → a, which converts a String into some Read instance (e.g. Int).

printInt :: Code (Int → String)
printInt = J show K

readInt :: Code (String → Int)
readInt = J read K

Like Example C2, we expect that the global instance readIntPrim can be used to resolve Read Int in
readInt. If so, then the following function composition would have a clear meaning, which trims

spacing around a string representing an integer by first reading it into an integer and then print it:

trim :: Code (String → String)
trim = J $(printInt) · $(readInt) K

(A1)

Unfortunately, if dictionary information is not preserved in quotations, and we only do dictionary-

passing elaboration when splicing trim, i.e., in $(trim), then any use of $(trim) would be rejected,

as its spliced result print · read is a typical example of an ambiguous type scheme [Jones 1993], i.e.,
print · read is of type (Show a, Read a) ⇒ Code (String → String), where the dictionary to be used

cannot be decided deterministically. Moreover, even when there is no such ambiguity, this approach

may still accidentally change the semantics of a program, for example when the definition site and

the splicing site have different instances
3
.

Excluding local constraints for top-level splices. One tempting solution to address the problem

of splicing-type-class-methods mentioned above (Example TS1) is to exclude local constraints

from the scope inside top-level splices. After all, top-level splices require compile time evaluation,

and local constraints will not be available during compile time. While this approach can correctly

reject TS1, it unfortunately cannot handle the combination of quotations and splices properly. In

particular, programs like the following may be unnecessarily rejected.

cancel :: Show a ⇒ a → String
cancel = $(J show K) (A2)

In this case, the body of the top-level splice is a simple quotation of the show method. This method

requires an Show constraint which is provided by the context on cancel. The constraint is introduced
at level 0 and also used at level 0, as the splice and the quotation cancel each other out. It is therefore

perfectly fine to use the dictionary passed to cancel to satisfy the requirements of Show.

Impredicativity. Forthcoming versions of GHC are expected to feature impredicativity, allowing
type variables to be instantiated by polymorphic types [Serrano et al. 2020]. At a first glance,

impredicativity appears to resolve the difficulty; furthermore, it naturally extends to include other

features such as quantified constraints [Bottu et al. 2017].

For our example, impredicativity allows print to be given the following type, indicating that the

code returned is polymorphic in the Show instance:

3
In GHC, this requires language pragmas for overlapping instances, which allows resolving class constraints using more

specific instances, and is not uncommon in practice. For example, a module can have both instance Eq [ Int ] and

instance Eq [a ], and the former will be used to resolve Eq [ Int ] , and the latter can resolve, for example, Eq [Bool ].
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printImp :: Code (Show a ⇒ a → String)
printImp = J show K

At a small scale, this neatly solves the problem: the type indicates that the constraint Show a
elaborates to a level 1 parameter, making the generated code well-staged. However, in larger

examples, using impredicativity in this way severely limits the flexibility of staged functions. For

example, here is an alternative definition of qnpower using impredicativity:

qnpowerImp :: Int → Code (Num a ⇒ a) → Code (Num a ⇒ a)
qnpowerImp 0 qn = J 1 K
qnpowerImp k qn = J $(qn) ∗ $(qnpowerImp (k − 1) qn) K

As with printImp, the types indicate that qnpowerImp is well-staged: the positions of the Num a
constraints beneath Code indicate that they elaborate to level 1 parameters. Unfortunately, the type

of the parameter qn now places additional demands on callers. The unstaged polymorphic npower
function accepts an expression of any numeric type a as its second argument, and it would be

convenient for its staged counterpart to accept an expression of any future-stage numeric type

Code a. Instead, qnpowerImp demands an argument of type Code (Num a ⇒ a): even if it is called

at a monomorphic type such as Int, the argument must still have type Code (Num Int ⇒ Int). This
requirement has unfortunate effects on usability: such arguments cannot be of type Code Int, since
Code Int is not a subtype of Code (Num Int ⇒ Int) (in the latest GHC). This is a significant loss of

flexibility for callers. Further studies, beyond the scope of this paper, would be needed to support

such subtyping while preserving impredicativity. Moreover, the requirement also leads to reduced

control over generated code, which will be strewn with many additional dictionary abstractions

and applications in generated code involving type classes. It may be possible to eliminate some of

these in subsequent compiler passes but many of those passes are based on heuristics. Relying on

compiler optimizations does not produce predictable program performance: it is almost impossible

to tell by inspection how a program will be optimized.

2.5 Our Proposal: Staged Type Class Constraints
As we have seen, the interaction of staging and type-class elaboration is complicated, which cannot

be managed by simply imposing additional restrictions on either one. A targeted solution that

properly combines the two processes and restores type soundness is therefore needed.

Our proposal is to introduce staged type class constraints, a new constraint form CodeC C
indicating that the constraint C has been staged. That is, we can use the staged constraint CodeC C
to prove a constraint C in the next stage. With staged type class constraints, we can establish type

soundness by enforcing well-stageness of constraints and dictionaries, and thus ill-staged use of

constraints (e.g. print1 and topLift) can be correctly rejected. To illustrate the idea, let us reconsider

the problematic example print1 in C1. We rewrite the example to print2 with a staged type class

constraint in its new type signature as follows.

print2 :: CodeC (Show a) ⇒ Code (a → String) -- originally Show a ⇒ Code (a → String)
print2 = J show K

(S1)

This example illustrates the key idea of staged type class constraints. First, during typing, we

use the CodeC (Show a) constraint to resolve the Show a constraint raised by show. Notably, the
CodeC (Show a) constraint is introduced at level 0 but the Show a constraint is resolved at level 1.

That means, staged type classes have the static semantics that a constraint CodeC C at level n is
equivalent to a constraint C at level n + 1.
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Second, in order to elaborate the expression with dictionary-passing, we need a dictionary

representation of CodeC C. Fortunately, we already have all necessary machinery within the

language – since dictionaries become regular data structures after elaboration, staging annotations

can effectively convert between a dictionary for CodeC C and a dictionary for C. That means,

staged type class constraints have the simple elaboration semantics that a dictionary for a constraint
CodeC C is a representation of the dictionary for a constraint C.

Applying this elaboration semantics to print2 produces the following code:

print2′ :: Code (ShowDict a) → Code (a → String)
print2′ cdShow = J show $(cdShow) K

The type Code (ShowDict a) is the elaboration of the constraint CodeC (Show a), and so cdShow is

the representation of a dictionary, and can be spliced inside the quote as the dictionary argument

to show. Crucially, the reference to cdShow is at the correct level, and so the program is type-safe.

The power function revisited. Recall the qnpower example in the introduction (§1):

qnpower :: Num a ⇒ Int → Code a → Code a

Just as print1 in Example C1, the definition had to be rejected because of the ill-stagedness of the

constraints. Using staged class constraints, we argue that the function power should instead have

the constraint CodeC (Num a), which then gets elaborated to Code (NumDict a):
qnpower :: CodeC (Num a) ⇒
Int → Code a → Code a

qnpower 0 cn = J 1 K
qnpower k cn =

J $(cn) ∗ $(qnpower (k − 1) cn) K

qnpower ′ :: Code (NumDict a) →
Int → Code a → Code a

qnpower ′ cdNum 0 cn = J 1 K
qnpower ′ cdNum k cn =

J (∗) $(cdNum) $(cn) $(qnpower (k − 1) cn) K

(S2)

The elaboration of npower5 then shows how C can be converted into CodeC C by quoting:

npower5 :: Num a ⇒ a → a
npower5 n = $(qnpower 5 J n K)

npower5 ′ :: NumDict a → a → a
npower5 ′ dNum n = $(qnpower ′ J dNum K 5 J n K)

In this case, by quoting dNum, the argument to qnpower ′ is a representation of a dictionary (i.e.,

J dNum K :: Code (NumDict a)) as will be required by the elaborated type of CodeC (Num a).
Moreover, all variables in the definitions are well-staged.

2.6 Staging with Levels at Runtime
Besides formalizing staged type class constraints, our work also offers a guideline for implementa-

tion. In order to provide a robust basis for real-world languages such as Typed Template Haskell,

we want our formalism to be easy to implement and to stay close to existing implementations.

One question, then, is how to evaluate staging programs. The level of an expression, described

earlier, indicates when the expression is evaluated: expressions with negative levels are evaluated at

compile time, those with level 0 at runtime, and those with positive levels in future stages. Ensuring

a well-staged evaluation order involves access the level information during evaluation. For example,

evaluating the following expression at runtime (level 0) involves evaluating e1 and e3, but not e2:

(e1, J e2 $(e3) K)

This is often done by level-indexing the reduction relation [Calcagno et al. 2003; Taha and Sheard

1997]. For example, during evaluation, we can traverse the quotation J e2 $(e3) K, modifying the

level (initially 0) when quotations or splices are encountered, looking for expressions of level 0 to
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-

mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating

inside quotations. But in realistic implementations, quotations are compiled to a representation

form for which implementing substitution can be difficult. In particular, previous implementations

with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain

separate environments for free variables which can be substituted into without having to implement

substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations

with splice environments in our core calculus 𝐹 JK
. Splice environments capture splices inside quota-

tions, avoiding the need to traverse quotations before splicing them into programs, and allowing

quotations to be treated in an opaque manner that imposes few constraints on their representation.

Splice environments also make the evaluation order of the core calculus evident, avoiding the need

for level-indexed reduction. Using splice environments is reminiscent of the approach taken in

logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J𝑒K𝜙 , where 𝑒 is a quoted expression and 𝜙 the

splices it contains. 𝜙 consists of a list of splice variables, with each splice variable 𝑠 represented as

a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in 𝐹 JK

(assuming 𝑒1, 𝑒2 and 𝑒3 contain no other splices).

(𝑒1, J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 )
There are several points to note. First, the splice $(𝑒3) is replaced by a fresh splice variable 𝑠 ,

bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,

so that quotations no longer contain splices; in fact, 𝐹 JK
has no splices, only splice environments.

Second, the splice variable 𝑠 captures four elements:

(1) the spliced expression (𝑒3).

(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.

(3) the level of the expression. Here, 𝑒3 is of level 0.

(4) the type (𝜏) after splicing. If 𝑒3 is of type Code𝜏 then $(𝑒3) is of type 𝜏 .
Those elements imply that the splice variable 𝑠 , representing $(𝑒3), is at level 1 and of type 𝜏 .

Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 is at level 0). This is an invariant

maintained in the core calculus: a splice is bound immediately to the innermost surrounding

quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect

quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation

J𝑒K𝜙 , rather than inspecting 𝑒 , it evaluates its splice environments 𝜙 , which are exactly those splices

inside the quotation that should be evaluated in the current stage. In the above example, at level

0, evaluation starts with 𝑒1, then proceeds to the quotation J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 and moves to its splice

environment • ⊢0 𝑠 : 𝜏 = 𝑒3, which in turn evaluates 𝑒3. As this description makes clear, evaluating

the expression evaluates 𝑒1 and 𝑒3 as desired. In more complex examples, nested quotations and

splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice definitions. As we have said, splice environments

bind each splice to the innermost surrounding quotation at the same level. This scheme does not

account for the case of splices of negative levels which have no such enclosing quotation, such as
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top-level splices. Since splices of negative levels are exactly those expressions that are evaluated at

compile-time, we lift the corresponding splice environments to top-level as splice definitions

spdef • ⊢−1 𝑠 : 𝜏 = 𝑒

and put them before the rest of the program. This also gives meaning to compile-time evaluation in

our formalism, where it is modeled using top-level splice definitions, whose evaluation happens

before the rest of the program. We might also imagine a post-elaboration process which partially

evaluates a program to a residual by computing and removing these splice definitions. Such a

process can be easily implemented separately, so we do not include it in the formalism.

3 𝜆J⇒K: MULTI-STAGE PROGRAMMINGWITH TYPE CLASSES
We present 𝜆J⇒K

, which has been designed to incorporate the essential features of a language with

staging and qualified types, with the key novelty in the formalism of staged type class constraints.

3.1 Syntax
Figure 1 presents the syntax of our source calculus 𝜆J⇒K

. The syntax of type classes follows closely

that of Bottu et al. [2017]; Chakravarty et al. [2005]; Jones [1994].

A source program pgm is a sequence of top-level definitions D, type class declarations C, and
instance definitions I, followed by an expression 𝑒 . Top-level definitions D (k = 𝑒) model path-

based cross-stage persistence: only variables previously defined in a top-level definition can be

referenced at arbitrary levels. The syntax of type class declarations C is largely simplified to avoid

clutter in the presentation. In particular, type class definitions TC awhere {k : 𝜌} have precisely
one method and no superclasses. Instance definitions 𝐶i

i ⇒ TC𝜏 where {k = 𝑒} are permitted

to have an instance context, which is interpreted that 𝜏 is an instance of the type class TC with

the method implementation k = 𝑒 , if 𝐶i
𝑖
holds. The expression language 𝑒 is a standard 𝜆-calculus

extended with multi-stage annotations, and includes literals 𝑖 , top-level variables k, variables x,
lambdas 𝜆x : 𝜏 .𝑒 , applications 𝑒1 𝑒2, as well as quotations J𝑒K and splicing $𝑒 .

Following Jones [1994], the type language distinguishes between monotypes 𝜏 , qualified types

𝜌 , and polymorphic types 𝜎 . Monotypes 𝜏 include type variables a, the integer type Int, function
types 𝜏1 → 𝜏2 and code representation Code𝜏 . Qualified types 𝜌 qualify over monotypes with a list

of constraints (𝐶 ⇒ 𝜌). Polymorphic types 𝜎 are qualified types with universal quantifiers (∀a.𝜎).
Finally, type class constraints are normal constraints TC𝜏 , or staged constraints CodeC𝐶 .

The program theory Θ is a context of type information for names introduced by top-level

definitions k : 𝜎 , and the type class axioms introduced by instance declarations ∀ai i .𝐶j
j ⇒ 𝐶 .

The context Γ is used for locally introduced information, including value variables x : (𝜏, 𝑛), type
variables a, and local type class axioms (𝐶,𝑛). The context keeps track of the (integer) level 𝑛 that

value and constraint variables are introduced at; the typing rules will ensure that the variables are

only used at the current level.

3.2 Typing Expressions
Figure 1 also presents the typing rules for expressions. The judgment Θ; Γ ⊢𝑛 𝑒 : 𝜎 says that under

the program theory Θ, the context Γ, and the current level 𝑛, the expression 𝑒 has type 𝜎 . The

gray parts are for elaboration (§5) and can be ignored until then.

Most typing rules are standard [Bottu et al. 2017; Chakravarty et al. 2005], except that rules are

indexed by a level. As emphasized before, level-indexed typing rules ensure that variables and

constraint can only be used at the level they are introduced. Literals and top-level variables can

be used at any level (rules s-lit and s-kvar), as they can be persisted. Importantly, rule s-var
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program pgm F def D; pgm | classC; pgm | instI; pgm | 𝑒
definition D F k = 𝑒

class C F TC awhere {k : 𝜌}
instance I F 𝐶i

i ⇒ TC𝜏 where {k = 𝑒}
expression 𝑒 F 𝑖 | k | x | 𝜆x : 𝜏 .𝑒 | 𝑒1 𝑒2 | J𝑒K | $𝑒

monotype 𝜏 F a | Int | 𝜏1 → 𝜏2 | Code𝜏
qualified type 𝜌 F 𝐶 ⇒ 𝜌 | 𝜏
polymorphic type 𝜎 F ∀a.𝜎 | 𝜌
constraint 𝐶 F TC𝜏 | CodeC𝐶

program context Θ F • | Θ, k : 𝜎 | Θ,∀ai i .𝐶j
j ⇒ 𝐶

context Γ F • | Γ, x : (𝜏, 𝑛) | Γ, a | Γ, (𝐶,𝑛)

Θ; Γ ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙 (Typing expressions)

s-lit

Θ; Γ ⊢𝑛 𝑖 : Int { 𝑖 | •

s-kvar

k : 𝜎 ∈ Θ

Θ; Γ ⊢𝑛 k : 𝜎 { k | •

s-var

x : (𝜏, 𝑛) ∈ Γ

Θ; Γ ⊢𝑛 x : 𝜏 { x | •
s-abs

Θ; Γ, x : (𝜏1, 𝑛) ⊢𝑛 𝑒 : 𝜏2 { 𝑒 | 𝜙
1

Γ ⊢ 𝜏1 { 𝜏 ′
1

𝜙
1
++ x : (𝜏 ′

1
, 𝑛) { 𝜙

2

Θ; Γ ⊢𝑛 𝜆x : 𝜏1 .𝑒 : 𝜏1 → 𝜏2 { 𝜆x : 𝜏 ′
1
.𝑒 | 𝜙

2

s-app

Θ; Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 { 𝑒1 | 𝜙1

Θ; Γ ⊢𝑛 𝑒2 : 𝜏1 { 𝑒2 | 𝜙2

Θ; Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏2 { 𝑒1 𝑒2 | 𝜙1
, 𝜙

2

s-tabs

Θ; Γ, a ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙
1

𝜙
1
++ a { 𝜙

2

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { Λa.𝑒 | 𝜙
2

s-tapp

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′

Θ; Γ ⊢𝑛 𝑒 : 𝜎 [a ↦→ 𝜏] { 𝑒 𝜏 ′ | 𝜙
s-cabs

Θ; Γ, 𝑒𝑣 : (𝐶,𝑛) ⊢𝑛 𝑒 : 𝜌 { 𝑒 | 𝜙
1

Γ ⊢ 𝐶 { 𝜏 𝜙
1
++ 𝑒𝑣 : (𝜏, 𝑛) { 𝜙

2
fresh 𝑒𝑣

Θ; Γ ⊢𝑛 𝑒 : 𝐶 ⇒ 𝜌 { 𝜆𝑒𝑣 : 𝜏 .𝑒 | 𝜙
2

s-capp

Θ; Γ ⊢𝑛 𝑒 : 𝐶 ⇒ 𝜌 { 𝑒1 | 𝜙1
Θ; Γ |=𝑛 𝐶 { 𝑒2 | 𝜙2

Θ; Γ ⊢𝑛 𝑒 : 𝜌 { 𝑒1 𝑒2 | 𝜙1
, 𝜙

2

s-qote

Θ; Γ ⊢𝑛+1 𝑒 : 𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛 J𝑒K : Code𝜏 { J𝑒K𝜙.𝑛 | ⌊𝜙⌋𝑛

s-splice

Θ; Γ ⊢𝑛−1 𝑒 : Code𝜏 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′ fresh 𝑠

Θ; Γ ⊢𝑛 $𝑒 : 𝜏 { 𝑠 | 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 ′ = 𝑒)

Fig. 1. Syntax and typing rules of 𝜆J⇒K

says that if a variable x is introduced at level 𝑛, then it is well-typed at level 𝑛. Rules s-cabs and

s-capp handle generalization and instantiation of type class constraints. If an expression 𝑒 can be

type-checked under a local type class assumption 𝐶 , then 𝑒 has a qualified type 𝐶 ⇒ 𝜌 . Otherwise,

if a constraint 𝐶 can be resolved (§3.3), then an expression of type 𝐶 ⇒ 𝜌 can be typed 𝜌 .
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Γ ⊢ 𝜎 { 𝜏 (Well-formed types)

s-k-tvar

a ∈ Γ

Γ ⊢ a { a

s-k-arrow

Γ ⊢ 𝜏1 { 𝜏1 Γ ⊢ 𝜏2 { 𝜏2

Γ ⊢ 𝜏1 → 𝜏2 { 𝜏1 → 𝜏2

s-k-carrow

Γ ⊢ 𝐶 { 𝜏1 Γ ⊢ 𝜌 { 𝜏2

Γ ⊢ 𝐶 ⇒ 𝜌 { 𝜏1 → 𝜏2
s-k-forall

Γ, a ⊢ 𝜎 { 𝜏

Γ ⊢ ∀a.𝜎 { ∀a.𝜏

s-k-code

Γ, a ⊢ 𝜏 { 𝜏 ′

Γ ⊢ Code𝜏 { Code𝜏 ′

Γ ⊢ 𝐶 { 𝜏 (Well-formed constraints)
s-k-tc

TC awhere {k : 𝜌} Γ ⊢ 𝜌 [a ↦→ 𝜏] { 𝜏 ′

Γ ⊢ TC𝜏 { 𝜏 ′

s-k-codec

Γ ⊢ 𝐶 { 𝜏

Γ ⊢ CodeC𝐶 { Code𝜏

Θ; Γ |=𝑛 𝐶 { 𝑒 | 𝜙 (Constraint Resolution)

s-solve-global

ev : ∀a.𝐶i
i ⇒ 𝐶 ∈ Θ Γ ⊢ 𝜏 { 𝜏 ′ Θ; Γ |=𝑛 𝐶i [a ↦→ 𝜏] { 𝑒i | 𝜙 i

i

Θ; Γ |=𝑛 𝐶 [a ↦→ 𝜏] { ev 𝜏 ′ 𝑒i i | 𝜙 i
i

s-solve-local

𝑒𝑣 : (𝐶,𝑛) ∈ Γ

Θ; Γ |=𝑛 𝐶 { 𝑒𝑣 | •
s-solve-incr

Θ; Γ |=𝑛−1 CodeC𝐶 { 𝑒 | 𝜙 Γ ⊢ 𝐶 { 𝜏 fresh 𝑠

Θ; Γ |=𝑛 𝐶 { 𝑠 | 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 = 𝑒)

s-solve-decr

Θ; Γ |=𝑛+1 𝐶 { 𝑒 | 𝜙

Θ; Γ |=𝑛 CodeC𝐶 { J𝑒K𝜙.𝑛 | ⌊𝜙⌋𝑛

Fig. 2. Well-formed types, well-formed constraints and constraint resolution in 𝜆J⇒K

Rules s-qote and s-splice type-check staging annotations. In particular, rule s-qote increases

the level by one and gives J𝑒K type Code𝜏 when 𝑒 has type 𝜏 , while rule s-splice decreases the

level by one and gives 𝑒 type 𝜏 when $𝑒 has type Code𝜏 .

Well-formed types and constraints. Typing rules (e.g., rule s-abs) refer to well-formed rules for

types and for constraints as given in Figure 2. The type well-formedness judgment Γ ⊢ 𝜎 simply

checks that all type variables are well-scoped. The constraint well-formedness constraint Γ ⊢ 𝐶
checks that the class method type is well-formed after substituting the variable a with 𝜏 .

3.3 Constraint Resolution
The typing rule (rule s-capp) also makes use of constraint resolution, whose rules are given at

the bottom of Figure 2. The judgment Θ; Γ |=𝑛 𝐶 reads that under the program theory Θ, the
context Γ, and the current level 𝐶 , the type class constraint 𝐶 can be resolved. The definition of

constraint resolution in 𝜆J⇒K
has two key novelties: (1) level-indexing, which allows us to guarantee

well-stagedness of constraints; (2) resolution of staged type class constraints.

Rule s-solve-global resolves a type class constraint using an instance definition. If Θ contains

the instance definition ∀a.𝐶i
i ⇒ 𝐶 , we can resolve 𝐶 [a ↦→ 𝜏] by resolving 𝐶i [a ↦→ 𝜏] 𝑖 . Rule s-

solve-local resolves a constraint using the local type class axiom.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.



Staging with Class 61:13

Θ ⊢ pgm : 𝜎 (Typing programs)
s-pgm-def

Θ1 ⊢ D ⊣ Θ2 Θ2 ⊢ pgm : 𝜎

Θ1 ⊢ def D; pgm : 𝜎

s-pgm-cls

Θ1 ⊢ C ⊣ Θ2 Θ2 ⊢ pgm : 𝜎

Θ1 ⊢ classC; pgm : 𝜎

s-pgm-inst

Θ1 ⊢ I ⊣ Θ2 Θ2 ⊢ pgm : 𝜎

Θ1 ⊢ instI; pgm : 𝜎

s-pgm-expr

Θ; • ⊢0 𝑒 : 𝜎 { 𝑒 | 𝜙 • ⊢ 𝜎 { 𝜏 𝑒 : 𝜏 ⊢−1 𝜙 { 𝜌gm

Θ ⊢ 𝑒 : 𝜎 { 𝜌gm

Θ1 ⊢ D ⊣ Θ2 (Typing definitions)
s-def

Θ; • ⊢0 𝑒 : 𝜎
Θ ⊢ k = 𝑒 ⊣ Θ, k : 𝜎

Θ1 ⊢ C ⊣ Θ2 (Typing class declarations)
s-cls

a ⊢ 𝜌

Θ ⊢ TC awhere {k : 𝜌} ⊣ Θ, k : ∀a.TC a ⇒ 𝜌

Θ1 ⊢ I ⊣ Θ2 (Typing class instances)
s-inst

TC awhere {k : 𝜌}

bj
j
= ftv (𝜏) bj

j ⊢ 𝐶i

i

Θ; bj
j
, (𝐶i, 0)

i ⊢0 𝑒 : 𝜌 [a ↦→ 𝜏]

Θ ⊢ 𝐶i
i ⇒ TC𝜏 where {k = 𝑒} ⊣ Θ,∀bj

j
.𝐶i

i ⇒ TC𝜏

Fig. 3. Program typing in 𝜆J⇒K

Rules s-solve-decr and s-solve-incr are specific to our system. In particular, rule s-incr says

that a staged type class constraint CodeC𝐶 at level 𝑛 − 1 can be used to resolve 𝐶 at level 𝑛, which

is essentially what enables us to have constraint inside quotations. Similarly, rule s-decr says that

a normal type class constraint 𝐶 at level 𝑛 + 1 can be used to resolve CodeC𝐶 at level 𝑛. We can

thus use these two rules to convert back and forth between CodeC𝐶 and 𝐶 .

Example 3.1 (𝜆J⇒K typing). Let us illustrate the typing rules and the constraint resolution rules by

revisiting the example J show K (Example S1). Below we give its typing derivation. For this example

we assume the primitive type String, and the program environment Θ to contain the type of show.

Θ = show : ∀a.Show a ⇒ a → String

Γ = a, (CodeC (Show a), 0)
show : ∀a.Show a ⇒ a → String ∈ Θ

Θ; Γ ⊢1 show : ∀a.Show a ⇒ a → String
s-kvar

Θ; Γ ⊢1 show : Show a ⇒ a → String
s-tapp

(CodeC (Show a), 0) ∈ Γ

Θ; Γ |=0 CodeC (Show a)
s-solve-local

Θ; Γ |=1 Show a
s-solve-incr

Θ; Γ ⊢1 show : (a → String)
s-capp

Θ; Γ ⊢0 JshowK : Code (a → String)
s-qote

Θ; a ⊢0 JshowK : CodeC (Show a) ⇒ Code (a → String)
s-cabs

Θ; • ⊢0 JshowK : ∀a.CodeC (Show a) ⇒ Code (a → String)
s-tabs

Let us go through the derivation bottom-up. First, by applying rules s-tabs and s-cabs, we introduce

the type variable a and the staged type class constraint CodeC (Show a) at level 0 into the context.

Then by rule s-qote, our goal becomes Θ; Γ ⊢1 show : (a → String) at level 1. At this point,
rule s-kvar allows us to use show from Θ at level 1, but we need to further apply rule s-tapp and

s-capp, and the latter requires us to prove Show a at level 1. To this end, rule s-solve-local first

gets CodeC Show a at level 0, and rule s-solve-incr then converts it into Show a at level 1.
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3.4 Program Typing
As we have seen from the syntax, a program is a sequence of top-level definitions, class and

instance declarations followed by an expression. Figure 3 presents the typing rules for programs.

The judgment Θ ⊢ pgm : 𝜎 reads that under the program theory Θ, the source program pgm has

type 𝜎 . Most rules are standard. Top-level definitions (rule s-pgm-def) and declaration forms (rules s-

pgm-cls and s-pgm-inst) extend the program theory Θ which is used to type-check subsequent

definitions. Rule s-pgm-expr makes it clear that the top-level of the program is level 0 and that the

expression is checked in an empty local environment.

Rules s-def, s-cls, and s-inst type-check top-level definitions, class and instance declarations,

respectively. Rule s-def extends the list of top-level definitions available at all stages. Rule s-cls

extends the program theory with the qualified class method. Rule s-inst checks that the class

method is of the type specified in the class definition.

4 𝐹 JK: MULTI-STAGE CORE CALCULUS WITH SPLICE ENVIRONMENTS
We describe an explicitly typed core language 𝐹 JK

, which extends System F with quotations, splice
environments and top-level splice definitions. 𝐹 JK

does not contain splices themselves as they are

modeled using the splice environments, which are attached to quotations, and top-level splice

definitions. As such, quotations can be considered opaque until spliced, and 𝐹 JK
serves as a suitable

compilation target for multi-staging programming.

4.1 Syntax
The syntax for 𝐹 JK

is presented at the top of Figure 4. To reduce notational clutter, we reuse notation

from 𝜆J⇒K
for expressions and types, making it clear from the context which calculus we refer to.

A program (𝜌gm) is a sequence of top-level definitions (D) and top-level splice definitions (S)
followed by an expression (𝑒). Top-level definitions k : 𝜏 = 𝑒 are the same as for 𝜆J⇒K

, except

that, since 𝐹 JK
is explicitly typed, k is associated with its type 𝜏 . There is no syntax for type

classes or instances, which will be represented using top-level definitions after dictionary-passing

elaborations. Top-level splice definitions Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 are used to support compile-time evaluation,

where the splice variable 𝑠 captures the local type environment Δ, the level 𝑛, the type after splicing
𝜏 , and the expression to be spliced 𝑒 . As we will see, the typing rules will ensure that that expression

𝑒 has type Code𝜏 at level 𝑛 under type context Δ. The purpose of the environment Δ is to support

open code representations which lose their lexical scoping when floated out from the quotation.

Expressions 𝑒 include literals 𝑖 , top-level variables k, splice variables 𝑠 , variables x, lambdas

𝜆x : 𝜏 .𝑒 , applications 𝑒1 𝑒2, type abstractions Λa.𝑒 and type applications 𝑒 𝜏 , and quotations with

splice environment J𝑒K𝜙 , which are quotations with an associated splice environment. The splice

environment 𝜙 is essentially a list of splice definitions (Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒), which binds a splice variable

𝑠 for each splice point within the quoted expression. A splice point is where the result of evaluating

a splice will be inserted. One example we have seen from §2.7 is that the expression J e2 $(e3) K can
be represented in 𝐹 JK

as J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 which, when spliced, will insert the result of splicing 𝑒3 in the

place of the splice variable 𝑠 .

The program context Θ records the type of top-level definitions k : 𝜏 and top-level splice

definitions 𝑠 : (Δ, 𝜏, 𝑛). We distinguish between two type contexts Δ and Γ, where Γ is Δ extended

with types for splice variables. The syntax distinction makes it clear that splice definitions (S) and
environments (𝜙) only capture Δ, which are type contexts elaborated from the source language

and so contain no splice variables.
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program 𝜌gm F def D; 𝜌gm | spdef S; 𝜌gm | 𝑒 : 𝜏
definition D F k : 𝜏 = 𝑒

splice definition S F Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒

expression 𝑒 F 𝑖 | k | 𝑠 | x | 𝜆x : 𝜏 .𝑒 | 𝑒1 𝑒2 | Λa.𝑒 | 𝑒 𝜏 | J𝑒K𝜙
splice environment 𝜙 F • | 𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒

type 𝜏 F a | Int | 𝜏1 → 𝜏2 | ∀a.𝜏 | Code𝜏
program context Θ F • | Θ, k : 𝜏 | Θ, 𝑠 : (Δ, 𝜏, 𝑛)
context Δ F • | Δ, x : (𝜏, 𝑛) | Δ, a

Γ F • | Γ, x : (𝜏, 𝑛) | Γ, a | Γ, 𝑠 : (Δ, 𝜏, 𝑛)

Θ ⊢ 𝜌gm (Typing programs)
c-pgm-def

Θ1 ⊢ D ⊣ Θ2 Θ2 ⊢ 𝜌gm

Θ1 ⊢ def D; 𝜌gm

c-pgm-spdef

Θ1 ⊢ S ⊣ Θ2 Θ2 ⊢ 𝜌gm

Θ1 ⊢ spdef S; 𝜌gm

c-pgm-expr

Θ; • ⊢0 𝑒 : 𝜏
Θ ⊢ 𝑒 : 𝜏

Θ1 ⊢ D ⊣ Θ2 (Typing definitions)
c-def

Θ; • ⊢0 𝑒 : 𝜏
Θ ⊢ k : 𝜏 = 𝑒 ⊣ Θ1, k : 𝜏

Θ1 ⊢ S ⊣ Θ2 (Typing splice definitions)
c-spdef

Θ;Δ ⊢𝑛 𝑒 : Code𝜏 Δ ¤> 𝑛

Θ ⊢ Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ⊣ Θ, 𝑠 : (Δ, 𝜏, 𝑛 + 1)

Θ; Γ ⊢𝑛 𝑒 : 𝜏 (Typing expressions)
c-lit

Θ; Γ ⊢𝑛 𝑖 : Int

c-var

x : (𝜏, 𝑛) ∈ Γ

Θ; Γ ⊢𝑛 x : 𝜏

c-kvar

k : 𝜏 ∈ Θ

Θ; Γ ⊢𝑛 k : 𝜏

c-svar

𝑠 : (Δ, 𝜏, 𝑛) ∈ Γ Δ ⊆ Γ

Θ; Γ ⊢𝑛 𝑠 : 𝜏
c-top-svar

𝑠 : (Δ, 𝜏, 𝑛) ∈ Θ Δ ⊆ Γ

Θ; Γ ⊢𝑛 𝑠 : 𝜏

c-abs

Θ; Γ, x : (𝜏1, 𝑛) ⊢𝑛 𝑒 : 𝜏2

Θ; Γ ⊢𝑛 𝜆x : 𝜏1.𝑒 : 𝜏1 → 𝜏2
c-app

Θ; Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 Θ; Γ ⊢𝑛 𝑒2 : 𝜏1

Θ; Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏2

c-tabs

Θ; Γ, a ⊢𝑛 𝑒 : 𝜏

Θ; Γ ⊢𝑛 Λa.𝑒 : ∀a.𝜏

c-tapp

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜏2
Θ; Γ ⊢𝑛 𝑒 𝜏1 : 𝜏2 [a ↦→ 𝜏1]

c-qote

Θ; Γ ⊢𝑛 𝜙 Θ; Γ, 𝜙Γ ⊢𝑛+1 𝑒 : 𝜏
Θ; Γ ⊢𝑛 J𝑒K𝜙 : Code𝜏

𝜙Γ
converts 𝜙 into a context.

•Γ = •
(𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒)Γ = 𝜙Γ, 𝑠 : (Δ, 𝜏, 𝑛 + 1)

Θ; Γ ⊢𝑛 𝜙 ≜ Θ; Γ ⊢ 𝜙 ∧ 𝜙 � 𝑛 Θ; Γ ⊢ 𝜙 (Typing splice environments)

c-s-empty

Θ; Γ ⊢ •

c-s-cons

Θ; Γ ⊢ 𝜙 Θ; Γ,Δ ⊢𝑛 𝑒 : Code𝜏 Δ ¤> 𝑛

Θ; Γ ⊢ 𝜙, (Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒)

Fig. 4. Syntax and typing in 𝐹 JK

4.2 Typing Rules
Figure 4 presents the typing rules for 𝐹 JK

. The judgment Θ ⊢ 𝜌gm type-checks a core program. As

before, top-level definitions (rule c-pgm-def) and top-level splice definitions (rule c-pgm-spdef)
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extend the program theory Θ which is used to type-check subsequent definitions. Rule c-pgm-expr

type-checks the expression.

Rule c-spdef checks top-level splice definitions Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 by checking that 𝑒 has type Code𝜏
at level 𝑛 under the current program context Θ and the context Δ. Notice that the program context

Θ is extended with 𝑠 : (Δ, 𝜏, 𝑛 + 1). The level of 𝑠 is 𝑛 + 1 as it represents the spliced expression. In

the example of J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 which expresses J e2 $(e3) K, the splice variable 𝑠 stands for $(e3). The
precondition Δ ¤> 𝑛 ensures that all variables in Δ have levels greater than 𝑛 (§4.4.1). We use dotted
binary operators (e.g., ¤>, � etc) to indicate level comparison.

The expression typing rules for the core expressions are for the most part the same as those in

the source language. One observation is that since the language does not contain splicings, the

level during typing can only increase (when typing quotations in rule c-qote) but never decrease.

Rules c-svar and c-top-svar retrieve the type of splice variables from the context. Note that,

as with expression variables, splice variables must be used at the level where they are introduced.

Moreover, the local type context Δ captured by 𝑠 must be a subset of the current type context Γ
so that all free variables in 𝑒 remain well-typed after substituting 𝑠 with 𝑒 . Γ may contain more

variables, including splice variables that are not in Δ.
Rule c-qote, which type-checks quotations with splice environments, is of particular interest.

First, it checks that a splice environment is well-typed by the judgment Θ; Γ ⊢𝑛 𝜙 , which is based

on the judgment Θ; Γ ⊢ 𝜙 but in addition requires 𝜙 to contain only splice variables of level 𝑛

(§4.4.1). An empty splice environment is always well-typed (rule c-s-empty). Otherwise the splice

environment is well-typed if each of definition is well-typed (rule c-s-cons), where the context Γ is

extended with the local type context Δ to type-check 𝑒 .

After type-checking 𝜙 , rule c-qote converts the splice environment 𝜙 into a list of splice

variables 𝜙Γ
. The definition of 𝜙Γ

is straightforward and is given in the same figure. Then, rule c-

qote adds all those splice variables 𝜙Γ
into the context Γ, as they may be used inside 𝑒 . One way

to think about splice environments is that they attach splice variable bindings to the quotation

whose body is 𝑒 . And thus their concrete names do not matter and we can consider quotations

equivalent up to alpha-renaming, e.g., J𝑠KΔ⊢𝑛𝑠 :𝜏=𝑒1 =𝛼 J𝑠 ′KΔ⊢𝑛𝑠′:𝜏=𝑒1 . Finally, the rule type-checks 𝑒 at
level 𝑛 + 1, and concludes with the type Code𝜏 .

4.3 Dynamic Semantics
Figure 5 presents the definition of values and dynamic semantics in 𝐹 JK

. Note that evaluation is not

level-indexed, as splice environments make the evaluation order of the core calculus evident.

Values 𝑣 include literals 𝑖 , lambdas 𝜆x : 𝜏 .𝑒 , type abstractions Λa.𝑒 , and quotations with splice

environments J𝑒K𝜙𝑣
. Notably, quotation values (J𝑒K𝜙𝑣

) can quote arbitrary expressions (𝑒), but

require the splice environment to be a value (𝜙𝑣). A splice environment value 𝜙𝑣 simply requires all

bindings to be values (i.e. Δ ⊢𝑛 𝑠 : 𝜏 = 𝑣). As we will see from the dynamic semantics shortly, this

avoids the need to look inside quotations, as the splice environment corresponds exactly to the

splices inside quotations that need to be evaluated.

The program evaluation judgment (𝜌gm
1
−→ 𝜌gm

2
) evaluates declarations in turn from top to

bottom. Top-level definitions are evaluated (rule ce-pgm-def) to values and substituted into the

rest of the program (rule ce-pgm-dbeta). Similarly, rule ce-pgm-spdef evaluates a top-level splice

definition to a value of the form J𝑒K𝜙 . We must then insert splices back into the program, which is

done in rule ce-pgm-spbeta by substituting 𝑠 with [𝜙𝑣]𝑒 . The notation [𝜙𝑣]𝑒 , defined at the top of

the figure, further inserts splices in 𝜙𝑣 back into the expression 𝑒 . To understand the process, let us

first consider the case when 𝜙𝑣 is empty, giving us [•]𝑒 = 𝑒 , and suppose 𝑛 = −1 then we have:

spdef Δ ⊢−1 𝑠 : 𝜏 = J𝑒K•; 𝜌gm −→ 𝜌gm[𝑠 ↦→ 𝑒]
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value 𝑣 F 𝑖 | 𝜆x : 𝜏 .𝑒 | Λa.𝑒 | J𝑒K𝜙𝑣

splice environment value 𝜙𝑣 F • | 𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑣

[𝜙𝑣]𝑒 inserts splices in 𝜙𝑣 back into 𝑒 .

[•]𝑒 = 𝑒

[𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒 ′K𝜙𝑣
′]𝑒 = [𝜙𝑣] (𝑒 [𝑠 ↦→ [𝜙𝑣

′]𝑒 ′])
𝜌gm

1
−→ 𝜌gm

2
(Program reduction)

ce-pgm-def

D −→ D ′

def D; 𝜌gm −→ def D ′
; 𝜌gm

ce-pgm-dbeta

def k : 𝜏 = 𝑣 ; 𝜌gm −→ 𝜌gm[k ↦→ 𝑣]

ce-pgm-expr

𝑒 −→ 𝑒 ′

𝑒 : 𝜏 −→ 𝑒 ′ : 𝜏
ce-pgm-spdef

S −→ S′

spdef S; 𝜌gm −→ spdef S′
; 𝜌gm

ce-pgm-spbeta

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙𝑣
; 𝜌gm −→ 𝜌gm[𝑠 ↦→ ([𝜙𝑣]𝑒)]

D1 −→ D2 (Definition reduction)
ce-def

𝑒 −→ 𝑒 ′

k : 𝜏 = 𝑒 −→ k : 𝜏 = 𝑒 ′

S1 −→ S2 (Splice definition reduction)
ce-spdef

𝑒 −→ 𝑒 ′

Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′

𝑒1 −→ 𝑒2 (Reduction)ce-beta

(𝜆x : 𝜏 .𝑒1) 𝑒2 −→ 𝑒1 [x ↦→ 𝑒2]

ce-tbeta

(Λa.𝑒) 𝜏 −→ 𝑒 [a ↦→ 𝜏]
ce-app

𝑒1 −→ 𝑒 ′
1

𝑒1 𝑒2 −→ 𝑒 ′
1
𝑒2

ce-tapp

𝑒 −→ 𝑒 ′

𝑒 𝜏 −→ 𝑒 ′ 𝜏

ce-qote

𝜙 −→ 𝜙 ′

J𝑒K𝜙 −→ J𝑒K𝜙′

𝜙
1
−→ 𝜙

2
(Splice environment reduction)

ce-s-head

𝜙 −→ 𝜙 ′

𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ 𝜙 ′,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒

ce-s-tail

𝑒 −→ 𝑒 ′

𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ 𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′

Fig. 5. Values and dynamic semantics in 𝐹 JK

Essentially, Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K• corresponds to the expression $J𝑒K in the source level, whose splicing

result is bound to 𝑠 . The position of 𝑠 inside 𝜌gm indicates where the source program $J𝑒K was
originally found, and by substituting 𝑠 with 𝑒 we successfully insert the splicing result back into

that position. Rule ce-pgm-spbeta deals with the more general case where 𝜙𝑣 can be non-empty,

which corresponds to nested splices, i.e., the source expression 𝑒 (as in $J𝑒K) may itself contain more

splices, and those splices (of the corresponding level, in this case −1) are reflected as the splice

environment 𝜙𝑣 associated to J𝑒K𝜙𝑣
. In this case, we need to first insert those splice definitions back

into the expression, i.e., as [𝜙𝑣]𝑒 , and then we conclude by substituting 𝑠 with [𝜙𝑣]𝑒 .
After we evaluate all definitions and splice definitions, we can then start evaluating the expression

(rule ce-pgm-expr). Expression reductions (𝑒1 −→ 𝑒2) are mostly standard. Rule ce-beta uses call-

by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest

is rule ce-qote, which says that to evaluate J𝑒K𝜙 , we leave 𝑒 as is, and all we need to do is

to evaluate 𝜙 , which simply evaluates all expressions it binds (rules ce-s-head and ce-s-tail).
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Note that there is no reduction rule which reduces inside a quotation. Now the benefits of splice

environments become clear: we can treat a quoted expression (the 𝑒 part in J𝑒K𝜙 ) opaquely, giving
the implementation freedom about its concrete form.

4.4 Well-Stagedness and Type Soundness
In this section, we discuss the metatheory of 𝐹 JK

. Before we present the type soundness result, we

first discuss well-stagedness of splice environments.

4.4.1 Well-Staged Splice Definitions and Environments. Our typing rules are designed carefully to

allow only well-staged programs. As splice definitions and environments are novel in this calculus,

great care needs to be taken to guarantee their well-stagedness. To this end, the typing rules have

imposed the following restrictions on levels of splice definitions and environments:

(1) A splice definition Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 requires Δ ¤> 𝑛 as in rule c-spdef (similarly, rule c-s-cons).

That is, all splice variables in the local type context captured by a splice variable must have a

level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation Θ;Δ ⊢𝑛 J𝑒K𝜙 requires Θ; Γ ⊢𝑛 𝜙 , as in rule c-qote, which implies

𝜙 � 𝑛,. That is, all splice variables that bind level 𝑛 are introduced at level 𝑛.4

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.

(a) •; • ⊢0 J𝑒Kx:(Code Int,0)⊢0𝑠 :Int=x : Code𝜏 breaks (1) as x : (Code Int, 0) ̸ ¤> 0

(b) •; • ⊢0 JJ𝑒K•⊢0𝑠 :Int=(𝜆y:Code Int.y) (J2K•)K• : Code (Code𝜏) breaks (2) as • ⊢0 𝑠 : Int ̸� 1

Essentially, the first restriction applies the level restriction of variables described in §2.1 to splice

definition and environments; and the second lifts the level restriction to splice variables. In particular,

consider the counterexample (a). What happens is that in the splice environment x is used at level

0, but inside 𝑒 we can never introduce x at level 0 (recall that during typing the level monotonically

increases)! So such an example is rejected because x is not well-staged.
5

The level restriction to splice variables requires that a splice variable that binds level 𝑛 is

introduced at level 𝑛. The splice variable level restriction ensures that splice variables are evaluated

at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because

the splice environment is a value and we do not inspect inside the quotations, we will conclude that

it is a value. But note that 𝑠 is bound at level 0, which means the expression (𝜆y : Code Int.y) (J2K•)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject

this example as 𝑠 is not well-staged.

4.4.2 Type Soundness. With well-staged splice definitions and environments, we can now prove

that 𝐹 JK
enjoys type soundness, by proving type preservation and progress.

First, we show that any reduction preserves the type information. For space reasons, we only

present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) If •; • ⊢𝑛 𝑒 : 𝜏 , then either 𝑒 is a value, or 𝑒 −→ 𝑒 ′ for some 𝑒 ′.
(2) If • ⊢ 𝜌gm, then either 𝜌gm is 𝑣 : 𝜏 , or 𝜌gm −→ 𝜌gm′ for some 𝜌gm′.

4
An alternative is to represent a splice environment entry as Δ ⊢ 𝑠 : 𝜏 = 𝑒 (i.e. without levels), and then rule c-qote, just

like rule c-abs, could directly take the current level from the typing judgment (which also means 𝜙Γ
would need to take a

level as input). However, that representation does not work for global splice variables (i.e. in rule c-spdef where typing is

not level-indexed). Moreover, the representation of 𝜙 is also used during elaboration, where it is important to track the

levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.

5
It may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of

the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope

of the splice environment (i.e. is not local). For example, the well-typed source program 𝜆x : Code Int.J$xK elaborates to
𝜆x : Code Int.J𝑠K•⊢0𝑠 :Int=x , while the source program J𝜆x : Int.$JxKK elaborates to J𝜆x : Code Int.𝑠Kx:(Int,1)⊢0𝑠 :Int=JxK• .
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𝜙
1
++Δ { 𝜙

2
(Injection)

s-inj-empty

• ++Δ { •

s-inj-cons

𝜙
1
++Δ2 { 𝜙

2

𝜙
1
,Δ1 ⊢𝑛 𝑠 : 𝜏 = 𝑒 ++Δ2 { 𝜙

2
, (Δ2,Δ1 ⊢𝑛 𝑠 : 𝜏 = 𝑒)

𝜌gm
1
⊢𝑛 𝜙 { 𝜌gm

2
(Collapse)

s-clap-empty

𝜌gm ⊢𝑛 • { 𝜌gm

s-clap-rec

spdef 𝜙.𝑛; 𝜌gm
1
⊢𝑛−1 ⌊𝜙⌋𝑛 { 𝜌gm

2

𝜌gm
1
⊢𝑛 𝜙 { 𝜌gm

2

Fig. 6. Auxiliary definitions used in elaboration: injection used in Figure 1, and collapse used in Figure 3

Nowwe show that well-typed programs cannot gowrong, by proving that a well-typed expression

(and definition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If Θ;Δ ⊢𝑛 𝑒 : 𝜏 , and 𝑒 −→ 𝑒 ′, then Θ;Δ ⊢𝑛 𝑒 ′ : 𝜏 .
(2) If Θ ⊢ 𝜌gm, and 𝜌gm −→ 𝜌gm′, then Θ ⊢ 𝜌gm′.

5 ELABORATION FROM 𝜆J⇒K TO 𝐹 JK

In this section we describe the process of type-directed elaboration from the source language 𝜆J⇒K

into the core language 𝐹 JK
. There are three key aspects of the elaboration procedure:

(1) Splices are removed in favour of a splice environment. The elaboration process returns a

splice environment which is attached to the quotation form (§5.1).

(2) Type class constraints are converted to explicit dictionary passing. We describe how to

understand staged type class constraints CodeC C in terms of quotation (§5.2).

(3) Splices at non-positive levels that are not attached to a corresponding quotation are elaborated

to top-level splice definitions, which are put before the rest of the program (§5.3).

5.1 Elaborating Expressions with Splice Environments
The elaboration of expressions appears in gray with the source typing rules in Figure 1. The

judgment Θ; Γ ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙 states that, under the program context Θ and the context Γ, the

source expression 𝑒 at level 𝑛 with type 𝜎 is elaborated into a core expression 𝑒 whilst producing

the splice environment 𝜙 . As we will see, since splices at level 𝑛 create splice variables at level 𝑛 − 1,

and quotations at level 𝑛 capture all inner splice variables at level 𝑛, we maintain the invariant on

the judgment that 𝜙 ¤< 𝑛 (§5.4.1).

At a high level, all splice variables are initially added to the splice environment when elaborating

splices (rule s-splice), and then propagated through the rules, until captured by quotations (rule s-

qote); uncaptured splice variables are discussed in §5.3. Let us first take a look at rule s-splice. To

elaborate a source splice $𝑒 , rule s-splice generates a fresh splice variable 𝑠 which is returned as the

elaboration result. It then extends the splice environment 𝜙 with 𝑠 that binds an empty local context

(as every variable is still in the scope of the splice at this moment), the level of the expression 𝑛 − 1,

the core type 𝜏 ′, and the core expression 𝑒 . This way we effectively insert 𝑠 as a splice point, with

the expression to be spliced bound to 𝑠 in the splice environment. Splice environments are captured

by quotations in rule s-qote. In particular, a quotation at level 𝑛 captures only the splices at level

𝑛; the notation 𝜙.𝑛 denotes the projection of the splices contained in 𝜙 at level 𝑛. We then truncate

𝜙 by removing 𝜙.𝑛 from it using the notation ⌊𝜙⌋𝑛 .
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Importantly, we need to ensure well-scopedness of splice environments during this process.

When a splice variable gets out of a scope, e.g. in rule s-abs, we cannot directly return 𝜙
1
, as 𝜙

1

may refer to x and directly returning 𝜙
1
would cause it to be ill-typed! To this end, whenever a

splice variable gets out of a scope, it captures the scope in its local context. In other words, a splice
variable captures the local context from its introduction point up to the point where it is bound by a
quotation. This is done by the injection judgment 𝜙

1
++Δ { 𝜙

2
, defined at the top of Figure 6, and

is used in for example rule s-abs. Specifically, the judgment 𝜙
1
++Δ { 𝜙

2
inserts Δ into the local

context of each splice variable in 𝜙
1
, producing a new splice environment 𝜙

2
. As we will prove, the

injection process is crucial to establish elaboration soundness.

The remaining rules elaborate source expressions in an expected way, while propagating splice

environments, e.g. rule s-app elaborates a source application into a core application, and collects

splice environments from preconditions. We talk more about elaborating type classes (rules s-cabs

and s-capp) in the next section.

5.2 Dictionary-Passing Elaboration of Constraints
Figure 2 presents the elaboration of types and constraints. Well-formed source types elaborate to

well-formed core types (Γ ⊢ 𝜎 { 𝜏 ).

Type classes are translated away by dictionary-passing elaboration [Jones 1994]. In particu-

lar, well-formed constraints elaborate to well-formed core types (Γ ⊢ 𝐶 { 𝜏 ). Note that a class

constraint TC𝜏 elaborates to its method type, as an instance of the constraint provides an imple-

mentation of the method.
6
Accordingly, rule s-cabs elaborates an expression with a constraint into

a dictionary-taking function, and rule s-capp elaborates class resolution as function applications.

The last judgment Θ; Γ |=𝑛 𝐶 { 𝑒 | 𝜙 is of particular interest: resolving a type class constraint𝐶

returns an expression 𝑒 as evidence for the constraint, with a splice environment 𝜙 . Rules s-solve-

global and s-solve-local are standard elaboration rules of normal type class resolution, where

the former uses an instance declaration in the program context, and the latter uses a local instance

(as introduced in rule s-cabs).

Rules s-solve-incr and s-solve-decr concern staged type class constraints. Rule s-solve-decr

elaborates staged type class constraints into values of type Code𝜏 . Therefore resolution elaboration

of staged type class constraints must be understood in terms of quotations. Rule s-solve-decr is

implemented by a simple quotation and thus similar to typing quotations (i.e., rule s-qote). Rule s-

solve-incr conceptually introduces a splice; as in rule s-splice, it achieves this by extending the

splice environment, since the core language does not have splices. These rules explain the necessity

of level-indexing constraints in the source language: the elaboration would not be well-staged if

the stage discipline was not enforced.

5.3 Elaborating Programs with Top-Level Splice Definitions
We elaborate programs as shown in gray in Figure 3. For space reasons, we only present the

elaboration for programs of the form 𝑒 : 𝜏 (rule s-pgm-expr); elaborations of other forms apply

the same idea to the standard elaboration of type class and instance declarations [Bottu et al. 2017;

Jones 1994]. The full rules can be found in the appendix.

If a splice occurs at a non-positive level without corresponding surrounding quotations, then it

should be evaluated at compile time, and in our formalism, it becomes a top-level splice definition.
7

6
This is a simplification of elaboration for multi-method type classes, which produces a record with a field for each method.

7
In general, non-positive splices can still have surrounding quotations. There are two cases. (1) The quotation is not

at the corresponding level, then the splice is lifted to top-level splice definition. For example, J$($𝑒)K elaborates to

spdef • ⊢−1 𝑠2 : Code Int = 𝑒 ; J𝑠1K•⊢0𝑠1 :Int=𝑠2 : Code Int, where 𝑠2 has a surrounding quotation but becomes a spdef . (2) The
quotation is at the corresponding level, then the splice will be attached to a quotation even if it is non-positive. For example,
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This process can be seen from rule s-pgm-expr, where we start by elaborating the source expression

𝑒 at the default level 0, which returns the core expression 𝑒 and the splice environment 𝜙 . As we

have mentioned in §5.1, elaborating expression at level 𝑛 maintains the invariant 𝜙 ¤< 𝑛 (§5.4.1).

Since in this case the expression is elaborated at level 0, we have 𝜙 ¤< 0; namely, the result 𝜙 returned

from elaborating the expression contains non-positive splice variables that should be evaluated at

compile time. Hence, we turn those splice environments into top-level splice definitions and put

them before 𝑒 : 𝜏 , using the collapse judgment 𝜌gm
1
⊢𝑛 𝜙 { 𝜌gm

2
, given in Figure 6. The collapse

process takes the current program 𝜌gm
1
, and creates top-level splice declarations for each splice

in 𝜙 , generating 𝜌gm
2
. To guarantee a stage-correct execution, the splices are inserted in order

of their levels, decreasing from n; for rule s-pgm-expr, we have n = −1. Now 𝜌gm returned from

rule s-pgm-expr contains exactly what we want: a sequence of top-level splice definitions, followed

by the elaborated core expression.

Example 5.1 (Elaboration). The derivation below shows the elaboration of a source program

$(k), where k is a top-level definition defined as JshowK whose typing derivation has been given in

Example 3.1. This illustrates two particular points of interest: CodeC (Show a) is elaborated into

quoted evidence using rule c-solve-decr, and the injection ensures the splices are well-typed.

Θ = k : ∀a.CodeC (Show a) ⇒ Code (a → String)

Γ = a, 𝑒𝑣 : (Show a, 0)

𝜙
1
= • ⊢−1 𝑠 : a → String = k a J𝑒𝑣K•

𝜙
2
= 𝑒𝑣 : (a → String, 0) ⊢−1 𝑠 : a → String = k a J𝑒𝑣K•

𝜙
3
= a, 𝑒𝑣 : (a → String, 0) ⊢−1 𝑠 : a → String = k a J𝑒𝑣K•

k : ∀a.CodeC (Show a) ⇒ Code (a → String) ∈ Θ

Θ; Γ ⊢−1 k : ∀a.CodeC (Show a) ⇒ Code (a → String) { k | •
s-kvar

Θ; Γ ⊢−1 k : CodeC (Show a) ⇒ Code (a → String) { k a | •
s-tapp

𝑒𝑣 : (Show a, 0) ∈ Γ

Θ; Γ |=0 Show a { 𝑒𝑣 | •
s-solve-local

Θ; Γ |=−1 CodeC (Show a) { J𝑒𝑣K• | •
s-solve-decr

Θ; Γ ⊢−1 k : Code (a → String) { k a J𝑒𝑣K• | •
s-capp

Θ; Γ ⊢0 $(k) : a → String { 𝑠 | 𝜙
1

s-splice

𝜙
1
++𝑒𝑣 : (a → String, 0) { 𝜙

2

s-inj-cons

Θ; a ⊢0 $(k) : Show a ⇒ a → String { 𝜆𝑒𝑣 : a → String.𝑠 | 𝜙
2

s-cabs

𝜙
2
++ a { 𝜙

3

s-inj-cons

Θ; • ⊢0 $(k) : ∀a.Show a ⇒ a → String { Λa.𝜆𝑒𝑣 : a → String.𝑠 | 𝜙
3

s-tabs

Having obtained the main expression, we can apply rule s-pgm-expr and use collapse to turn 𝜙
3

into a top-level splice definition and form the resulting program:

(Λa.𝜆𝑒𝑣 : a → String.𝑠) : ∀a.(a → String) → a → String ⊢−1 𝜙
3
{ spdef a, 𝑒𝑣 : (a → String, 0) ⊢−1 𝑠 : a → String = k a J𝑒𝑣K•;

(Λa.𝜆𝑒𝑣 : a → String.𝑠) : ∀a.(a → String) → a → String

5.4 Elaboration Soundness
In this section, we prove that elaboration preserves types, which, together with type soundness of

𝐹 JK
, establishes type soundness of 𝜆J⇒K

. To this end, we first need to show how the well-stagedness

restrictions in 𝐹 JK
(§4.4.1) are satisfied during elaboration.

5.4.1 Well-Staged Splice Environments. The first restriction says that every Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 has Δ ¤> 𝑛

(rules c-spdef and c-s-cons). During elaboration, we have seen that a splice variable captures

the local context from its introduction point up to the point where it is bound by a quotation.

The restriction holds trivially when a splice variable is created with an empty local context, but

since the local context can later be extended by injection we must prove that injection respects the

$J$𝑒K elaborates to spdef • ⊢−1 𝑠4 : Int = J𝑠3K•⊢−1𝑠3 :Int=𝑒 ; 𝑠4 : Int, where 𝑠3 appears at non-positive level but is attached to a

quotation. Note that the evaluation order is still correct: since 𝑠4 is evaluated at level −1, its splice environment is evaluated

at −1, and thus 𝑠3 is evaluated at −1.
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restriction. This can be shown by first proving the invariant that the splice environment produced

from typing has level smaller than the current typing level:

Lemma 5.2 (Level Correctness of 𝜙). If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , then 𝜙 ¤< 𝑛.

This can be easily seen from rule s-splice that produces only splice variables with smaller levels;

and rule s-qote captures all splices at the current level.

We then use Lemma 5.2 to show that injection produces well-staged splice environments. Con-

sider rule s-abs as an example. By Lemma 5.2 we have 𝜙
1
¤< 𝑛, and therefore 𝜙

1
¤< x : (𝜏, 𝑛), so

injection as in 𝜙
1
++ x : (𝜏, 𝑛) { 𝜙

2
preserves the restriction. Formally, we can prove

Lemma 5.3 (Context Injection). If Θ;Δ1,Δ2 ⊢ 𝜙1
, and 𝜙

1
¤< Δ2, and 𝜙1

++Δ2 { 𝜙
2
, then Θ;Δ1 ⊢ 𝜙2

.

The second restriction requires that an elaborated quotation Θ;Δ ⊢𝑛 J𝑒K𝜙 has Θ; Γ ⊢𝑛 𝜙 . We

generate quotations at rule s-qote. As the rule binds 𝜙.𝑛 which by construction has level 𝑛, we

only need to show Θ;Δ ⊢ 𝜙 , which can be proved making use of Lemma 5.3. In the following

lemma statement, the notations Θ { Θ and Γ { Δ elaborate contexts in a unsurprising way;

their definitions can be found in the appendix.

Lemma 5.4 (Well-staged 𝜙). If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , and Θ { Θ , and Γ { Δ , then Θ;Δ ⊢ 𝜙 .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of

splice environments, we are ready to prove that 𝜆J⇒K
is type-safe by proving elaboration soundness,

which formally establishes our goal: well-typed, well-staged source programs always elaborate to

well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).
(1) If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , and Θ { Θ , and Γ { Δ , and Γ ⊢ 𝜏 { 𝜏 , then Θ;Δ, 𝜙Γ ⊢𝑛 𝑒 : 𝜏 .

(2) If Θ ⊢ pgm : 𝜎 { 𝜌gm , and Θ { Θ , then Θ ⊢ 𝜌gm.

6 AXIOMATIC SEMANTICS
Our goal in designing 𝜆J⇒K

and 𝐹 JK
is to provide a theoretical foundation for multi-stage pro-

gramming. It is thus important to show that our formalism enjoys desirable properties. One such

property is that splices and quotations are dual to each other, which provides a simple reasoning

principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.

In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of 𝜆J⇒K
and 𝐹 JK

respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The definitions of axiomatic semantics and the proofs in this section

follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) 𝜆J⇒K
has elaboration-based

semantics, and thus the correctness of its axioms are built on that of 𝐹 JK
, and this indirection poses

extra complexities in the proofs; and (2) for 𝐹 JK
, we define the axiomatic semantics and extend the

proofs for our novel splice environments and top-level splice definitions.

6.1 Duality of Splices andQuotations in 𝜆J⇒K

The property we seek to establish is captured by the two axioms of 𝜆J⇒K
given in Figure 7a, which

state that splicing a quotation or quoting a splice is equivalent to the original expression: they

respectively represent eta and beta laws for Code. These axioms form part of the equational theory

of 𝜆J⇒K
; they can be thought of as context-independent pattern-based rewriting rules.

Consider an axiomatic equivalence relation between 𝜆J⇒K
programs that is the contextual and

equivalence closure of the axioms, which we denote as pgm
1
=𝑎𝑥 pgm2

. Our goal now is to prove
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J$𝑒K =𝑎𝑥 𝑒

$J𝑒K =𝑎𝑥 𝑒

(a) Axioms

Θ; Γ ⊢𝑛 𝑒 : Code𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛+1 $𝑒 : 𝜏 { 𝑠 | 𝜙, • ⊢𝑛 𝑠 : 𝜏 = 𝑒

s-splice

Θ; Γ ⊢𝑛 J$𝑒K : Code𝜏 { J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 | 𝜙
s-qote

(b) Quote splices

Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛−1 J𝑒K : Code𝜏 { J𝑒K𝜙.𝑛−1 | ⌊𝜙 ⌋𝑛−1
s-qote

Θ; Γ ⊢𝑛 $J𝑒K : 𝜏 { 𝑠 | ⌊𝜙 ⌋𝑛−1, • ⊢𝑛−1 𝑠 : 𝜏 = J𝑒K𝜙.𝑛−1

s-splice

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in 𝜆J⇒K

axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the

same result and thus can be used in an interchangeable way. As the dynamic semantics of 𝜆J⇒K
is

defined based on elaboration to 𝐹 JK
, we build the proofs based on the axiomatic semantics of 𝐹 JK

.

6.2 Axiomatic Semantics of 𝐹 JK

The axiomatic semantics of 𝐹 JK
is guided by the elaboration of the 𝜆J⇒K

axioms. Supposing source

𝑒 elaborates to core 𝑒 with 𝜙 , Figures 7b and 7c present elaboration derivations of J$𝑒K and J$𝑒K
respectively. Looking first at Figure 7b, what is needed to show the first 𝜆J⇒K

axiom is a 𝐹 JK
axiom

that models the equivalence between expression J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 with 𝜙 (the elaboration result of J$𝑒K)
and 𝑒 with 𝜙 (the elaboration result of 𝑒). Since the two 𝜙s are the same, it is sufficient to introduce

a core axiom J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 =𝑎𝑥 𝑒 .

The case for splicing quotations (Figure 7c) is more challenging: in this case we cannot directly

compare the elaborated expressions, as the generated splice environments are different. Instead,

we need to consider equivalence between two core quotations where the splice environments

are bound. To derive the axiom, let us first consider the case where both expressions are bound

immediately to a quotation. That leads to J𝑠K ⌊𝜙 ⌋𝑛−1,•⊢𝑛−1𝑠 :𝜏=J𝑒K𝜙.𝑛−1 =𝑎𝑥 J𝑒K ⌊𝜙 ⌋𝑛−1,𝜙 .𝑛−1. Abstracting
over the specific shape of splice environments gives us J𝑠K𝜙

1
,•⊢𝑛𝑠 :𝜏=J𝑒K𝜙 =𝑎𝑥 J𝑒K𝜙

1
,𝜙 . In the case when

𝑠 is not immediately bound, we then have J𝑒1K𝜙
1
,•⊢𝑛𝑠 :𝜏=J𝑒K𝜙 =𝑎𝑥 J𝑒1 [𝑠 ↦→ 𝑒]K𝜙

1
,𝜙 . However, there are

still some wrinkles to this axiom. First, 𝑠 could have a non-empty splice environment 𝜙
2
to its right,

as until 𝑠 is bound there can be more splices. Second, 𝑠 could have a non-empty local context Δ,
as until 𝑠 is bound it may have got out of some scopes and so have applied the injection process.

Finally, if 𝑠 has a non-empty local context, then after it is substituted away on the right hand side,

we cannot directly discard its local context Δ and leave 𝜙 , since 𝜙 now becomes ill-typed as it loses

the scope of the variables from Δ. Therefore, we need to inject Δ into 𝜙 .

Summarizing our discussion, we end up with the axiomatic semantic of 𝐹 JK
as defined below.

Note that splicing quotations also leads to the equivalence axiom between spdef .

Definition 6.1 (Axiomatic Semantics of 𝐹 JK
). Axiomatic semantics of 𝐹 JK models 𝛽-equivalence, as

well as the following axioms.

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 =𝑎𝑥 𝑒

J𝑒1K𝜙
1
,Δ⊢𝑛𝑠 :𝜏=J𝑒K𝜙 ,𝜙2

=𝑎𝑥 J𝑒1 [𝑠 ↦→ 𝑒]K𝜙
1
,𝜙′,𝜙

2

where 𝜙 ++Δ { 𝜙 ′

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙 ; 𝜌gm =𝑎𝑥 spdef 𝜙 ′
; 𝜌gm[𝑠 ↦→ 𝑒] where 𝜙 ++Δ { 𝜙 ′

Now consider an axiomatic equivalence relation between 𝐹 JK
programs that is the contextual

and equivalence closure of the axioms, denoted as:

Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
≜ Θ ⊢ 𝜌gm

1
∧ Θ ⊢ 𝜌gm

2
∧ 𝜌gm

1
=𝑎𝑥 𝜌gm

2
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To show that our definition of axiomatic semantics of 𝐹 JK
indeed captures the desirable duality

between splices and quotations, we prove that axiomatically equivalent source programs elaborate

to axiomatically equivalent core programs.

Lemma 6.2 (𝜆J⇒K =𝑎𝑥 to 𝐹 JK ⋍𝑎𝑥 ). If pgm
1
=𝑎𝑥 pgm2

, where Θ ⊢ pgm
1
: 𝜎 { 𝜌gm

1
, and Θ ⊢

pgm
2
: 𝜎 { 𝜌gm

2
, and Θ { Θ , then Θ ⊢ 𝜌gm

1
⋍𝑎𝑥 𝜌gm

2
.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that

source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We define contextual equivalence in 𝐹 JK

as below.

Definition 6.3 (Contextual Equivalence in 𝐹 JK
).

•; Γ ⊢𝑛 𝑒1 ⋍𝑐𝑡𝑥 𝑒2 : 𝜏 ≜ •; Γ ⊢𝑛 𝑒1 : 𝜏 ∧ •; Γ ⊢𝑛 𝑒2 : 𝜏

∧ (∀C : •; Γ ⊢𝑛 𝜏 ⇝ •; • ⊢0 Int, C[𝑒1] −→∗ 𝑖 ⇐⇒ C[𝑒2] −→∗ 𝑖)
Θ ⊢ 𝜌gm

1
⋍𝑐𝑡𝑥 𝜌gm

2
: 𝜏 ≜ Θ ⊢ 𝜌gm

1
∧ Θ ⊢ 𝜌gm

2
∧ (∀Si,Dj

𝑖, 𝑗
: Θ ⊢ 𝜏 −→ • ⊢ 𝜏,

(spdefSi; defDj
𝑖, 𝑗
; 𝜌gm

1
−→∗ 𝑒1 : 𝜏 ⇐⇒ spdefSi; defDj

𝑖, 𝑗
; 𝜌gm

2
−→∗ 𝑒2 : 𝜏)

∧ (•; • ⊢0 𝑒1 ⋍𝑐𝑡𝑥 𝑒2 : 𝜏))
Expression contextual equivalence says that two core expressions 𝑒1 and 𝑒2 are contextually equiv-

alent, if for any computation context C, C[𝑒1] and C[𝑒2] evaluate to the same value. A computation

context C is a core expression with a hole in it, and we use the notation C[𝑒] to plug in the expres-

sion 𝑒 into the hole of C. The notation C : •; Γ ⊢𝑛 𝜏 ⇝ •; • ⊢0 Int means that if •; Γ ⊢𝑛 𝑒 : 𝜏 then

•; • ⊢𝑛 C[𝑒] : Int. Program contextual equivalence is defined in a similar manner and is built using

expression contextual equivalence.

The final piece in our proof is to show that axiomatically equivalent core programs are contextu-

ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs

elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]

and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to

build parallel reduction of 𝐹 JK
to prove the Church-Rosser property, which is then used to prove

equivalence between 𝐹 JK
axiomatic semantics and operational semantics.

Lemma 6.4 (𝐹 JK ⋍𝑎𝑥 to 𝐹 JK ⋍𝑐𝑡𝑥 ). If Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
, then Θ ⊢ 𝜌gm

1
⋍𝑐𝑡𝑥 𝜌gm

2
: 𝜏 .

Combining Lemma 6.2 and Lemma 6.4 yields our final goal:

Theorem 6.5 (𝜆J⇒K =𝑎𝑥 to 𝐹 JK ⋍𝑐𝑡𝑥 ). If pgm
1
=𝑎𝑥 pgm2

, where Θ ⊢ pgm
1
: 𝜎 { 𝜌gm

1
, and

Θ ⊢ pgm
2
: 𝜎 { 𝜌gm

2
, and Θ { Θ , and • ⊢ 𝜎 { 𝜏 , then Θ ⊢ 𝜌gm

1
⋍𝑐𝑡𝑥 𝜌gm

2
: 𝜏 .

7 TODAY’S TYPED TEMPLATE HASKELL
The behavior of Typed Template Haskell in GHC differs from our calculus. Table 1 summarizes the

key examples from §2, comparing the results from the latest GHC (9.0.1) to 𝜆J⇒K
. The Haskell code

examples are in the appendix.

At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is sufficient to

accept the definitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be

spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics

being clear. The central guarantee of typed code quotations is that well-typed code values represent

well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
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Table 1. Examples comparison. Well-staged? indicates well-stagedness after dictionary-passing elaboration.
✓✗ means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLift trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? ✗ ✓ ✓ ✗ ✓ ✓ ✗/ ✗ ✓/ ✓

𝜆J⇒K ✗ ✓ ✓ ✗ ✓ ✓ ✗/ ✗ ✓/ ✓
GHC 9.0.1 ✓✗ ✓ O ✗ ✓✗ ✗ ✓✗/ ✗ O

raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,

delaying type class elaboration can unexpectedly change the semantics of a program when the

definition site and the splicing site have different instances in scope.

Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLift (and npower5) but wrongly rejects cancel. We argue that topLift should be rejected

because it is ill-staged, and cancel should be accepted both because it is well-staged, and because

canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with

the formalism of splice environments, and so we have focused on a source calculus that captures

their essence. Integrating our solution into GHC will require additional steps, which we touch on

briefly here.

Type inference. We anticipate that type inference for staged constraints will be straightforward

to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key

modification is to track the level of constraints and only solve goals with evidence at the right level.

In our formalism, constraints can be solved either by rule s-solve-incr or by rule s-solve-decr. In

practice, the implementation only needs to keep track of the level of normal constraints (e.g. when

given CodeC C at level 0, the context can record the spliced evidence for C at level 1) so that

constraint solving only needs to consider rule s-solve-decr.

Local constraints. Local constraints can be introduced by (for example) pattern matching on

GADTs [Peyton Jones et al. 2006], and we anticipate that they can be treated similarly to type class

constraints: the constraint solver needs to keep track of the level at which a constraint is introduced

and ensure that the constraint is only used at that level.

Quantified constraints. The full Haskell language supports more elaborate forms of type classes

than the essence modeled in 𝜆J⇒K
. For example, GHC supports quantified constraints [Bottu et al.

2017], which include forms such as ∀x .Show x ⇒ Show (f x), a constraint that converts Show
instances for x into Show instances for f x. Future work is required to study more formally the

interaction between staged constraints and implication constraints; we envisage that constraint

entailment should deduce that CodeC (C1 ⇒ C2) entails CodeC C1 ⇒ CodeC C2.

Representation of quotations. In today’s GHC implementation, untyped code representations are

built compositionally using combinators, and type-checked at splice sites. With our development,

code representations contain type information, especially dictionaries, and must therefore corre-

spond to one of GHC’s post-typechecking term representations. One option is GHC Core terms,

which is the simplest representation that retains type information and has existing serialization

support (for inlining definitions across modules).
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Our development also requires changing the implementation of splicing to support performing

substitution at splices inside quotations. In today’s GHC, substitution is performed implicitly

during translation from expressions to combinators. With the new representation of quotations,

the substitution needs to be represented explicitly and performed explicitly during deserialization

of the quotation body. Substituting splices takes two steps. First, a quotation body is traversed and

each splice is replaced by a splice variable where the evaluated splice term needs to be inserted.

The splice variable is maintained in the splice environment. Second, the splicing operation itself

involves checking the splice environment for each splice variable and performing the substitution.

9 RELATEDWORK
Since its introduction [Taha and Sheard 1997, 2000] multi-stage programming with quotation has

attracted both theoretical and practical interest. Several languages, including MetaOCaml [Kiselyov

2014], Haskell and Scala [Stucki et al. 2018], include implementations of typed quotations.

Considering that implementations of multi-stage languages have supported polymorphism

from the very beginning, there is surprisingly little work that formally combines multi-stage

programming with polymorphism: most multi-staged calculi are simply-typed. An exception, by

Kokaji and Kameyama [2011], involves a language with polymorphism and control effects; their

primary concern is the interaction of the value restriction and staging. Another, by Kiselyov [2017],

considers the tripartite interaction of polymorphism, cross-stage persistence and mutable cells.

Several works examine the interaction of quotation with individual language features, particularly

with various forms of effects, such as control operators [Oishi and Kameyama 2017] and mutable

cells [Kiselyov et al. 2016]. Work by Yallop and White [2015] is more closely related to the present

work, since there is a well-known correspondence between ML modules and type classes [Wehr and

Chakravarty 2008]; it examines the interaction between typed compile-time staging and modules.

However, since modules are written explicitly rather than introduced by elaboration, the dictionary

level problem does not arise. In a similar vein, Radanne [2017] studies the interaction of ML modules

with a different modality, client-server programming, where the distinction between client and

server functors corresponds to our distinction between unstaged and staged type class constraints.

Several researchers have combined multi-stage programming and dependent types. Kawata and

Igarashi [2019] impose a stage discipline on type variables as on term variables, reflecting the

fact that checking types involves evaluating expressions. Pašalic [2004] defines a dependently-

typed multi-stage language Meta-D but doesn’t consider constraints or parametric polymorphism.

Concoqtion [Fogarty et al. 2007] extends MetaOCaml to support Coq terms within types; it is

based on the dependently-typed 𝜆𝐻⃝ [Pašalic et al. 2002], which is motivated by removing tags

in generated programs. Brady and Hammond [2006] combine dependent types and multi-stage

programming to turn a well-typed interpreter into a verified compiler, but do not consider either

parametric polymorphism or constraints.

We are not aware of any work that considers the implications of relevant implicit arguments

formally, but there is an informal characterization by Pickering et al. [2019], who also advocated

persisting dictionaries between stages, using the fact that dictionary values have top-level names.

Unfortunately, that scheme, based on extending the constraint solver to select dictionary representa-

tions using both type and level, does not readily extend to local constraints. An alternative approach

that the authors later considered, passing constraint derivation trees to allow local construction of

future-stage dictionaries, was judged to carry too much run-time overhead to be practical.

Formalising Template Haskell. Sheard and Jones [2002] give a brief description of Untyped

Template Haskell. The language is simply-typed and does not account for multiple levels. The

language has since diverged: untyped quotations are no longer typechecked before conversion
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into their representation. Some aspects of their formalism, notably the Q monad which supports

reification of types and declarations, are more suited to the untyped metaprogramming than the

typed multi-stage programming we consider here. [Berger et al. 2017] give a more formal study

of a core calculus that models some aspects of Untyped Template Haskell, focusing on levels and

evaluation rather than these additional features.

Code generators often make use of effects such as let insertion or error reporting so it is useful

for to consider the interaction of quotation with effects. In GHC releases since 8.12, the type of

quotations is generalised [Pickering 2019] from Q (TExp a) to a minimal interface ∀m.Quote m ⇒
m (TExp a) giving users more control over which effects are allowed in code generators. We leave

formalising this extension to future work.

Modal Type Systems. Several type systemsmotivated bymodal logics havemodeled the interaction

of modal operators and polymorphism. Attention has turned recently to investigating dependent

modal type theories and the complex interaction of modal operators in such theories [Gratzer et al.

2020]. It seems likely that ideas from this research can give a formal account of the interaction of

the code modality [Davies and Pfenning 2001] and the parametric quantification from System F

which can also be regarded as a modality [Nuyts and Devriese 2018; Pfenning 2001].

10 CONCLUSION
We have proposed a resolution to a longstanding problem in Typed Template Haskell arising from

the interaction beteen two key features, code quotation and type classes. In our view, the mysterious

failures that can arise when writing large-scale multi-stage programs are one reason for the limited

adoption of Typed Template Haskell. Although it is used in a few developments (e.g. Pickering

et al. [2020]; Willis et al. [2020]; Yallop et al. [2018]), take-up is low, despite the many use cases for

type-safe optimizing code generators. We hope that the resolution of the shortcomings we have

described and the reasoning principles we have established will encourage broader adoption.

Although our work is inspired by Haskell, there is reason to believe that it has wider applications.

The recent release of Scala 3 added support for typed code quotations to the language [Stucki et al.

2018]. Preliminary experiments suggest that these quotations suffer from surprising interactions

with implicit arguments: implicit resolution within quotations sometimes fails mysteriously. Simi-

larly, it is anticipated that OCaml will soon acquire support both for typed code quotations [Yallop

and White 2015] and for implicit arguments [White et al. 2014]. We hope that our work will help

to guide the integration of these features and avoid problems with unsoundness from the outset.
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A APPENDIX OVERVIEW
Appendix B presents the code examples used for testing in §7. Appendix C includes a preliminary

experiment with Scala.

Appendix D include those omitted rules from the main paper.

The rest sections are for proofs. Appendix E proves type soundness of 𝐹 JK
, and Appendix F

proves elaboration soundness from 𝜆J⇒K
to 𝐹 JK

.

Appendix G gives an overview of the axiomatic semantics, and Appendix H includes the list of

lemmas and Appendix I presents the proofs.

The correspondence between lemmas in the paper and proofs in the appendix are given below.

Lemmas in the paper Lemmas in the appendix

Theorem 4.2 Theorem E.1

Theorem 4.3 Theorem E.2

Lemma 5.2 Lemma 5.2

Lemma 5.3 Lemma 5.3

Lemma 5.4 Theorem F.4

Theorem 5.5 Theorem F.4

Lemma 6.4 Lemma H.4

Theorem 6.5 Theorem H.5

B CODE EXAMPLES IN TYPED TEMPLATE HASKELL
The Haskell code used for tests in §7 is given below. Path-based cross-stage persistence is modeled

in our calculi using top-level definitions, and is implemented in GHC using the module restriction,
which dictates that only identifiers bound in other modules can be used inside top-level splices.

Therefore, the examples are based on two modules: Toplevel and Examples.

-- Toplevel.hs

-- Separated compiled because of module restrictions.

{-# LANGUAGE TemplateHaskell #-}

module Toplevel where

import Language.Haskell.TH

import Language.Haskell.TH.Syntax

data C = C

print1 :: (Quote m, Show a) ⇒ Code m (a → String)
print1 = [| | show | |]

printInt :: (Quote m) ⇒ Code m (Int → String)
printInt = [| | show | |]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

https://doi.org/10.1145/3110273
https://doi.org/10.1145/3236795


Staging with Class 61:31

readInt :: (Quote m) ⇒ Code m (String → Int)
readInt = [| | read | |]

trim :: Quote m ⇒ Code m (String → String)
trim = [| | $$(printInt) . $$(readInt) | |]

qnpower :: (Quote m, Num a) ⇒ Int → Code m a → Code m a

qnpower 0 qn = [| | 1 | |]
qnpower k qn = [| | ( $$(qn) * $$(qnpower (k - 1) qn)) | |]

class MyShow a where
myshow :: a → String

instance Show a ⇒ MyShow [a] where
myshow = show

printListInt :: (Quote m) ⇒ Code m ([Int] → String)
printListInt = [| | myshow | |]

-- Examples.hs

{-# LANGUAGE TemplateHaskell, FlexibleInstances, FlexibleContexts #-}

module Examples where

import Language.Haskell.TH

import Language.Haskell.TH.Syntax

import Toplevel

-- rejected:

-- No instance for (Show a) arising from a use of 'print1'

-- In the expression: print1

splicePolyPrint1 :: Show a ⇒ a → String
splicePolyPrint1 = $$(print1)

-- Monomorphic splice is OK

spliceMonoPrint1 :: Int → String
spliceMonoPrint1 = $$(print1)

-- rejected:

-- No instance for (Lift C) arising from a use of 'liftTyped'

topLift :: Lift C ⇒ C

topLift = $$(liftTyped C)

-- rejected:

-- No instance for (Show a) arising from a use of 'show'

cancel :: Show a ⇒ a → String
cancel = $$([| | show | |])
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-- rejected:

-- Ambiguous type variable 'b0' arising from a use of 'show'

-- prevents the constraint '(Show b0)' from being solved.

strim :: String
strim = ($$(trim) "123")

-- The module Toplevel defines an instance for MyShow [a] using normal show.

-- This example is to show the inconsistent behavior when the splicing site and

-- the definition site has given different instances.

instance {-# OVERLAPPING #-} MyShow [Int] where
myshow _ = "hello"

usePrintListInt :: String
usePrintListInt = $$(printListInt) [1,2,3] -- "hello"

-- rejected:

-- No instance for (Num a) arising from a use of 'qnpower'

-- In the expression: qnpower 5 ([| | n | |])
qnpower5 :: Num a ⇒ a → a

qnpower5 n = $$(qnpower 5 ([| | n | |])) -- Error!

C PRELIMINARY EXPERIMENTS IN SCALA
We have tested examples with implicits in Scala3. While implicits are rather different to type classes,

we observe similar difficult-to-explain behaviors of interaction between implicits and staging.

Specifically, we discuss our attempts to define the power example introduced in the introduction.

Scala does a good job rejecting the directly translated power example. As we can see below, the

implicit argument is introduced explicitly as a binding, so Scala can identify the ill-stagedness.

import scala.quoted.*

import math.Numeric.Implicits.infixNumericOps

// rejected:

// case k => ’{ ${cn} * ${power (k - 1, cn) } }

// ^

// access to parameter num from wrong staging level:

// - the definition is at level 0,

// - but the access is at level 1.

def power [A] (using Quotes) (x : Int, cn : Expr[A])(implicit num: Numeric[A],

t:Type[A]) : Expr[A] =
x match

case 0 => ’{ num.fromInt(1) }

case k => ’{ ${cn} * ${power (k - 1, cn) } }

We then tried different ways to move the parameter at level 1. Scala is not happy about the

following definition. In this case, Scala complains about a type mismatch between quotations, while

the implicit num is bound in a well-staged manner.

// rejected:

// Found: quoted.Expr[(Numeric[A]) ?=> A]
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// Required: quoted.Expr[A]

import scala.quoted.*

import math.Numeric.Implicits.infixNumericOps

def power [A] (using Quotes) (x : Int, cn : Expr[A]) (implicit t:Type[A]) :

Expr[Numeric[A] => A] =
’{ implicit num : Numeric[A] =>

${x match
case 0 => ’{ num.fromInt(1) }

case k => ’{ ${cn} * ${power (k - 1, cn) } } }}

Surprisingly, Scala accepts the code if the implicit argument is supplied explicitly.

// accepted

def power[A: Type](using Quotes)(x: Int, cn: Expr[A]): Expr[Numeric[A] ?=> A] =
x match

case 0 => ’{ Numeric[A].fromInt(1) }

case k => ’{ ${cn} * ${power(k - 1, cn)}(using Numeric[A]) }

// OR

// case k => ’{ num ?=> ${cn} * ${power(k - 1, cn)}(using num) }

Our preliminary conclusion is that like Typed Template Haskell, the interaction between quota-

tion and overloading haven’t been fully worked out in Scala, either. More systematic investigations

are needed to identify the exact problem and possible solutions.

D COMPLETE RULES
This section contains the omitted rules for 𝜆J⇒K

and 𝐹 JK
.

D.1 Complete Rules for 𝜆J⇒K

program context Θ F • | Θ, k : 𝜎 | Θ, ev : ∀ai i .𝐶j
j ⇒ 𝐶

context Γ F • | Γ, x : (𝜏, 𝑛) | Γ, a | Γ, (𝐶,𝑛)

D.1.1 Elaborating Contexts.

Γ { Δ (Elaborating Contexts)

s-ctx-empty

• { •

s-ctx-var

Γ { Δ Γ ⊢ 𝜏 { 𝜏 ′

Γ, x : (𝜏, 𝑛) { Δ, x : (𝜏 ′, 𝑛)

s-ctx-tvar

Γ { Δ

Γ, a { Δ, a
s-ctx-ev

Γ { Δ Γ ⊢ 𝐶 { 𝜏

Γ, 𝑒𝑣 : (𝐶,𝑛) { Δ, 𝑒𝑣 : (𝜏, 𝑛)

Θ { Θ (Elaborating Program Contexts)

s-pctx-empty

• { •

s-pctx-kvar

Θ { Θ • ⊢ 𝜎 { 𝜏

Θ, k : 𝜎 { Θ, k : 𝜏

s-pctx-ev

Θ { Θ ai i ⊢ 𝐶j { 𝜏j
j

ai i ⊢ 𝐶 { 𝜏

Θ, ev : ∀ai i .𝐶j
j ⇒ 𝐶 { Θ, ev : 𝜏j

j → 𝜏
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D.1.2 Elaborating Programs.

Θ ⊢ pgm : 𝜎 { 𝜌gm (Typing programs)

s-pgm-def

𝜌gm
1
; Θ1 ⊢ D ⊣ Θ2 { 𝜌gm

2
Θ2 ⊢ pgm : 𝜎 { 𝜌gm

1

Θ1 ⊢ def D; pgm : 𝜎 { 𝜌gm
2

s-pgm-cls

𝜌gm
1
; Θ1 ⊢ C ⊣ Θ2 { 𝜌gm

2
Θ2 ⊢ pgm : 𝜎 { 𝜌gm

1

Θ1 ⊢ classC; pgm : 𝜎 { 𝜌gm
2

s-pgm-inst

𝜌gm
1
; Θ1 ⊢ I ⊣ Θ2 { 𝜌gm

2
Θ2 ⊢ pgm : 𝜎 { 𝜌gm

1

Θ1 ⊢ instI; pgm : 𝜎 { 𝜌gm
2

s-pgm-expr

Θ; • ⊢0 𝑒 : 𝜎 { 𝑒 | 𝜙 • ⊢ 𝜎 { 𝜏 𝑒 : 𝜏 ⊢−1 𝜙 { 𝜌gm

Θ ⊢ 𝑒 : 𝜎 { 𝜌gm

𝜌gm
1
; Θ1 ⊢ D ⊣ Θ2 { 𝜌gm

2
(Typing definitions)

s-def

Θ; • ⊢0 𝑒 : 𝜎 { 𝑒 | 𝜙 • ⊢ 𝜎 { 𝜏 def k : 𝜏 = 𝑒; 𝜌gm
1
⊢−1 𝜙 { 𝜌gm

2

𝜌gm
1
; Θ ⊢ k = 𝑒 ⊣ Θ, k : 𝜎 { 𝜌gm

2

𝜌gm
1
; Θ1 ⊢ C ⊣ Θ2 { 𝜌gm

2
(Typing class definitions)

s-cls

a ⊢ 𝜌 { 𝜏

𝜌gm; Θ ⊢ TC awhere {k : 𝜌} ⊣ Θ, k : ∀a.TC a ⇒ 𝜌 { def k : ∀a.𝜏 → 𝜏 = Λa.𝜆x : 𝜏 .x; 𝜌gm

𝜌gm
1
; Θ1 ⊢ I ⊣ Θ2 { 𝜌gm

2
(Typing instance definitions)

s-inst

TC awhere {k : 𝜌}

bj
j
= ftv (𝜏) bj

j ⊢ 𝐶i { 𝜏i

i

Θ; bj
j
, 𝑒𝑣i : (𝐶i, 0)

i
⊢0 𝑒 : 𝜌 [a ↦→ 𝜏] { 𝑒 | 𝜙

1

• ⊢ 𝜌 [a ↦→ 𝜏] { 𝜏 fresh 𝑒𝑣i
i

𝜙
1
++ (bj

j
, 𝑒𝑣i : (𝜏i, 0)

i) { 𝜙
2

def ev : ∀bj
j
.𝜏i

i → 𝜏 = Λbj
j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒; 𝜌gm
1
⊢−1 𝜙

2
{ 𝜌gm

2
fresh ev

𝜌gm
1
; Θ ⊢ 𝐶i

i ⇒ TC𝜏 where {k = 𝑒} ⊣ Θ, ev : ∀bj
j
.𝐶i

i ⇒ TC𝜏 { 𝜌gm
2

D.2 Complete Rules for 𝐹 JK

context C F □ | 𝜆x : 𝜏 .C | C 𝑒 | 𝑒 C | Λa.C | C𝜏 | JCK𝜙 | J𝑒KS
splice context S F 𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = C | S,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒
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D.2.1 Axiomatic equivalence.

Axioms

J𝑒1K𝜙
1
,Δ⊢𝑛𝑠 :𝜏=J𝑒2K𝜙 ,𝜙2

=𝑎𝑥 J𝑒1 [𝑠 ↦→ 𝑒2]K𝜙
1
,𝜙′,𝜙

2

where 𝜙 ++Δ { 𝜙 ′

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 =𝑎𝑥 𝑒

(𝜆x : 𝜏 .𝑒1) 𝑒2 =𝑎𝑥 𝑒1 [x ↦→ 𝑒2]
(Λa.𝑒) 𝜏 =𝑎𝑥 𝑒 [a ↦→ 𝜏]

𝑒1 =𝑎𝑥 𝑒2 is the axiomatic equivalence relation between 𝐹 JK
expressions that is the contextual

and equivalence closure of the axioms.

𝑒1 =𝑎𝑥 𝑒2 (Axiomatic equality)

eq-refl

𝑒 =𝑎𝑥 𝑒

eq-symm

𝑒1 =𝑎𝑥 𝑒2

𝑒2 =𝑎𝑥 𝑒1

eq-trans

𝑒1 =𝑎𝑥 𝑒2 𝑒2 =𝑎𝑥 𝑒3

𝑒1 =𝑎𝑥 𝑒3

eq-ctx

𝑒1 =𝑎𝑥 𝑒2 C1 =𝑎𝑥 C2

C1 [𝑒1] =𝑎𝑥 C2 [𝑒2]

𝜌gm
1
=𝑎𝑥 𝜌gm

2
is the axiomatic equivalence relation between 𝐹 JK

programs.

𝜌gm
1
=𝑎𝑥 𝜌gm

2
(Axiomatic equality)

peq-def

𝑒1 =𝑎𝑥 𝑒2 𝜌gm
1
=𝑎𝑥 𝜌gm

2

def k : 𝜏 = 𝑒1; 𝜌gm1
=𝑎𝑥 def k : 𝜏 = 𝑒2; 𝜌gm2

peq-spdef

𝑒1 =𝑎𝑥 𝑒2 𝜌gm
1
=𝑎𝑥 𝜌gm

2

spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒1; 𝜌gm1
=𝑎𝑥 spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒2; 𝜌gm2

peq-expr

𝑒1 =𝑎𝑥 𝑒2

𝑒1 : 𝜏 =𝑎𝑥 𝑒2 : 𝜏
peq-spdef-ax

𝜙 ++Δ { 𝜙 ′

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙 ; 𝜌gm =𝑎𝑥 spdef 𝜙 ′
; 𝜌gm[𝑠 ↦→ 𝑒]

E PROOFS FOR TYPE SOUNDNESS OF 𝐹 JK

E.1 Progress
Theorem E.1 (Progress).

(1) If •;Δ ⊢𝑛 𝑒 : 𝜏 , where Δ ¤> 𝑛, then either 𝑒 is a value, or 𝑒 −→ 𝑒 ′ for some 𝑒 ′.
(2) If •;Δ ⊢𝑛 𝜙 , where Δ ¤> 𝑛, then either 𝜙 is 𝜙𝑣 , or 𝜙 −→ 𝜙 ′ for some 𝜙 ′.
(3) If • ⊢ D ⊣ Θ, then either D is k : 𝜏 = 𝑣 , or D −→ D ′ for some D ′.
(4) If • ⊢ S ⊣ Θ, then either S is Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙𝑣

, or S −→ S′ for some S′.
(5) If • ⊢ 𝜌gm, then either 𝜌gm is 𝑣 : 𝜏 , or 𝜌gm −→ 𝜌gm′ for some 𝜌gm′.

Proof. By induction on typing.

Part 1 • Case rule c-lit. 𝑖 is a value.

• Case rule c-var. Impossible case, since Δ has no level-𝑛 items.

• Case rule c-kvar. Impossible case, since the program environment is •.
• Case rule c-svar. Impossible case, since Δ has no level-𝑛 items.

• Case rule c-top-svar. Impossible case, since the program environment is •.
• Case rule c-abs. The expression 𝜆x : 𝜏 .𝑒 is a value.

• Case rule c-app.
c-app

Θ; Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 Θ; Γ ⊢𝑛 𝑒2 : 𝜏1

Θ; Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏2
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By I.H., we have either 𝑒1 is a value, or 𝑒1 −→ 𝑒 ′
1
for some 𝑒 ′

1
.

– 𝑒1 is a value. Then we know that 𝑒1 must be 𝜆x : 𝜏 .𝑒 for some 𝑒 . So by rule ce-beta we

have (𝜆x : 𝜏 .𝑒) 𝑒2 −→ 𝑒 [x ↦→ 𝑒2].
– 𝑒1 −→ 𝑒 ′

1
. By rule ce-app we have 𝑒1 𝑒2 −→ 𝑒 ′

1
𝑒2.

• Case rule c-tabs. The expression Λa.𝑒 is a value.
• Case rule c-tapp.

c-tapp

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜏2
Θ; Γ ⊢𝑛 𝑒 𝜏1 : 𝜏2 [a ↦→ 𝜏1]

By I.H., we have either 𝑒 is a value, or 𝑒 −→ 𝑒 ′ for some 𝑒 ′.
– 𝑒 is a value. We know that 𝑒 must be Λa.𝑒1 for some 𝑒 . So by rule ce-tbeta

– 𝑒 −→ 𝑒 ′. By rule ce-tapp we have 𝑒 𝜏1 −→ 𝑒 ′ 𝜏1.
• Case rule c-qote.

c-qote

Θ; Γ ⊢𝑛 𝜙 Θ; Γ, 𝜙Γ ⊢𝑛+1 𝑒 : 𝜏
Θ; Γ ⊢𝑛 J𝑒K𝜙 : Code𝜏

By Part 2, we know that either 𝜙 is 𝜙𝑣 , or 𝜙 −→ 𝜙 ′
for some 𝜙 ′

. In the first case, the

expression J𝑒K𝜙𝑣
is a value. In the second case, by rule ce-qote we have J𝑒K𝜙 −→ J𝑒K𝜙′ .

Part 2 • Case rule c-s-empty. • is 𝜙𝑣 .

• Case rule c-s-cons.
c-s-cons

Θ; Γ ⊢ 𝜙 Θ; Γ,Δ ⊢𝑛 𝑒 : Code𝜏 Δ ¤> 𝑛

Θ; Γ ⊢ 𝜙, (Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒)
By I.H., we know either 𝜙 is some 𝜙𝑣 , or 𝜙 −→ 𝜙 ′

. In the first case, by Part 1, we know that

either 𝑒 is a value, or 𝑒 −→ 𝑒 ′ for some 𝑒 . If 𝑒 is a value, we know that𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 is some

𝜙𝑣
′
. If 𝑒 reduces, then by rule ce-s-tail we have 𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ 𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′.

In the second case, by rule ce-s-head we have 𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ 𝜙 ′,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 .

Part 3 We have
c-def

Θ; • ⊢0 𝑒 : 𝜏
Θ ⊢ k : 𝜏 = 𝑒 ⊣ Θ1, k : 𝜏

By Part 1, we know that 𝑒 is either a value, or 𝑒 −→ 𝑒 ′. In the first case, we have proved the

goal. In the second case, by rule ce-def we have k : 𝜏 = 𝑒 −→ k : 𝜏 = 𝑒 ′.
Part 4 We have

c-spdef

Θ;Δ ⊢𝑛 𝑒 : Code𝜏 Δ ¤> 𝑛

Θ ⊢ Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ⊣ Θ, 𝑠 : (Δ, 𝜏, 𝑛 + 1)
By Part 1, we know that 𝑒 is either a value, or 𝑒 −→ 𝑒 ′. In the first case, since 𝑒 is of typeCode𝜏 ,
we know that 𝑒 must be J𝑒 ′K𝜙𝑣

, which proves the goal. In the second case, by rule ce-spdef

we have Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′.
Part 5 • Case rule c-pgm-def.

c-pgm-def

Θ1 ⊢ D ⊣ Θ2 Θ2 ⊢ 𝜌gm

Θ1 ⊢ def D; 𝜌gm
By Part 3, we know that eitherD is k : 𝜏 = 𝑣 , orD −→ D ′

. In the first case, by rule ce-pgm-

dbeta we have def k : 𝜏 = 𝑣 ; 𝜌gm −→ 𝜌gm[k ↦→ 𝑣]. In the second case, by rule ce-pgm-def

we have def D; 𝜌gm −→ def D ′
; 𝜌gm.

• Case rule c-pgm-spdef.
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c-pgm-spdef

Θ1 ⊢ S ⊣ Θ2 Θ2 ⊢ 𝜌gm

Θ1 ⊢ spdef S; 𝜌gm
By Part 4, we know that either S is Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙𝑣

, or S −→ S′
. In the first case, by

rule ce-pgm-spbeta we have spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙𝑣
; 𝜌gm −→ 𝜌gm[𝑠 ↦→ [𝜙𝑣]𝑒]. In the

second case, by rule ce-pgm-spdef we have spdef S; 𝜌gm −→ spdef S′
; 𝜌gm.

• Case rule c-pgm-expr.
c-pgm-expr

Θ; • ⊢0 𝑒 : 𝜏
Θ ⊢ 𝑒 : 𝜏

By Part 1, we know that either 𝑒 is a value, or 𝑒 −→ 𝑒 ′. In the first case, we have 𝑒 : 𝜏 which

proves the goal. In the second case, by rule ce-pgm-expr we have 𝑒 : 𝜏 −→ 𝑒 ′ : 𝜏 .

□

E.2 Preservation
Theorem E.2 (Preservation).

(1) If Θ;Δ ⊢𝑛 𝑒 : 𝜏 , and 𝑒 −→ 𝑒 ′, then Θ;Δ ⊢𝑛 𝑒 ′ : 𝜏 .
(2) If Θ;Δ ⊢𝑛 𝜙 , and 𝜙 −→ 𝜙 ′, then Θ;Δ ⊢𝑛 𝜙 ′, and 𝜙Γ = 𝜙 ′Γ .
(3) If Θ1 ⊢ D ⊣ Θ2, and D −→ D ′, then Θ1 ⊢ D ′ ⊣ Θ2.
(4) If Θ1 ⊢ S ⊣ Θ2, and S −→ S′, then Θ1 ⊢ S′ ⊣ Θ2.
(5) If Θ ⊢ 𝜌gm, and 𝜌gm −→ 𝜌gm′, then Θ ⊢ 𝜌gm′.

Proof. By induction on typing.

Part 1 • Case
ce-app

𝑒1 −→ 𝑒 ′
1

𝑒1 𝑒2 −→ 𝑒 ′
1
𝑒2

Θ;Δ ⊢𝑛 𝑒1 𝑒2 : 𝜏2 given

Θ;Δ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 inversion (rule c-app)

Θ;Δ ⊢𝑛 𝑒2 : 𝜏1
Θ;Δ ⊢𝑛 𝑒 ′

1
: 𝜏1 → 𝜏2 I.H.

Θ;Δ ⊢𝑛 𝑒 ′
1
𝑒2 : 𝜏2 rule c-app

• Case
ce-beta

(𝜆x : 𝜏 .𝑒1) 𝑒2 −→ 𝑒1 [x ↦→ 𝑒2]

Θ;Δ ⊢𝑛 (𝜆x : 𝜏 .𝑒1) 𝑒2 : 𝜏2 given

Θ;Δ ⊢𝑛 𝜆x : 𝜏 .𝑒1 : 𝜏1 → 𝜏2 inversion (rule c-app)

Θ;Δ ⊢𝑛 𝑒2 : 𝜏1
Θ;Δ, x : (𝜏1, 𝑛) ⊢𝑛 𝑒1 : 𝜏2 inversion (rule c-abs)

Θ;Δ ⊢𝑛 𝑒1 [x ↦→ 𝑒2] : 𝜏2 by substitution

• Case
ce-tapp

𝑒 −→ 𝑒 ′

𝑒 𝜏 −→ 𝑒 ′ 𝜏

Θ;Δ ⊢𝑛 𝑒 𝜏1 : 𝜏2 [a ↦→ 𝜏1] given
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Θ;Δ ⊢𝑛 𝑒1 : ∀a.𝜏2 inversion (rule c-tapp)

Θ;Δ ⊢𝑛 𝑒 ′
1
: ∀a.𝜏2 I.H.

Θ;Δ ⊢𝑛 𝑒 ′
1
𝜏1 : 𝜏2 [a ↦→ 𝜏1] rule c-tapp

• Case
ce-tbeta

(Λa.𝑒) 𝜏 −→ 𝑒 [a ↦→ 𝜏]

Θ;Δ ⊢𝑛 (Λa.𝑒) 𝜏 : 𝜏1 [a ↦→ 𝜏] given

Θ;Δ ⊢𝑛 Λa.𝑒 : ∀a.𝜏1 inversion (rule c-tapp)

Θ;Δ, a ⊢𝑛 𝑒 : 𝜏1 inversion (rule c-tabs)

Θ;Δ ⊢𝑛 𝑒 [a ↦→ 𝜏] : 𝜏1 [a ↦→ 𝜏] by substitution

• Case
ce-qote

𝜙 −→ 𝜙 ′

J𝑒K𝜙 −→ J𝑒K𝜙′

Θ;Δ ⊢𝑛 J𝑒K𝜙 : 𝜏 given

Θ;Δ ⊢𝑛 𝜙 inversion (rule c-qote)

Θ;Δ, 𝜙Γ ⊢𝑛+1 𝑒 : 𝜏
Θ;Δ ⊢𝑛 𝜙 ′

Part 2

𝜙Γ = 𝜙 ′Γ
Part 2

Θ;Δ ⊢𝑛 J𝑒K𝜙′ : 𝜏 rule c-qote

Part 2 • Case
ce-s-head

𝜙 −→ 𝜙 ′

𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ 𝜙 ′,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒

Θ;Δ1 ⊢𝑛 𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 given

Θ;Δ1 ⊢𝑛 𝜙 inversion (rule c-s-cons)

Δ ¤> 𝑛

Θ; Γ ⊢𝑛 𝑒 : Code𝜏
Θ;Δ1 ⊢𝑛 𝜙 ′

I.H.

Θ;Δ1 ⊢𝑛 𝜙 ′,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 rule c-s-cons

• Case
ce-s-tail

𝑒 −→ 𝑒 ′

𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ 𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′

Θ;Δ1 ⊢𝑛 𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 given

Θ;Δ1 ⊢𝑛 𝜙 inversion (rule c-s-cons)

Δ ¤> 𝑛

Θ; Γ ⊢𝑛 𝑒 : Code𝜏
Θ; Γ ⊢𝑛 𝑒 ′ : Code𝜏 Part 1

Θ;Δ1 ⊢𝑛 𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′ rule c-s-cons

Part 3 Case
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ce-def

𝑒 −→ 𝑒 ′

k : 𝜏 = 𝑒 −→ k : 𝜏 = 𝑒 ′

Θ1 ⊢ k : 𝜏 = 𝑒 ⊣ Θ1, k : 𝜏 given

Θ1; • ⊢0 𝑒 : 𝜏 inversion (rule c-def)

Θ1; • ⊢0 𝑒 ′ : 𝜏 Part 1

Θ1 ⊢ k : 𝜏 = 𝑒 ′ ⊣ Θ1, k : 𝜏 rule c-def

Part 4 Case
ce-spdef

𝑒 −→ 𝑒 ′

Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′

Θ1 ⊢ (Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒) ⊣ Θ1, 𝑠 : (Δ, 𝜏, 𝑛 + 1) given

Δ ¤> 𝑛 inversion (rule c-spdef)

Θ1;Δ ⊢𝑛 𝑒 : Code𝜏
Θ;Δ ⊢𝑛 𝑒 ′ : Code𝜏 Part 1

Θ1 ⊢ (Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′) ⊣ Θ1, 𝑠 : (Δ, 𝜏, 𝑛 + 1) rule c-spdef

Part 5 • Case
ce-pgm-def

D −→ D ′

def D; 𝜌gm −→ def D ′
; 𝜌gm

Θ1 ⊢ def D; 𝜌gm given

Θ1 ⊢ D ⊣ Θ2 inversion (rule c-pgm-def)

Θ2 ⊢ 𝜌gm
Θ1 ⊢ D ′ ⊣ Θ2 Part 3

Θ1 ⊢ def D ′
; 𝜌gm rule c-pgm-def

• Case
ce-pgm-dbeta

def k : 𝜏 = 𝑣 ; 𝜌gm −→ 𝜌gm[k ↦→ 𝑣]

Θ1 ⊢ def k : 𝜏 = 𝑣 ; 𝜌gm given

Θ1 ⊢ k : 𝜏 = 𝑣 ⊣ Θ1, k : 𝜏 inversion (rule c-pgm-def), rule c-def

Θ1; • ⊢0 𝑣 : 𝜏 inversion (rule c-def)

Θ1, k : 𝜏 ⊢ 𝜌gm
Θ1 ⊢ 𝜌gm[k ↦→ 𝑣] by substitution

• Case
ce-pgm-spdef

S −→ S′

spdef S; 𝜌gm −→ spdef S′
; 𝜌gm

Θ1 ⊢ spdef S; 𝜌gm given

Θ1 ⊢ S ⊣ Θ2 inversion (rule c-pgm-spdef)

Θ2 ⊢ 𝜌gm
Θ1 ⊢ S′ ⊣ Θ2 Part 4

Θ1 ⊢ spdef S′
; 𝜌gm rule c-pgm-spdef
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• Case
ce-pgm-spbeta

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙𝑣
; 𝜌gm −→ 𝜌gm[𝑠 ↦→ ([𝜙𝑣]𝑒)]

Θ1 ⊢ spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑣 ; 𝜌gm given

Θ1 ⊢ (Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙𝑣
) ⊣ Θ1, 𝑠 : (Δ, 𝜏, 𝑛 + 1) inversion (rule c-pgm-spdef), rule c-spdef

Θ1;Δ ⊢𝑛 J𝑒K𝜙𝑣
: Code𝜏 inversion (rule c-spdef)

Θ1;Δ ⊢𝑛+1 [𝜙𝑣]𝑒 : 𝜏 by substitution

Θ1, 𝑠 : (Δ, 𝜏, 𝑛 + 1) ⊢ 𝜌gm
Θ1 ⊢ 𝜌gm[𝑠 ↦→ [𝜙𝑣]𝑒] by substitution

• Case
ce-pgm-expr

𝑒 −→ 𝑒 ′

𝑒 : 𝜏 −→ 𝑒 ′ : 𝜏

Θ1 ⊢ 𝑒 : 𝜏 given

Θ1; • ⊢0 𝑒 : 𝜏 inversion (rule c-pgm-expr)

Θ1; • ⊢0 𝑒 ′ : 𝜏 Part 1

Θ1 ⊢ 𝑒 ′ : 𝜏 rule c-pgm-expr

□

F PROOFS FOR ELABORATION
Definition F.1 (𝜙Γ

and 𝜙Θ
).

•Γ = • •Θ = •
(𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒)Γ = 𝜙Γ, 𝑠 : (Δ, 𝜏, 𝑛 + 1) (𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒)Θ = 𝜙Θ, 𝑠 : (Δ, 𝜏, 𝑛 + 1)

Lemma 5.2 (Level Correctness of 𝜙). If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , then 𝜙 ¤< 𝑛.

Proof. By induction on typing. Most cases follow straightforwardly from I.H., the only two

interesting cases are:

• Case
s-qote

Θ; Γ ⊢𝑛+1 𝑒 : 𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛 J𝑒K : Code𝜏 { J𝑒K𝜙.𝑛 | ⌊𝜙⌋𝑛

𝜙 ¤< 𝑛 + 1 I.H.

⌊𝜙⌋𝑛 ¤< 𝑛 by definition

• Case
s-splice

Θ; Γ ⊢𝑛−1 𝑒 : Code𝜏 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′ fresh 𝑠

Θ; Γ ⊢𝑛 $𝑒 : 𝜏 { 𝑠 | 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 ′ = 𝑒)

𝜙 ¤< 𝑛 − 1 I.H.

𝜙 ¤< 𝑛 follows

𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 ′ = 𝑒) ¤< 𝑛 by definition
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The cases for constraint solving are exactly the same.

□

Lemma 5.3 (Context Injection). If Θ;Δ1,Δ2 ⊢ 𝜙1
, and 𝜙

1
¤< Δ2, and 𝜙1

++Δ2 { 𝜙
2
, then Θ;Δ1 ⊢ 𝜙2

.

Proof. By induction on 𝜙 .

• 𝜙 = •. Then Θ;Δ1 ⊢ • by rule c-s-empty.

• 𝜙 = 𝜙
1
,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 .

(𝜙
1
,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒) ++Δ2 { 𝜙

2
, (Δ2,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒) given

𝜙
1
++Δ2 { 𝜙

2
inversion (rule s-inj-cons)

Θ;Δ1,Δ2 ⊢ 𝜙1
,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 given

Θ;Δ1,Δ2 ⊢ 𝜙1
inversion (rule c-s-cons)

Δ ¤> 𝑛 above

Θ;Δ1,Δ2,Δ ⊢𝑛 𝑒 : Code𝜏 above

Θ;Δ1 ⊢ 𝜙2
I.H.

Δ2
¤> 𝜙 given

Δ2,Δ ¤> 𝑛 follows

Θ;Δ1 ⊢ 𝜙2
, (Δ2,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒) rule c-s-cons

□

Lemma F.2 (𝜙Γ
to 𝜙Θ

). If Θ;𝜙Γ, Γ ⊢𝑛 𝑒 : 𝜏 , then Θ, 𝜙Θ
; Γ ⊢𝑛 𝑒 : 𝜏 . Similarly, if Θ;𝜙Γ, Γ ⊢ 𝜙 ′, then

Θ, 𝜙Θ
; Γ ⊢ 𝜙 ′.

Proof. by induction on typing. Most cases are straightforward. The only interesting case is

c-svar

𝑠 : (Δ, 𝜏, 𝑛) ∈ Γ Δ ⊆ Γ

Θ; Γ ⊢𝑛 𝑠 : 𝜏

If 𝑠 ∈ 𝜙 , then it is now moved to Θ, 𝜙Θ
, and we can apply rule c-top-svar; or otherwise we can

still apply rule c-svar.

The left requirement is to show from Δ ⊆ 𝜙Γ, Γ that Δ ⊆ Γ. The observation here is that since Δ
does not have any splice variables, so removing 𝜙Γ

does not affect the subset requirement.

□

Lemma F.3 (𝜙Γ
moves to left). If Θ; Γ1,Δ, 𝜙Γ, Γ2 ⊢𝑛 𝑒 : 𝜏 , and Δ ¤> 𝜙 , and 𝜙 ++Δ { 𝜙 ′ then

Θ; Γ1, 𝜙
′Γ,Δ, Γ2 ⊢𝑛 𝑒 : 𝜏 . Similarly, if Θ; Γ1,Δ, 𝜙Γ, Γ2 ⊢ 𝜙

1
, and Δ ¤> 𝜙 , and 𝜙 ++Δ { 𝜙 ′, then

Θ; Γ1, 𝜙
′Γ,Δ, Γ2 ⊢ 𝜙1

.

Proof. By induction on typing. Most cases are straightforward. The only interesting cases are

the cases for splice variables. Most importantly, we need to show that the subset constraint Δ ⊆ Γ
in rules c-svar and c-top-svar is still satisifed in the modified context.

The observation here is that since Δ does not have splice variables, so moving 𝜙Γ
does not affect

the subset requirement.

□

Theorem F.4 (Elaboration Soundness).
(1) If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , and Θ { Θ , and Γ { Δ , then Θ;Δ ⊢ 𝜙 .
(2) If Θ; Γ |=𝑛 𝐶 { 𝑒 | 𝜙 , and Θ { Θ , and Γ { Δ , then Θ;Δ ⊢ 𝜙 . If Γ ⊢ 𝐶 { 𝜏 , then Θ;Δ, 𝜙Γ ⊢𝑛

𝑒 : 𝜏 .
(3) If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , and Θ { Θ , and Γ { Δ , and Γ ⊢ 𝜏 { 𝜏 , then Θ;Δ, 𝜙Γ ⊢𝑛 𝑒 : 𝜏 .
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(4) If 𝜌gm
1
; Θ1 ⊢ D ⊣ Θ2 { 𝜌gm

2
, and Θ1 { Θ1 , and Θ2 { Θ2 , and Θ2 ⊢ 𝜌gm

1
, then

Θ1 ⊢ 𝜌gm
2
.

(5) If 𝜌gm
1
; Θ1 ⊢ C ⊣ Θ2 { 𝜌gm

2
, and Θ1 { Θ1 , and Θ2 { Θ2 , and Θ2 ⊢ 𝜌gm

1
, then

Θ1 ⊢ 𝜌gm
2
.

(6) If 𝜌gm
1
; Θ1 ⊢ I ⊣ Θ2 { 𝜌gm

2
, and Θ1 { Θ1 , and Θ2 { Θ2 , and Θ2 ⊢ 𝜌gm

1
, then

Θ1 ⊢ 𝜌gm
2
.

(7) If 𝜌gm
1
⊢𝑛 𝜙 { 𝜌gm

2
, and 𝜙 ¤⩽ 𝑛, and Θ; • ⊢ 𝜙 , and Θ, 𝜙Θ ⊢ 𝜌gm

1
, then Θ ⊢ 𝜌gm

2
.

(8) If Θ ⊢ pgm : 𝜎 { 𝜌gm , and Θ { Θ , then Θ ⊢ 𝜌gm.

Proof. By induction on typing.

Part 1 • Case rule s-lit. Follows trivially from rule c-s-empty.

• Case rule s-var. Follows trivially from rule c-s-empty.

• Case rule s-kvar. Follows trivially from rule c-s-empty.

• Case
s-abs

Θ; Γ, x : (𝜏1, 𝑛) ⊢𝑛 𝑒 : 𝜏2 { 𝑒 | 𝜙
1

Γ ⊢ 𝜏1 { 𝜏 ′
1

𝜙
1
++ x : (𝜏 ′

1
, 𝑛) { 𝜙

2

Θ; Γ ⊢𝑛 𝜆x : 𝜏1.𝑒 : 𝜏1 → 𝜏2 { 𝜆x : 𝜏 ′
1
.𝑒 | 𝜙

2

Θ;Δ, x : (𝜏 ′
1
, 𝑛) ⊢ 𝜙

1
I.H.

𝜙
1
¤< 𝑛 Lemma 5.2

𝜙
1
++ x : (𝜏 ′

1
, 𝑛) { 𝜙

2
given

Θ;Δ ⊢ 𝜙
2

Lemma 5.3

• Case
s-app

Θ; Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 { 𝑒1 | 𝜙1
Θ; Γ ⊢𝑛 𝑒2 : 𝜏1 { 𝑒2 | 𝜙2

Θ; Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏2 { 𝑒1 𝑒2 | 𝜙1
, 𝜙

2

Θ;Δ ⊢ 𝜙
1

I.H.

Θ;Δ ⊢ 𝜙
2

I.H.

Θ;Δ ⊢ 𝜙
1
, 𝜙

2

• Case
s-tabs

Θ; Γ, a ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙
1

𝜙
1
++ a { 𝜙

2

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { Λa.𝑒 | 𝜙
2

Θ;Δ, a ⊢ 𝜙
1

I.H.

𝜙
1
¤< 𝑛 Lemma 5.2

𝜙
1
++ a { 𝜙

2
given

Θ;Δ ⊢ 𝜙
2

Lemma 5.3

• Case
s-tapp

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′

Θ; Γ ⊢𝑛 𝑒 : 𝜎 [a ↦→ 𝜏] { 𝑒 𝜏 ′ | 𝜙

Θ;Δ ⊢ 𝜙 I.H.
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• Case
s-qote

Θ; Γ ⊢𝑛+1 𝑒 : 𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛 J𝑒K : Code𝜏 { J𝑒K𝜙.𝑛 | ⌊𝜙⌋𝑛

Θ;Δ ⊢ 𝜙 I.H.

Θ;Δ ⊢ ⌊𝜙⌋𝑛

• Case
s-splice

Θ; Γ ⊢𝑛−1 𝑒 : Code𝜏 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′ fresh 𝑠

Θ; Γ ⊢𝑛 $𝑒 : 𝜏 { 𝑠 | 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 ′ = 𝑒)

Θ;Δ ⊢ 𝜙 I.H.

Θ;Δ ⊢𝑛−1 𝑒 : Code𝜏 ′ Part 3

Θ;Δ ⊢ 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 ′ = 𝑒) rule c-s-cons

• Case
s-cabs

Θ; Γ, 𝑒𝑣 : (𝐶,𝑛) ⊢𝑛 𝑒 : 𝜌 { 𝑒 | 𝜙
1

Γ ⊢ 𝐶 { 𝜏 𝜙
1
++ 𝑒𝑣 : (𝜏, 𝑛) { 𝜙

2
fresh 𝑒𝑣

Θ; Γ ⊢𝑛 𝑒 : 𝐶 ⇒ 𝜌 { 𝜆𝑒𝑣 : 𝜏 .𝑒 | 𝜙
2

Θ;Δ, 𝑒𝑣 : (𝜏, 𝑛) ⊢ 𝜙
1

I.H.

𝜙
1
¤< 𝑛 Lemma 5.2

𝜙
1
++ 𝑒𝑣 : (𝜏1, 𝑛) { 𝜙

2
given

Θ;Δ ⊢ 𝜙
2

Lemma 5.3

• Case
s-capp

Θ; Γ ⊢𝑛 𝑒 : 𝐶 ⇒ 𝜌 { 𝑒1 | 𝜙1
Θ; Γ |=𝑛 𝐶 { 𝑒2 | 𝜙2

Θ; Γ ⊢𝑛 𝑒 : 𝜌 { 𝑒1 𝑒2 | 𝜙1
, 𝜙

2

Θ;Δ ⊢ 𝜙
1

I.H.

Θ;Δ ⊢ 𝜙
2

Part 2

Θ;Δ ⊢ 𝜙
1
, 𝜙

2

Part 2 • Case
s-solve-global

ev : ∀a.𝐶i
i ⇒ 𝐶 ∈ Θ Γ ⊢ 𝜏 { 𝜏 ′ Θ; Γ |=𝑛 𝐶i [a ↦→ 𝜏] { 𝑒i | 𝜙 i

i

Θ; Γ |=𝑛 𝐶 [a ↦→ 𝜏] { ev 𝜏 ′ 𝑒i i | 𝜙 i
i

Θ;Δ ⊢ 𝜙 i
i

I.H.

Γ ⊢ 𝐶i { 𝜏i let

Γ ⊢ 𝐶 { 𝜏 ′′ let

ev : ∀a.𝐶i
i ⇒ 𝐶 ∈ Θ given
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Θ;Δ, 𝜙 i
Γ
i
⊢𝑛 ev : ∀a.𝜏i i → 𝜏 ′′ rule c-kvar

Θ;Δ, 𝜙 i
Γ
i
⊢𝑛 𝑒i : 𝜏i [a ↦→ 𝜏 ′]

i

I.H.

Θ;Δ, 𝜙 i
Γ
i
⊢𝑛 ev 𝜏 ′ 𝑒i i : 𝜏 ′′[a ↦→ 𝜏 ′] rules c-tapp and c-app

• Case
s-solve-local

𝑒𝑣 : (𝐶,𝑛) ∈ Γ

Θ; Γ |=𝑛 𝐶 { 𝑒𝑣 | •

Θ;Δ ⊢ • rule c-s-empty

Γ ⊢ 𝐶 { 𝜏 let

𝑒𝑣 : (𝐶,𝑛) ∈ Γ given

Θ;Δ ⊢𝑛 ev : 𝜏 rule c-var

• Case
s-solve-decr

Θ; Γ |=𝑛+1 𝐶 { 𝑒 | 𝜙

Θ; Γ |=𝑛 CodeC𝐶 { J𝑒K𝜙.𝑛 | ⌊𝜙⌋𝑛

Θ; Γ ⊢𝑛+1 𝑒 : 𝜏 { 𝑒 | 𝜙 given

Θ;Δ, 𝜙Γ ⊢𝑛+1 𝑒 : 𝜏 I.H.

Θ;Δ ⊢ 𝜙 I.H.

Θ;Δ ⊢ ⌊𝜙⌋𝑛 follows

Θ;Δ ⊢𝑛 𝜙.𝑛 follows

Θ;Δ, (⌊𝜙⌋𝑛)Γ ⊢𝑛 𝜙.𝑛 weakening

𝜙 ¤< 𝑛 + 1 Lemma 5.2

𝜙 = 𝜙.𝑛, ⌊𝜙⌋𝑛 follows

Θ;Δ, (⌊𝜙⌋𝑛)Γ ⊢𝑛 J𝑒K𝜙.𝑛 : Code𝜏 rule c-qote

• Case
s-solve-incr

Θ; Γ |=𝑛−1 CodeC𝐶 { 𝑒 | 𝜙 Γ ⊢ 𝐶 { 𝜏 fresh 𝑠

Θ; Γ |=𝑛 𝐶 { 𝑠 | 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 = 𝑒)

Θ;Δ, 𝜙Γ, 𝑠 : (•, 𝜏, 𝑛) ⊢𝑛 𝑠 : 𝜏 rule c-svar

Part 3 • Case for rule s-lit follows directly from rule c-lit.

• Case
s-var

x : (𝜏, 𝑛) ∈ Γ

Θ; Γ ⊢𝑛 x : 𝜏 { x | •

x : (𝜏, 𝑛) ∈ Γ given

x : (𝜏 ′, 𝑛) ∈ Δ follows

Θ;Δ ⊢𝑛 x : 𝜏 ′ rule c-var

• Case
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s-kvar

k : 𝜎 ∈ Θ

Θ; Γ ⊢𝑛 k : 𝜎 { k | •

k : 𝜎 ∈ Θ given

k : 𝜏 ∈ Θ follows

Θ;Δ ⊢𝑛 k : 𝜏 rule c-kvar

• Case
s-abs

Θ; Γ, x : (𝜏1, 𝑛) ⊢𝑛 𝑒 : 𝜏2 { 𝑒 | 𝜙
1

Γ ⊢ 𝜏1 { 𝜏 ′
1

𝜙
1
++ x : (𝜏 ′

1
, 𝑛) { 𝜙

2

Θ; Γ ⊢𝑛 𝜆x : 𝜏1.𝑒 : 𝜏1 → 𝜏2 { 𝜆x : 𝜏 ′
1
.𝑒 | 𝜙

2

Θ; Γ, x : (𝜏1, 𝑛) ⊢𝑛 𝑒 : 𝜏2 { 𝑒 | 𝜙
1

given

Θ;Δ, x : (𝜏 ′
1
, 𝑛), 𝜙

1

Γ ⊢𝑛 𝑒 : 𝜏 ′
2

I.H.

Θ;Δ, 𝜙
1

Γ, x : (𝜏 ′
1
, 𝑛) ⊢𝑛 𝑒 : 𝜏 ′

2
context reorder

Θ;Δ, 𝜙
2

Γ, x : (𝜏 ′
1
, 𝑛) ⊢𝑛 𝑒 : 𝜏 ′

2
strengthening

Θ;Δ, 𝜙
2

Γ ⊢𝑛 𝜆x : 𝜏 ′
1
.𝑒 : 𝜏 ′

1
→ 𝜏 ′

2
rule c-abs

• Case
s-app

Θ; Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 { 𝑒1 | 𝜙1
Θ; Γ ⊢𝑛 𝑒2 : 𝜏1 { 𝑒2 | 𝜙2

Θ; Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏2 { 𝑒1 𝑒2 | 𝜙1
, 𝜙

2

Θ; Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 { 𝑒1 | 𝜙1
given

Θ;Δ, 𝜙
1

Γ ⊢𝑛 𝑒1 : 𝜏
′
1
→ 𝜏 ′

2
I.H.

Θ;Δ, 𝜙
1

Γ, 𝜙
2

Γ ⊢𝑛 𝑒1 : 𝜏
′
1
→ 𝜏 ′

2
weakening

Θ; Γ ⊢𝑛 𝑒2 : 𝜏1 { 𝑒2 | 𝜙2
given

Θ;Δ, 𝜙
2

Γ ⊢𝑛 𝑒2 : 𝜏
′
1

I.H.

Θ;Δ, 𝜙
1

Γ, 𝜙
2

Γ ⊢𝑛 𝑒2 : 𝜏
′
1

weakening

Θ;Δ, (𝜙
1
, 𝜙

2
)Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏

′
2

rule c-app

• Case
s-tabs

Θ; Γ, a ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙
1

𝜙
1
++ a { 𝜙

2

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { Λa.𝑒 | 𝜙
2

Θ; Γ, a ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙
1

given

Θ;Δ, a, 𝜙
1

Γ ⊢𝑛 𝑒 : 𝜏 I.H.

Θ;Δ, 𝜙
2

Γ, a ⊢𝑛 𝑒 : 𝜏 Lemma F.3

Θ;Δ, 𝜙
2

Γ ⊢𝑛 Λa.𝑒 : ∀a.𝜏 rule c-tabs

• Case
s-tapp

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′

Θ; Γ ⊢𝑛 𝑒 : 𝜎 [a ↦→ 𝜏] { 𝑒 𝜏 ′ | 𝜙
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Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { 𝑒 | 𝜙 given

Θ;Δ, 𝜙Γ ⊢𝑛 𝑒 : ∀a.𝜏1 I.H.

Θ;Δ, 𝜙Γ ⊢𝑛 𝑒 𝜏 : 𝜏1 [a ↦→ 𝜏] rule c-tapp

• Case
s-qote

Θ; Γ ⊢𝑛+1 𝑒 : 𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛 J𝑒K : Code𝜏 { J𝑒K𝜙.𝑛 | ⌊𝜙⌋𝑛

Θ; Γ ⊢𝑛+1 𝑒 : 𝜏 { 𝑒 | 𝜙 given

Θ;Δ, 𝜙Γ ⊢𝑛+1 𝑒 : 𝜏 I.H.

Θ;Δ ⊢ 𝜙 Part 1

Θ;Δ ⊢𝑛 𝜙.𝑛 follows

Θ;Δ, (⌊𝜙⌋𝑛)Γ ⊢𝑛 𝜙.𝑛 weakening

𝜙 ¤< 𝑛 + 1 Lemma 5.2

𝜙 = 𝜙.𝑛, ⌊𝜙⌋𝑛 follows

Θ;Δ, (⌊𝜙⌋𝑛)Γ ⊢𝑛 J𝑒K𝜙.𝑛 : Code𝜏 rule c-qote

• Case
s-splice

Θ; Γ ⊢𝑛−1 𝑒 : Code𝜏 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′ fresh 𝑠

Θ; Γ ⊢𝑛 $𝑒 : 𝜏 { 𝑠 | 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 ′ = 𝑒)

Θ;Δ, 𝜙Γ, 𝑠 : (•, 𝜏 ′, 𝑛) ⊢𝑛 𝑠 : 𝜏 ′ rule c-svar

• Case
s-cabs

Θ; Γ, 𝑒𝑣 : (𝐶,𝑛) ⊢𝑛 𝑒 : 𝜌 { 𝑒 | 𝜙
1

Γ ⊢ 𝐶 { 𝜏 𝜙
1
++ 𝑒𝑣 : (𝜏, 𝑛) { 𝜙

2
fresh 𝑒𝑣

Θ; Γ ⊢𝑛 𝑒 : 𝐶 ⇒ 𝜌 { 𝜆𝑒𝑣 : 𝜏 .𝑒 | 𝜙
2

Θ;Δ, 𝑒𝑣 : (𝜏, 𝑛), 𝜙
1

Γ ⊢𝑛 𝑒 : 𝜏 ′ I.H.

Θ;Δ, 𝜙
2

Γ, 𝑒𝑣 : (𝜏, 𝑛) ⊢𝑛 𝑒 : 𝜏 ′ Lemma F.3

Θ;Δ, 𝜙
2

Γ ⊢𝑛 𝜆𝑒𝑣 : 𝜏 .𝑒 : 𝜏 → 𝜏 ′ rule c-abs

• Case
s-capp

Θ; Γ ⊢𝑛 𝑒 : 𝐶 ⇒ 𝜌 { 𝑒1 | 𝜙1
Θ; Γ |=𝑛 𝐶 { 𝑒2 | 𝜙2

Θ; Γ ⊢𝑛 𝑒 : 𝜌 { 𝑒1 𝑒2 | 𝜙1
, 𝜙

2

Θ;Δ, 𝜙
1

Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 I.H.

Θ;Δ, (𝜙
1
, 𝜙

2
)Γ ⊢𝑛 𝑒 : 𝜏1 → 𝜏2 weakening

Θ;Δ, 𝜙
2

Γ ⊢𝑛 𝑒2 : 𝜏1 Part 2

Θ;Δ, (𝜙
1
, 𝜙

2
)Γ ⊢𝑛 𝑒2 : 𝜏1 weakening

Θ;Δ, (𝜙
1
, 𝜙

2
)Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏2 rule c-app

Part 4 Case
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s-def

Θ; • ⊢0 𝑒 : 𝜎 { 𝑒 | 𝜙 • ⊢ 𝜎 { 𝜏 def k : 𝜏 = 𝑒; 𝜌gm
1
⊢−1 𝜙 { 𝜌gm

2

𝜌gm
1
; Θ ⊢ k = 𝑒 ⊣ Θ, k : 𝜎 { 𝜌gm

2

Θ, k : 𝜏 ⊢ 𝜌gm
1

given

Θ; • ⊢ 𝜙 Part 1

Θ;𝜙Γ ⊢0 𝑒 : 𝜏 Part 3

Θ, 𝜙Θ
; • ⊢0 𝑒 : 𝜏 Lemma F.2

Θ, 𝜙Θ ⊢ k : 𝜏 = 𝑒 ⊣ Θ, 𝜙Θ, k : 𝜏 rule c-def

Θ, 𝜙Θ, k : 𝜏 ⊢ 𝜌gm
1

weakening

Θ, 𝜙Θ ⊢ def k : 𝜏 = 𝑒; 𝜌gm
1

rule c-pgm-def

𝜙 ¤< 0 Lemma 5.2

Θ ⊢ 𝜌gm
2

Part 7

Part 5 Case
s-cls

a ⊢ 𝜌 { 𝜏

𝜌gm; Θ ⊢ TC awhere {k : 𝜌} ⊣ Θ, k : ∀a.TC a ⇒ 𝜌 { def k : ∀a.𝜏 → 𝜏 = Λa.𝜆x : 𝜏 .x; 𝜌gm

• ⊢ ∀a.TC a ⇒ 𝜌 { ∀a.𝜏 → 𝜏 rules s-k-forall, s-k-carrow, and s-k-tc

Θ, k : ∀a.𝜏 → 𝜏 ⊢ 𝜌gm given

Θ; • ⊢0 Λa.𝜆x : 𝜏 .x : ∀a.𝜏 → 𝜏 rules c-tabs, c-abs, and c-var

Θ ⊢ k : ∀a.𝜏 → 𝜏 = Λa.𝜆x : 𝜏 .x ⊣ Θ, k : ∀a.𝜏 → 𝜏 rule c-def

Θ ⊢ def k : ∀a.𝜏 → 𝜏 = Λa.𝜆x : 𝜏 .x; 𝜌gm rule c-pgm-def

Part 6 Case
s-inst

TC awhere {k : 𝜌}

bj
j
= ftv (𝜏) bj

j ⊢ 𝐶i { 𝜏i

i

Θ; bj
j
, 𝑒𝑣i : (𝐶i, 0)

i
⊢0 𝑒 : 𝜌 [a ↦→ 𝜏] { 𝑒 | 𝜙

1

• ⊢ 𝜌 [a ↦→ 𝜏] { 𝜏 fresh 𝑒𝑣i
i

𝜙
1
++ (bj

j
, 𝑒𝑣i : (𝜏i, 0)

i) { 𝜙
2

def ev : ∀bj
j
.𝜏i

i → 𝜏 = Λbj
j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒; 𝜌gm
1
⊢−1 𝜙

2
{ 𝜌gm

2
fresh ev

𝜌gm
1
; Θ ⊢ 𝐶i

i ⇒ TC𝜏 where {k = 𝑒} ⊣ Θ, ev : ∀bj
j
.𝐶i

i ⇒ TC𝜏 { 𝜌gm
2

Θ, ev : ∀bj
j
.𝜏i

i → 𝜏 ⊢ 𝜌gm
1

given

Θ; bj
j
, 𝑒𝑣i : (𝜏i, 0)

i ⊢ 𝜙
1

Part 1

𝜙
1
¤< 0 Lemma 5.2

Θ; • ⊢ 𝜙
2

Lemma 5.3

Θ; bj
j
, 𝑒𝑣i : (𝜏i, 0)

i
, 𝜙

1

Γ ⊢0 𝑒 : 𝜏 Part 3

𝜙
2
¤< 0 by definition

Θ;𝜙
2

Γ, bj
j
, 𝑒𝑣i : (𝜏i, 0)

i ⊢0 𝑒 : 𝜏 Lemma F.3

Θ, 𝜙
2

Θ
; bj

j
, 𝑒𝑣i : (𝜏i, 0)

i ⊢0 𝑒 : 𝜏 Lemma F.2

Θ, 𝜙
2

Θ
; • ⊢0 Λbj

j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒 : ∀bj
j
.𝜏i

i → 𝜏 rules c-tabs and c-abs

Θ, 𝜙
2

Θ ⊢ ev : ∀bj
j
.𝜏i

i → 𝜏 = Λbj
j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒 ⊣ Θ, 𝜙
2

Θ, ev : ∀bj
j
.𝜏i

i → 𝜏 rule c-def
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Θ, 𝜙
2

Θ, ev : ∀bj
j
.𝜏i

i → 𝜏 ⊢ 𝜌gm
1

weakening

Θ, 𝜙
2

Θ ⊢ def ev : ∀bj
j
.𝜏i

i → 𝜏 = Λbj
j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒; 𝜌gm
1

rule c-pgm-def

Θ ⊢ 𝜌gm
2

Part 7

Part 7 • The case for rule s-clap-empty holds trivially.

• Case
s-clap-rec

spdef 𝜙.𝑛; 𝜌gm
1
⊢𝑛−1 ⌊𝜙⌋𝑛 { 𝜌gm

2

𝜌gm
1
⊢𝑛 𝜙 { 𝜌gm

2

Θ; • ⊢ 𝜙 given

Θ; • ⊢ ⌊𝜙⌋𝑛 follows

Θ; • ⊢𝑛 𝜙.𝑛 follows

𝜙 ¤⩽ 𝑛 given

⌊𝜙⌋𝑛 ¤⩽ 𝑛 − 1 follows

Θ, 𝜙Θ ⊢ 𝜌gm
1

given

𝜙 = ⌊𝜙⌋𝑛, 𝜙 .𝑛 𝜙 ¤⩽ 𝑛

Θ, (⌊𝜙⌋𝑛)Θ, (𝜙.𝑛)Θ ⊢ 𝜌gm
1

follows

Θ, (⌊𝜙⌋𝑛)Θ ⊢ spdef 𝜙.𝑛; 𝜌gm
1

rule c-pgm-spdef

Θ ⊢ 𝜌gm
2

I.H.

Part 8 • Case
s-pgm-def

𝜌gm
1
; Θ1 ⊢ D ⊣ Θ2 { 𝜌gm

2
Θ2 ⊢ pgm : 𝜎 { 𝜌gm

1

Θ1 ⊢ def D; pgm : 𝜎 { 𝜌gm
2

Θ2 ⊢ 𝜌gm
1

given

Θ1 ⊢ 𝜌gm
2

Part 4

• Case
s-pgm-cls

𝜌gm
1
; Θ1 ⊢ C ⊣ Θ2 { 𝜌gm

2
Θ2 ⊢ pgm : 𝜎 { 𝜌gm

1

Θ1 ⊢ classC; pgm : 𝜎 { 𝜌gm
2

Θ2 ⊢ 𝜌gm
1

given

Θ1 ⊢ 𝜌gm
2

Part 5

• Case
s-pgm-inst

𝜌gm
1
; Θ1 ⊢ I ⊣ Θ2 { 𝜌gm

2
Θ2 ⊢ pgm : 𝜎 { 𝜌gm

1

Θ1 ⊢ instI; pgm : 𝜎 { 𝜌gm
2

Θ2 ⊢ 𝜌gm
1

given

Θ1 ⊢ 𝜌gm
2

Part 6

• Case
s-pgm-expr

Θ; • ⊢0 𝑒 : 𝜎 { 𝑒 | 𝜙 • ⊢ 𝜎 { 𝜏 𝑒 : 𝜏 ⊢−1 𝜙 { 𝜌gm

Θ ⊢ 𝑒 : 𝜎 { 𝜌gm
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Θ; • ⊢ 𝜙 Part 1

𝜙 ¤< 0 Lemma 5.2

Θ;𝜙Γ ⊢0 𝑒 : 𝜏 Part 3

Θ, 𝜙Θ
; • ⊢0 𝑒 : 𝜏 Lemma F.2

Θ, 𝜙Θ ⊢ 𝑒 : 𝜏 Rule c-pgm-expr

Θ ⊢ 𝜌gm Part 7

□

G OVERVIEW OF AXIOMATIC SEMANTICS
In this section we outline the proofs for axiomatic semantics Appendix H includes the list of lemmas,

and Appendix I presents the proofs. An overview figure that shows the relation between definitions

and lemma is given in Figure 8. First, we present some definitions, and then discuss about the

proofs in Appendix G.2.

G.1 Axiomatic Equivalence
We have axioms between 𝐹 JK

expressions:

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 =𝑎𝑥 𝑒

J𝑒1K𝜙
1
,Δ⊢𝑛𝑠 :𝜏=J𝑒K𝜙 ,𝜙2

=𝑎𝑥 J𝑒1 [𝑠 ↦→ 𝑒]K𝜙
1
,𝜙′,𝜙

2

where 𝜙 ++Δ { 𝜙 ′

An axiomatic equivalence relation 𝑒1 =𝑎𝑥 𝑒2 between 𝐹 JK
expressions that is the contextual and

equivalence closure of the axioms. In particular, we extend the axioms with

𝑒1 =𝑎𝑥 𝑒2 (Axiomatic equality)

eq-refl

𝑒 =𝑎𝑥 𝑒

eq-symm

𝑒1 =𝑎𝑥 𝑒2

𝑒2 =𝑎𝑥 𝑒1

eq-trans

𝑒1 =𝑎𝑥 𝑒2 𝑒2 =𝑎𝑥 𝑒3

𝑒1 =𝑎𝑥 𝑒3

eq-ctx

𝑒1 =𝑎𝑥 𝑒2 C1 =𝑎𝑥 C2

C1 [𝑒1] =𝑎𝑥 C2 [𝑒2]

Similarly, the axiomatic equivalence relation 𝜌gm
1
=𝑎𝑥 𝜌gm

2
axioms for 𝐹 JK

programs are the

contextual and equivalence closure of the following axioms:

𝜌gm
1
=𝑎𝑥 𝜌gm

2
(Axiomatic equality)

peq-def

𝑒1 =𝑎𝑥 𝑒2 𝜌gm
1
=𝑎𝑥 𝜌gm

2

def k : 𝜏 = 𝑒1; 𝜌gm1
=𝑎𝑥 def k : 𝜏 = 𝑒2; 𝜌gm2

peq-spdef

𝑒1 =𝑎𝑥 𝑒2 𝜌gm
1
=𝑎𝑥 𝜌gm

2

spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒1; 𝜌gm1
=𝑎𝑥 spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒2; 𝜌gm2

peq-expr

𝑒1 =𝑎𝑥 𝑒2

𝑒1 : 𝜏 =𝑎𝑥 𝑒2 : 𝜏
peq-spdef-ax

𝜙 ++Δ { 𝜙 ′

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙 ; 𝜌gm =𝑎𝑥 spdef 𝜙 ′
; 𝜌gm[𝑠 ↦→ 𝑒]

Definition G.1 (Axiomatic Equivalence).
Θ ⊢ 𝜌gm

1
⋍𝑎𝑥 𝜌gm

2
≜ Θ ⊢ 𝜌gm

1
∧ Θ ⊢ 𝜌gm

2
∧ 𝜌gm

1
=𝑎𝑥 𝜌gm

2

Θ; Γ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 ≜ Θ; Γ ⊢𝑛 𝑒1 : 𝜏 ∧ Θ; Γ ⊢𝑛 𝑒2 : 𝜏 ∧ 𝑒1 =𝑎𝑥 𝑒2

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.



61:50 Ningning Xie, Matthew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

Θ; Γ ⊢𝑛 𝑒1 ⋍𝑐𝑡𝑥 𝑒2 : 𝜏

Definition 6.3

Θ ⊢ 𝜌gm
1
⋍𝑐𝑡𝑥 𝜌gm

2
: 𝜏

Definition 6.3

𝑒1 −→ 𝑒2

natural

reduction

(Figure 5)

𝑒1 ↩→ 𝑒2

axiomatic

reduction

(Appendix G.3)

Θ;Δ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏

Definition G.1

Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2

Definition G.1

pgm
1
=𝑎𝑥 pgm

2

Figure 7a

Church-Rosser

(Theorem H.12)

𝑒1 ↩→→ 𝑒2

parallel

reduction

(Appendix G.4)

Confluence (Theorem H.20)

Confluence (Lemma H.11)

𝑒1 ↩→→→ 𝑒2

complete

development

(Appendix G.5)

𝑒1
𝑁
↩→↩→ 𝑒2

parallel reduction

with complexity

(Appendix G.6)

defined upon

defined upon defined upon

Lemma H.4

Lemma H.1Theorem H.5

Lemma H.14

Lemma H.15

Theorem H.7

Lemma H.10 Corollary H.13

Lemma H.22

Lemma H.23

closes

Lemma H.26

Lemma H.29

Lemma H.35

Lemma H.28

Fig. 8. Overview of the proofs

G.2 Outline
To prove our goal that source =𝑎𝑥 leads to core ⋍𝑐𝑡𝑥 , we need two steps:

(1) Source =𝑎𝑥 leads to core =𝑎𝑥 ; and

(2) Core ⋍𝑎𝑥 leads to core ⋍𝑐𝑡𝑥 .

The first step is by an inductive step on source =𝑎𝑥 . The related lemmas are given in Appendix H.1

(for programs) and Appendix H.2 (for expressions).

The second step is more involved. We first define axiomatic reduction (↩→) (Appendix G.3) derived

from core axiomatic equivalence. Now that we can first relate ⋍𝑎𝑥 to ↩→. This part is proved in

Appendix H.3. One important property we need there is Church-Rosser (Theorem H.12), which is

proved in Appendix H.4. The proof of Church-Rosser is based on the notion of parallel reduction
(Appendix G.4), whose proofs are based on the notion of complete development (Appendix G.5). The
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proofs regarding parallel reduction are given in Appendix H.5, and regarding complete development

are given in Appendix H.6.

Nowwe can relate core⋍𝑎𝑥 to core⋍𝑐𝑡𝑥 by relating axiomatic reduction to operational semantics.

That is done via a definition of parallel reduction with complexity (Appendix G.6). And the related

lemmas are given in Appendix H.7.

G.3 Axiomatic Reduction
From axioms we can derive a reduction semantics:

𝑒1 ↩→ 𝑒2 (Axiomatic Reduction)

ce-ax-spliceQuote

𝜙 ++Δ { 𝜙 ′

J𝑒1K𝜙
1
,Δ⊢𝑛𝑠 :𝜏=J𝑒2K𝜙 ,𝜙2

↩→ J𝑒1 [𝑠 ↦→ 𝑒2]K𝜙
1
,𝜙′,𝜙

2

ce-ax-qoteSplice

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 ↩→ 𝑒

ce-ax-beta

(𝜆x : 𝜏 .𝑒1) 𝑒2 ↩→ 𝑒1 [x ↦→ 𝑒2]

ce-ax-tbeta

(Λa.𝑒) 𝜏 ↩→ 𝑒 [a ↦→ 𝜏]

ce-ax-ctx

𝑒1 ↩→ 𝑒2

C[𝑒1] ↩→ C[𝑒2]

We write 𝑒1 ↩→∗ 𝑒2 to mean the reflexive, transitive and context closure of ↩→. Formally,

𝑒1 ↩→∗ 𝑒2 (Reduction)

ce-ax-c-refl

𝑒 ↩→∗ 𝑒

ce-ax-c-trans

𝑒1 ↩→ 𝑒2 𝑒2 ↩→∗ 𝑒3

𝑒1 ↩→∗ 𝑒3

G.4 Parallel Reduction
𝑒1 ↩→→ 𝑒2 (Parallel Reduction)

ce-ax-pa-lit

𝑖 ↩→→ 𝑖

ce-ax-pa-var

x ↩→→ x

ce-ax-pa-svar

𝑠 ↩→→ 𝑠

ce-ax-pa-kvar

k ↩→→ k
ce-ax-pa-abs

𝑒1 ↩→→ 𝑒2

𝜆x : 𝜏 .𝑒1 ↩→→ 𝜆x : 𝜏 .𝑒2

ce-ax-pa-tabs

𝑒1 ↩→→ 𝑒2

Λa.𝑒1 ↩→→ Λa.𝑒2

ce-ax-pa-app

𝑒1 ↩→→ 𝑒3 𝑒2 ↩→→ 𝑒4

𝑒1 𝑒2 ↩→→ 𝑒3 𝑒4

ce-ax-pa-tapp

𝑒1 ↩→→ 𝑒2

𝑒1 𝜏 ↩→→ 𝑒2 𝜏
ce-ax-pa-beta

𝑒1 ↩→→ 𝑒3 𝑒2 ↩→→ 𝑒4

(𝜆x : 𝜏 .𝑒1) 𝑒2 ↩→→ 𝑒3 [x ↦→ 𝑒4]

ce-ax-pa-tbeta

𝑒1 ↩→→ 𝑒2

(Λa.𝑒1) 𝜏 ↩→→ 𝑒2 [a ↦→ 𝜏]
ce-ax-pa-spliceQuote

𝑒 ↩→→ 𝑒 ′ 𝜙 i =

{
𝜙 ′′
i where 𝑒i ↩→→ J𝑒 ′′i K𝜙′

i
∧ 𝜙 ′

i ++Δi { 𝜙 ′′
i

Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′i where 𝑒i ↩→→ 𝑒 ′i

J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i ↩→→ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′i
i ]K

𝜙 i
i

ce-ax-pa-qoteSplice

𝑒1 ↩→→ 𝑒2

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 ↩→→ 𝑒2
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G.5 Complete Development
𝑒1 ↩→→→ 𝑒2 (Complete Development)

ce-ax-cp-lit

𝑖 ↩→→→ 𝑖

ce-ax-cp-var

x ↩→→→ x

ce-ax-cp-svar

𝑠 ↩→→→ 𝑠

ce-ax-cp-kvar

k ↩→→→ k
ce-ax-cp-abs

𝑒1 ↩→→→ 𝑒2

𝜆x : 𝜏 .𝑒1 ↩→→→ 𝜆x : 𝜏 .𝑒2

ce-ax-cp-tabs

𝑒1 ↩→→→ 𝑒2

Λa.𝑒1 ↩→→→ Λa.𝑒2

ce-ax-cp-app

𝑒1 ↩→→→ 𝑒3 𝑒2 ↩→→→ 𝑒4 𝑒1 ≠ 𝜆x : 𝜏 .𝑒

𝑒1 𝑒2 ↩→→→ 𝑒3 𝑒4
ce-ax-cp-tapp

𝑒1 ↩→→→ 𝑒2 𝑒1 ≠ Λa.𝑒

𝑒1 𝜏 ↩→→→ 𝑒2 𝜏

ce-ax-cp-beta

𝑒1 ↩→→→ 𝑒3 𝑒2 ↩→→→ 𝑒4

(𝜆x : 𝜏 .𝑒1) 𝑒2 ↩→→→ 𝑒3 [x ↦→ 𝑒4]

ce-ax-cp-tbeta

𝑒1 ↩→→→ 𝑒2

(Λa.𝑒1) 𝜏 ↩→→→ 𝑒2 [a ↦→ 𝜏]
ce-ax-cp-spliceQuote

𝑒 ↩→→→ 𝑒 ′

𝜙 i =

{
𝜙 ′′
i where 𝑒i ↩→→→ J𝑒 ′′i K𝜙′

i
∧ 𝜙 ′

i ++Δi { 𝜙 ′′
i

Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′i where 𝑒i ↩→→→ 𝑒 ′i ∧ 𝑒 ′i ≠ J𝑒 ′′i K𝜙′
i

J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i ≠ J𝑠K•⊢𝑛𝑠 :𝜏=𝑒′′′

J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i ↩→→→ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′i
i ]K

𝜙 i
i

ce-ax-cp-qoteSplice

𝑒1 ↩→→→ 𝑒2

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 ↩→→→ 𝑒2

G.6 Parallel Reduction with Complexity

𝑒1
𝑁
↩→↩→ 𝑒2 (Parallel Reduction with Derivation Complexity)

ce-ax-ppa-lit

𝑖
0

↩→↩→ 𝑖

ce-ax-ppa-var

x
0

↩→↩→ x

ce-ax-ppa-svar

𝑠
0

↩→↩→ 𝑠

ce-ax-ppa-kvar

k
0

↩→↩→ k
ce-ax-ppa-abs

𝑒1
𝑁
↩→↩→ 𝑒2

𝜆x : 𝜏 .𝑒1
𝑁
↩→↩→ 𝜆x : 𝜏 .𝑒2

ce-ax-ppa-tabs

𝑒1
𝑁
↩→↩→ 𝑒2

Λa.𝑒1
𝑁
↩→↩→ Λa.𝑒2

ce-ax-ppa-app

𝑒1
𝑀
↩→↩→ 𝑒3 𝑒2

𝑁
↩→↩→ 𝑒4

𝑒1 𝑒2
𝑀+𝑁
↩→↩→ 𝑒3 𝑒4

ce-ax-ppa-tapp

𝑒1
𝑁
↩→↩→ 𝑒2

𝑒1 𝜏
𝑁
↩→↩→ 𝑒2 𝜏

ce-ax-ppa-beta

𝑒1
𝑀
↩→↩→ 𝑒3 𝑒2

𝑁
↩→↩→ 𝑒4

(𝜆x : 𝜏 .𝑒1) 𝑒2
𝑀+#(x,𝑒3)∗𝑁+1

↩→↩→ 𝑒3 [x ↦→ 𝑒4]

ce-ax-ppa-tbeta

𝑒1
𝑁
↩→↩→ 𝑒2

(Λa.𝑒1) 𝜏
𝑁+1
↩→↩→ 𝑒2 [a ↦→ 𝜏]

ce-ax-ppa-spliceQuote

𝑒
𝑁
↩→↩→ 𝑒 ′

𝜙 i =


𝜙 ′′
i where 𝑒i = J𝑒 ′′i K𝜙 i

∧ 𝑒 ′′i
𝑁i
↩→↩→ 𝑒 ′′′i ∧ 𝜙 i

𝐿i
↩→↩→ 𝜙 ′

i ∧ 𝜙 ′
i ++Δi { 𝜙 ′′

i

Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′i where 𝑒i
𝑀i
↩→↩→ 𝑒 ′i

J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i
𝑁+#(𝑠i,𝑒′)∗𝑁i

i+𝑀i
i+𝐿i

i+1
↩→↩→ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i

i ]K
𝜙 i

i

ce-ax-ppa-qoteSplice

𝑒1
𝑁
↩→↩→ 𝑒2

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1
𝑁+1
↩→↩→ 𝑒2
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𝜙
1

𝑁
↩→↩→ 𝜙

2
(Parallel Reduction with Derivation Complexity)

ce-ax-ppa-s-empty

• 0

↩→↩→ •

ce-ax-ppa-s-cons

𝜙
1

𝑁
↩→↩→ 𝜙

2
𝑒1

𝑀
↩→↩→ 𝑒2

𝜙
1
,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒1

𝑁+𝑀
↩→↩→ 𝜙

2
,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒2

For simplicity we also write 𝑒1 ↩→↩→ 𝑒2 when the absolute complexity does not matter.

H LIST OF LEMMAS FOR AXIOMATIC SEMANTICS
H.1 Elaboration of Source Programs
Lemma H.1 (𝜆J⇒K =𝑎𝑥 to 𝐹 JK ⋍𝑎𝑥 ).

• If pgm
1
=𝑎𝑥 pgm2

, where Θ ⊢ pgm
1
: 𝜎 { 𝜌gm

1
, and Θ ⊢ pgm

2
: 𝜎 { 𝜌gm

2
, and Θ { Θ ,

then Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
.

• If 𝑒1 =𝑎𝑥 𝑒2, where Θ; Γ ⊢𝑛 𝑒1 : 𝜎 { 𝑒1 | 𝜙1
, and Θ; Γ ⊢𝑛 𝑒2 : 𝜎 { 𝑒2 | 𝜙2

, and Θ { Θ , and

Γ { Δ , and • ⊢ 𝜎 { 𝜏 then if 𝑒1 : 𝜏 ⊢𝑛−1 𝜙
1
{ 𝜌gm

1
, and 𝑒2 : 𝜏 ⊢𝑛−1 𝜙

2
{ 𝜌gm

2
, then

𝜌gm
1
=𝑎𝑥 𝜌gm

2
.

Lemma H.2. If •; • ⊢𝑛 𝑒1 : 𝜏 , and 𝑒1 −→ 𝑒2, then •; • ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 .

Lemma H.3 (−→ Preserves ⋍𝑎𝑥 ). • Given • ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
, if 𝜌gm

1
−→∗ 𝑒1 : 𝜏 or

𝜌gm
2
−→∗ 𝑒2 : 𝜏 , then there exists 𝜌gm′

1
and 𝜌gm′

2
, such that (1) either 𝜌gm′

1
= 𝜌gm = 𝑣1 : 𝜏 ,

or 𝜌gm
1
−→+ 𝜌gm′

1
; (2) either 𝜌gm′

2
= 𝜌gm = 𝑣2 : 𝜏 , or 𝜌gm

2
−→+ 𝜌gm′

2
; (3) and • ⊢

𝜌gm′
1
⋍𝑎𝑥 𝜌gm′

2
.

• Given •; • ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 , if 𝑒1 −→∗ 𝑣1, then 𝑒2 −→∗ 𝑣2, and •; • ⊢𝑛 𝑣1 ⋍𝑎𝑥 𝑣2 : 𝜏 , and vice
versa.

Lemma H.4 (𝐹 JK ⋍𝑎𝑥 to 𝐹 JK ⋍𝑐𝑡𝑥 ). If Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
, then Θ ⊢ 𝜌gm

1
⋍𝑐𝑡𝑥 𝜌gm

2
: 𝜏 .

Theorem H.5 (𝜆J⇒K =𝑎𝑥 to 𝐹 JK ⋍𝑐𝑡𝑥 ). If pgm
1
=𝑎𝑥 pgm2

, where Θ ⊢ pgm
1
: 𝜎 { 𝜌gm

1
, and

Θ ⊢ pgm
2
: 𝜎 { 𝜌gm

2
, and Θ { Θ , and • ⊢ 𝜎 { 𝜏 , then Θ ⊢ 𝜌gm

1
⋍𝑐𝑡𝑥 𝜌gm

2
: 𝜏 .

H.2 Elaboration of Source Expressions
Lemma H.6 (Substitution for =𝑎𝑥 ).

• If 𝜌gm
1
=𝑎𝑥 𝜌gm

2
, and 𝑣1 =𝑎𝑥 𝑣2, then 𝜌gm

1
[k ↦→ 𝑣1] =𝑎𝑥 𝜌gm

2
[k ↦→ 𝑣2].

• If 𝜌gm
1
=𝑎𝑥 𝜌gm

2
, and 𝑣1 =𝑎𝑥 𝑣2, then 𝜌gm

1
[𝑠 ↦→ 𝑣1] =𝑎𝑥 𝜌gm

2
[𝑠 ↦→ 𝑣2].

• If J𝑒1K𝜙𝑣1
=𝑎𝑥 J𝑒2K𝜙𝑣2

, then [𝜙𝑣1]𝑒1 =𝑎𝑥 [𝜙𝑣2]𝑒2.

Theorem H.7. If •; Γ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 , then •; Γ ⊢𝑛 𝑒1 ⋍𝑐𝑡𝑥 𝑒2 : 𝜏 .

H.3 Axiomatic Reduction
Lemma H.8 (Transitivity). If 𝑒1 ↩→∗ 𝑒2 and 𝑒2 ↩→∗ 𝑒3, then 𝑒1 ↩→∗ 𝑒3.

Lemma H.9 (Congruence). If 𝑒1 ↩→∗ 𝑒2, then C[𝑒1] ↩→∗ C[𝑒2].

Lemma H.10 (↩→ to =𝑎𝑥 ). Given Θ;Δ ⊢𝑛 𝑒1 : 𝜏 , if 𝑒1 ↩→ 𝑒2 then Θ;Δ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 .
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Lemma H.11 (Confluence). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→∗ 𝑒1 and 𝑒 ↩→∗ 𝑒2, then there exists 𝑒 ′ such
that 𝑒1 ↩→∗ 𝑒 ′ and 𝑒2 ↩→∗ 𝑒 ′.

Theorem H.12 (Church-Rosser). If Θ;Δ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 , then there exists 𝑒 such that 𝑒1 ↩→∗ 𝑒 and
𝑒2 ↩→∗ 𝑒 .

Corollary H.13. Given Θ;Δ ⊢𝑛 𝑒 : Int, if Θ;Δ ⊢𝑛 𝑒 ⋍𝑎𝑥 𝑖 : Int then 𝑒 ↩→∗ 𝑖 .

Lemma H.14. If 𝑒 −→∗ 𝑣 , then 𝑒 ↩→∗ 𝑣 .

Lemma H.15. Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→∗ 𝑣 , then 𝑒 −→∗ 𝑣 ′ for some 𝑣 ′.

Corollary H.16. Given Θ;Δ ⊢𝑛 𝑒 : Int, then we have Θ;Δ ⊢𝑛 𝑒 ⋍𝑎𝑥 𝑖 : Int if and only if 𝑒 −→∗ 𝑖 .

H.4 Church-Rosser
Lemma H.17 (Substitution).

• If 𝑒1 ↩→→ 𝑒2, and 𝑒3 ↩→→ 𝑒4, then 𝑒1 [x ↦→ 𝑒3] ↩→→ 𝑒2 [x ↦→ 𝑒4].
• If 𝑒1 ↩→→ 𝑒2, then 𝑒1 [a ↦→ 𝜏] ↩→→ 𝑒2 [a ↦→ 𝜏].
• If 𝑒1 ↩→→ 𝑒2, and 𝑒3 ↩→→ 𝑒4, then 𝑒1 [𝑠 ↦→ 𝑒3] ↩→→ 𝑒2 [𝑠 ↦→ 𝑒4].

Lemma H.18 (Diamond Lemma). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→→ 𝑒1, and 𝑒 ↩→→ 𝑒2, then there exists 𝑒 ′

such that 𝑒1 ↩→→ 𝑒 ′ and 𝑒2 ↩→→ 𝑒 ′.

Lemma H.19 (Strip Lemma). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→→ 𝑒1, and 𝑒 ↩→→∗ 𝑒2, then there exists 𝑒 ′ such
that 𝑒1 ↩→→∗ 𝑒 ′ and 𝑒2 ↩→→ 𝑒 ′.

Theorem H.20 (Confluence of ↩→→). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→→∗ 𝑒1, and 𝑒 ↩→→∗ 𝑒2, then there exists
𝑒 ′ such that 𝑒1 ↩→→∗ 𝑒 ′ and 𝑒2 ↩→→∗ 𝑒 ′.

H.5 Parallel Reduction
Lemma H.21 (Reflexivity). 𝑒 ↩→→ 𝑒 .

Lemma H.22 (↩→→ simulates ↩→). If 𝑒1 ↩→ 𝑒2, then 𝑒1 ↩→→ 𝑒2.

Lemma H.23 (↩→∗
simulates ↩→→). If 𝑒1 ↩→→ 𝑒2, then 𝑒1 ↩→∗ 𝑒2.

Theorem H.24 (Equivalence of Parallel Reduction and Axiomatic Semantics). 𝑒1 ↩→→∗ 𝑒2 if and
only if 𝑒1 ↩→∗ 𝑒2.

H.6 Complete Development
Lemma H.25 (↩→→→ exists). For any 𝑒 , there exists 𝑒 ′ such that 𝑒 ↩→→→ 𝑒 ′.

Lemma H.26 (↩→→→ closes ↩→→). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→→→ 𝑒1, and 𝑒 ↩→→ 𝑒2, then 𝑒2 ↩→→ 𝑒1.
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H.7 Parallel Reduction with Complexity
Lemma H.27 (Reflexivity). 𝑒 ↩→↩→ 𝑒 .

Lemma H.28 (↩→↩→ simulates ↩→). If 𝑒1 ↩→ 𝑒2, then 𝑒1 ↩→→ 𝑒2.

Lemma H.29 (↩→∗
simulates ↩→↩→). If 𝑒1 ↩→↩→ 𝑒2, then 𝑒1 ↩→∗ 𝑒2.

Lemma H.30 (Substitution).

• If 𝑒1
𝑁1

↩→↩→ 𝑒2, and 𝑒3
𝑁2

↩→↩→ 𝑒4, then there exists 𝑀 , such that 𝑒1 [x ↦→ 𝑒3]
𝑀
↩→↩→ 𝑒2 [x ↦→ 𝑒4], where

𝑀 ⩽ 𝑁1 + #(x, 𝑒2) ∗ 𝑁2.

• If 𝑒1
𝑁
↩→↩→ 𝑒2, then 𝑒1 [a ↦→ 𝜏] 𝑁

↩→↩→ 𝑒2 [a ↦→ 𝜏].

Lemma H.31 (Monotonicity). If 𝑣 ↩→↩→ 𝑒 , then 𝑒 is also a value.

Lemma H.32 (Transition). If 𝑒 ↩→↩→ 𝑣 , then there exists 𝑣2, such that 𝑒 −→∗ 𝑣2, and 𝑣2 ↩→↩→ 𝑣 .

Lemma H.33 (Permutation). Given Θ;Δ ⊢𝑛 𝑒1 : 𝜏 , if 𝑒1 ↩→↩→ 𝑒2, and 𝑒2 −→ 𝑒3, then there exists 𝑒4,
such that 𝑒1 −→∗ 𝑒4, and 𝑒4 ↩→↩→ 𝑒3.

Lemma H.34 (Push Back). Given Θ;Δ ⊢𝑛 𝑒1 : 𝜏 , if 𝑒1 ↩→↩→ 𝑒2, and 𝑒2 −→∗ 𝑣1, then there exists 𝑣2,
such that 𝑒1 −→∗ 𝑣2, and 𝑣2 ↩→↩→ 𝑣1.

Lemma H.35 (−→∗
simulates ↩→↩→∗

). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→↩→∗ 𝑣 , then there exists 𝑣2 such that
𝑒 −→∗ 𝑣2, and 𝑣2 ↩→↩→∗ 𝑣 .

I PROOFS FOR AXIOMATIC SEMANTICS
I.1 Elaboration of Source Programs
Lemma H.6 (Substitution for =𝑎𝑥 ).

• If 𝜌gm
1
=𝑎𝑥 𝜌gm

2
, and 𝑣1 =𝑎𝑥 𝑣2, then 𝜌gm

1
[k ↦→ 𝑣1] =𝑎𝑥 𝜌gm

2
[k ↦→ 𝑣2].

• If 𝜌gm
1
=𝑎𝑥 𝜌gm

2
, and 𝑣1 =𝑎𝑥 𝑣2, then 𝜌gm

1
[𝑠 ↦→ 𝑣1] =𝑎𝑥 𝜌gm

2
[𝑠 ↦→ 𝑣2].

• If J𝑒1K𝜙𝑣1
=𝑎𝑥 J𝑒2K𝜙𝑣2

, then [𝜙𝑣1]𝑒1 =𝑎𝑥 [𝜙𝑣2]𝑒2.

The first two parts follows straightforward by induction on 𝜌gm
1
and 𝜌gm

2
. The third part can

then be proved by repeating part 2. □

Lemma H.1 (𝜆J⇒K =𝑎𝑥 to 𝐹 JK ⋍𝑎𝑥 ).
• If pgm

1
=𝑎𝑥 pgm2

, where Θ ⊢ pgm
1
: 𝜎 { 𝜌gm

1
, and Θ ⊢ pgm

2
: 𝜎 { 𝜌gm

2
, and Θ { Θ ,

then Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
.

• If 𝑒1 =𝑎𝑥 𝑒2, where Θ; Γ ⊢𝑛 𝑒1 : 𝜎 { 𝑒1 | 𝜙1
, and Θ; Γ ⊢𝑛 𝑒2 : 𝜎 { 𝑒2 | 𝜙2

, and Θ { Θ , and

Γ { Δ , and • ⊢ 𝜎 { 𝜏 then if 𝑒1 : 𝜏 ⊢𝑛−1 𝜙
1
{ 𝜌gm

1
, and 𝑒2 : 𝜏 ⊢𝑛−1 𝜙

2
{ 𝜌gm

2
, then

𝜌gm
1
=𝑎𝑥 𝜌gm

2
.

Proof.Part 1 By induction on pgm
1
=𝑎𝑥 pgm2

.

• pgm
1
= def k = 𝑒1; pgm3

, and pgm
2
= def k = 𝑒2; pgm4

, and 𝑒1 =𝑎𝑥 𝑒2, and pgm
3
=𝑎𝑥 pgm4

.

Θ ⊢ def k = 𝑒1; pgm3
: 𝜎 { 𝜌gm

1
given

𝜌gm
3
; Θ ⊢ k = 𝑒1 ⊣ Θ, k : 𝜏 { 𝜌gm

1
inversion (rule s-pgm-def)
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Θ, k : 𝜏 ⊢ pgm
3
: 𝜎 { 𝜌gm

3

Θ; • ⊢0 𝑒1 : 𝜎1 { 𝑒1 | 𝜙1
inversion (rule s-def)

• ⊢ 𝜎 { 𝜏

def k : 𝜏 = 𝑒1; 𝜌gm3
⊢−1 𝜙

1
{ 𝜌gm

1

𝜌gm
1
= spdef 𝜙 ′

1
; def k : 𝜏 = 𝑒1; 𝜌gm3

inversion

Θ ⊢ def k = 𝑒2; pgm4
: 𝜎 { 𝜌gm

2
given

𝜌gm
4
; Θ ⊢ k = 𝑒2 ⊣ Θ, k : 𝜏 { 𝜌gm

2
inversion (rule s-pgm-def)

Θ, k : 𝜏 ⊢ pgm
3
: 𝜎 { 𝜌gm

4

Θ; • ⊢0 𝑒2 : 𝜎1 { 𝑒2 | 𝜙2
inversion (rule s-def)

• ⊢ 𝜎 { 𝜏

def k : 𝜏 = 𝑒2; 𝜌gm4
⊢−1 𝜙

2
{ 𝜌gm

2

𝜌gm
2
= spdef 𝜙 ′

2
; def k : 𝜏 = 𝑒2; 𝜌gm4

inversion

Θ ⊢ 𝜌gm
3
⋍𝑎𝑥 𝜌gm

4
I.H.

𝑒1 : 𝜏 ⊢−1 𝜙
1
{ spdef 𝜙 ′

1
; 𝑒1 : 𝜏 Part 2

𝑒2 : 𝜏 ⊢−1 𝜙
2
{ spdef 𝜙 ′

2
; 𝑒2 : 𝜏 above

spdef 𝜙 ′
1
; 𝑒1 : 𝜏 =𝑎𝑥 spdef 𝜙 ′

2
; 𝑒2 : 𝜏 above

𝜙 ′
1
, 𝜙 ′

2
fresh w.r.t. 𝜌gm

3
and 𝜌gm

4

Θ ⊢ spdef 𝜙 ′
1
; def k : 𝜏 = 𝑒1; 𝜌gm3

⋍𝑎𝑥 spdef 𝜙 ′
2
; def k : 𝜏 = 𝑒2; 𝜌gm4

follows

• pgm
1
= class TC awhere {k : 𝜌}; pgm

3
, and pgm

2
= class TC awhere {k : 𝜌}; pgm

4
, and

pgm
3
=𝑎𝑥 pgm4

.

Θ ⊢ class TC awhere {k : 𝜌}; pgm
3
: 𝜎 { 𝜌gm

1
given

Θ, k : ∀a.TC a ⇒ 𝜌 ⊢ pgm
3
: 𝜎 { 𝜌gm

3
inversion (rule s-pgm-cls)

𝜌gm
3
; Θ ⊢ TC awhere {k : 𝜌} ⊣ Θ, k : ∀a.TC a ⇒ 𝜌 { def k : ∀a.𝜏 → 𝜏 = Λa.𝜆x : 𝜏 .x; 𝜌gm

3

inversion (rule s-cls)

a ⊢ 𝜌 { 𝜏

𝜌gm
1
= def k : ∀a.𝜏 → 𝜏 = Λa.𝜆x : 𝜏 .x; 𝜌gm

3

Θ ⊢ class TC awhere {k : 𝜌}; pgm
4
: 𝜎 { 𝜌gm

2
given

Θ, k : ∀a.TC a ⇒ 𝜌 ⊢ pgm
4
: 𝜎 { 𝜌gm

4
inversion (rule s-pgm-cls)

𝜌gm
4
; Θ ⊢ TC awhere {k : 𝜌} ⊣ Θ, k : ∀a.TC a ⇒ 𝜌 { def k : ∀a.𝜏 → 𝜏 = Λa.𝜆x : 𝜏 .x; 𝜌gm

4

inversion (rule s-pgm-cls)

𝜌gm
2
= def k : ∀a.𝜏 → 𝜏 = Λa.𝜆x : 𝜏 .x; 𝜌gm

4

Θ, k : ∀a.𝜏 → 𝜏 ⊢ 𝜌gm
3
⋍𝑎𝑥 𝜌gm

4
I.H.

Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
follows

• pgm
1
= inst𝐶i

i ⇒ TC𝜏 where {k = 𝑒1}; pgm3
, and pgm

2
= inst𝐶i

i ⇒ TC𝜏 where {k =

𝑒2}; pgm4
, and 𝑒1 =𝑎𝑥 𝑒2, and pgm

3
=𝑎𝑥 pgm4

.

Θ ⊢ inst𝐶i
i ⇒ TC𝜏 where {k = 𝑒1}; pgm3

: 𝜎 { 𝜌gm
1

given

Θ,∀bj
j
.𝐶i

i ⇒ TC𝜏 ⊢ pgm
3
: 𝜎 { 𝜌gm

3
inversion (rule s-pgm-inst)

𝜌gm
3
; Θ ⊢ 𝐶i

i ⇒ TC𝜏 where {k = 𝑒1} ⊣ Θ,∀bj
j
.𝐶i

i ⇒ TC𝜏 { 𝜌gm
1

inversion (rule s-inst)

Θ; bj
j
, 𝑒𝑣i : (𝐶i, 0)

i
⊢0 𝑒1 : 𝜌 [a ↦→ 𝜏] { 𝑒1 | 𝜙1
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𝜙
1
++ (bj

j
, 𝑒𝑣i : (𝜏i, 0)

i) { 𝜙
3

𝜌gm
1
= spdef 𝜙 ′

3
; def ev : ∀bj

j
.𝜏i

i → 𝜏 = Λbj
j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒1; 𝜌gm3

Θ ⊢ inst𝐶i
i ⇒ TC𝜏 where {k = 𝑒2}; pgm4

: 𝜎 { 𝜌gm
2

given

Θ,∀bj
j
.𝐶i

i ⇒ TC𝜏 ⊢ pgm
4
: 𝜎 { 𝜌gm

4
inversion (rule s-pgm-inst)

𝜌gm
4
; Θ ⊢ 𝐶i

i ⇒ TC𝜏 where {k = 𝑒2} ⊣ Θ,∀bj
j
.𝐶i

i ⇒ TC𝜏 { 𝜌gm
2

inversion (rule s-inst)

Θ; bj
j
, 𝑒𝑣i : (𝐶i, 0)

i
⊢0 𝑒2 : 𝜌 [a ↦→ 𝜏] { 𝑒2 | 𝜙2

𝜙
2
++ (bj

j
, 𝑒𝑣i : (𝜏i, 0)

i) { 𝜙
4

𝜌gm
2
= spdef 𝜙 ′

4
; def ev : ∀bj

j
.𝜏i

i → 𝜏 = Λbj
j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒2; 𝜌gm4

Θ, ev : ∀bj
j
.𝜏i

i → 𝜏 ⊢ 𝜌gm
3
⋍𝑎𝑥 𝜌gm

4
I.H.

𝑒1 : 𝜏 ⊢−1 𝜙
1
{ spdef 𝜙 ′

1
; 𝑒1 : 𝜏 Part 2

𝑒2 : 𝜏 ⊢−1 𝜙
2
{ spdef 𝜙 ′

2
; 𝑒2 : 𝜏 above

spdef 𝜙 ′
1
; 𝑒1 : 𝜏 =𝑎𝑥 spdef 𝜙 ′

2
; 𝑒2 : 𝜏 above

𝜙 ′
3
, 𝜙 ′

4
fresh w.r.t. 𝜌gm

3
and 𝜌gm

4

spdef 𝜙 ′
3
; def ev : ∀bj

j
.𝜏i

i → 𝜏 = Λbj
j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒1; 𝜌gm3

=𝑎𝑥spdef 𝜙 ′
4
; def ev : ∀bj

j
.𝜏i

i → 𝜏 = Λbj
j
.𝜆 𝑒𝑣i : 𝜏i

i .𝑒2; 𝜌gm4
follows

Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
namely

• pgm
1
= 𝑒1, and pgm

2
= 𝑒2. and 𝑒1 =𝑎𝑥 𝑒2.

Θ ⊢ 𝑒1 : 𝜎 { 𝜌gm
1

given

• ⊢ 𝜎 { 𝜏 inversion (rule s-pgm-expr)

Θ; • ⊢0 𝑒1 : 𝜎 { 𝑒1 | 𝜙1

𝑒1 : 𝜏 ⊢−1 𝜙
1
{ 𝜌gm

1

Θ ⊢ 𝑒2 : 𝜎 { 𝜌gm
2

given

Θ; • ⊢0 𝑒2 : 𝜎 { 𝑒2 | 𝜙2
inversion (rule s-pgm-expr)

𝑒2 : 𝜏 ⊢−1 𝜙
2
{ 𝜌gm

2

𝜌gm
1
=𝑎𝑥 𝜌gm

2
Part 2

Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
follows

Part 2 By induction on 𝑒1 =𝑎𝑥 𝑒2.

• The case for 𝑒1 = 𝑒2 = 𝑖 , and x, and k are trivial.

• 𝑒1 = 𝜆x : 𝜏 .𝑒3, and 𝑒2 = 𝜆x : 𝜏 .𝑒4, and 𝑒3 =𝑎𝑥 𝑒4.

Θ; Γ, x : (𝜏, 𝑛) ⊢𝑛 𝑒3 : 𝜏2 { 𝑒1 | 𝜙1
given

𝜙
1
++ x : (𝜏 ′

1
, 𝑛) { 𝜙

3

Θ; Γ, x : (𝜏, 𝑛) ⊢𝑛 𝑒4 : 𝜏2 { 𝑒2 | 𝜙2
given

𝜙
2
++ x : (𝜏 ′

1
, 𝑛) { 𝜙

4

𝑒1 : 𝜏 ⊢𝑛−1 𝜙
1
{ spdef 𝜙 ′

1
; 𝑒1 : 𝜏 𝜙 ′

1
is sorted 𝜙

1

𝑒2 : 𝜏 ⊢𝑛−1 𝜙
2
{ spdef 𝜙 ′

2
; 𝑒2 : 𝜏 𝜙 ′

2
is sorted 𝜙

2

spdef 𝜙 ′
1
; 𝑒1 : 𝜏 =𝑎𝑥 spdef 𝜙 ′

2
; 𝑒2 : 𝜏 I.H.

(𝜆x : 𝜏 ′.𝑒1) : 𝜏 ′ → 𝜏 ⊢𝑛−1 𝜙
3
{ spdef 𝜙 ′

3
; (𝜆x : 𝜏 ′.𝑒1) : 𝜏 ′ → 𝜏 𝜙 ′

3
is sorted 𝜙

3

𝜙 ′
1
++ x : (𝜏 ′

1
, 𝑛) { 𝜙 ′

3
follows

(𝜆x : 𝜏 ′.𝑒2) : 𝜏 ′ → 𝜏 ⊢𝑛−1 𝜙
4
{ spdef 𝜙 ′

4
; (𝜆x : 𝜏 ′.𝑒1) : 𝜏 ′ → 𝜏 𝜙 ′

4
is sorted 𝜙

4
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𝜙 ′
2
++ x : (𝜏 ′

1
, 𝑛) { 𝜙 ′

4
follows

We can then derive the conclusion spdef 𝜙 ′
3
; (𝜆x : 𝜏 ′.𝑒1) : 𝜏 ′ → 𝜏 =𝑎𝑥 spdef 𝜙 ′

4
; (𝜆x :

𝜏 ′.𝑒1) : 𝜏 ′ → 𝜏 by first applying the same sequence of equivalence rules as for spdef 𝜙 ′
1
; 𝑒1 :

𝜏 =𝑎𝑥 spdef 𝜙 ′
2
; 𝑒2 : 𝜏 , until we need to prove the equivalence of two expressions. At

that point we apply rule eq-ctx to remove the lambda, then we can apply again the

same sequence of equivalence rules as for proving the equivalence of two expressions in

spdef 𝜙 ′
1
; 𝑒1 : 𝜏 =𝑎𝑥 spdef 𝜙 ′

2
; 𝑒2 : 𝜏 .

• The case for rule s-tabs and rule s-cabs is the same as the above one.

• 𝑒1 = 𝑒3 𝑒4, and 𝑒2 = 𝑒5 𝑒6, and 𝑒3 =𝑎𝑥 𝑒5, 𝑒4 =𝑎𝑥 𝑒6.

Θ; Γ ⊢𝑛 𝑒3 : 𝜏1 → 𝜏2 { 𝑒3 | 𝜙3
given

Θ; Γ ⊢𝑛 𝑒4 : 𝜏1 { 𝑒4 | 𝜙4
given

Θ; Γ ⊢𝑛 𝑒5 : 𝜏1 → 𝜏2 { 𝑒5 | 𝜙5
given

Θ; Γ ⊢𝑛 𝑒6 : 𝜏1 { 𝑒6 | 𝜙6
given

𝑒3 : 𝜏1 → 𝜏2 ⊢𝑛−1 𝜙3
{ spdef 𝜙 ′

3
; 𝑒3 : 𝜏1 → 𝜏2 𝜙 ′

3
is sorted 𝜙

3

𝑒4 : 𝜏1 ⊢𝑛−1 𝜙4
{ spdef 𝜙 ′

4
; 𝑒4 : 𝜏1 𝜙 ′

4
is sorted 𝜙

4

𝑒5 : 𝜏1 → 𝜏2 ⊢𝑛−1 𝜙5
{ spdef 𝜙 ′

5
; 𝑒5 : 𝜏1 → 𝜏2 𝜙 ′

5
is sorted 𝜙

5

𝑒6 : 𝜏1 ⊢𝑛−1 𝜙6
{ spdef 𝜙 ′

6
; 𝑒6 : 𝜏1 𝜙 ′

6
is sorted 𝜙

6

spdef 𝜙 ′
3
; 𝑒3 : 𝜏1 → 𝜏2 =𝑎𝑥 spdef 𝜙 ′

5
; 𝑒5 : 𝜏1 → 𝜏2 I.H.

spdef 𝜙 ′
4
; 𝑒4 : 𝜏1 =𝑎𝑥 spdef 𝜙 ′

6
; 𝑒6 : 𝜏1 I.H.

𝑒3 𝑒4 : 𝜏2 ⊢𝑛−1 (𝜙
3
, 𝜙

4
) { 𝜌gm

1
let

𝑒5 𝑒6 : 𝜏2 ⊢𝑛−1 (𝜙
5
, 𝜙

6
) { 𝜌gm

2
let

Assume the level range of 𝜙
3
, 𝜙

4
, 𝜙

5
, 𝜙

6
is 𝑛 to 𝑛′

, then spdef 𝜙 ′
3
; 𝑒3 : 𝜏1 → 𝜏2 can be

represented as:

spdef𝜙
3
.𝑛; spdef𝜙

3
.𝑛 + 1; ...; spdef𝜙

3
.𝑛′

; 𝑒3 : 𝜏1 → 𝜏2.

So 𝜌gm
1
= spdef𝜙

3
.𝑛; spdef𝜙

4
.𝑛; spdef𝜙

3
.𝑛 + 1; spdef𝜙

4
.𝑛 + 1; ...;

spdef𝜙
3
.𝑛′

; spdef𝜙
4
.𝑛′

; 𝑒3 𝑒4 : 𝜏2
𝜌gm

2
= spdef𝜙

5
.𝑛; spdef𝜙

6
.𝑛; spdef𝜙

5
.𝑛 + 1; spdef𝜙

6
.𝑛 + 1; ...;

spdef𝜙
5
.𝑛′

; spdef𝜙
6
.𝑛′

; 𝑒5 𝑒6 : 𝜏2
Our goal is to prove 𝜌gm

1
=𝑎𝑥 𝜌gm

2
.

We can proceed by applying the interleaving sequence of rules used to prove the equiv-

alence of the splice definitions for spdef 𝜙 ′
3
; 𝑒3 : 𝜏1 → 𝜏2 =𝑎𝑥 spdef 𝜙 ′

5
; 𝑒5 : 𝜏1 → 𝜏2 and

spdef 𝜙 ′
4
; 𝑒4 : 𝜏1 =𝑎𝑥 spdef 𝜙 ′

6
; 𝑒6 : 𝜏1, until we need to prove the equivalence of expressions,

which are applications.

Note that since every time we generate fresh splice variables, substituting splice variables

in 𝜙
3
with their expressions in 𝑒4 keeps 𝑒4 unchanged. Similarly, substituting 𝜙

4
in 𝑒3 and

substituting 𝜙
5
to 𝑒6, and substituting 𝜙

6
to 𝑒5 will keep the expression unchanged.

Therefore at the point when we need to prove the equivalence of the applications, the

application we get is simply 𝑒3 𝑒4 with 𝑒3 substituted by some splice variables with their

expressions in 𝜙
3
, 𝑒4 substituted by some splice variables with their expressions in 𝜙

4
; and

𝑒5 𝑒6 with similar substitutions. Note the result expressions (substituted 𝑒3, 𝑒4, 𝑒5, 𝑒6) are

the same as the substituted one we got in the derivation tree in I.H.

Now we can first apply rule eq-trans, rule eq-ctx to split the applications into two

subexpressions and prove the equivalence of the two subexpressions respectively, i.e., the

equivalence between substituted 𝑒3 and 𝑒5, and between substituted 𝑒4 and 𝑒6.
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Now we can again apply the same sequence of rules applied in the I.H. to complete the

proof.

• The case for rule s-tapp and rule s-capp is the same as the above one. The case for rule s-

capp requires a similar lemma for constraint solving. As the form of rules for constraint

solving is essentially the same as expression typing, the lemma can be proved in a similar

way.

• 𝑒1 = J𝑒3K, and 𝑒2 = J𝑒4K, and 𝑒3 =𝑎𝑥 𝑒4.

Θ; Γ ⊢𝑛+1 𝑒3 : 𝜏 { 𝑒3 | 𝜙3
given

Θ; Γ ⊢𝑛 J𝑒3K : Code𝜏 { J𝑒3K𝜙
3
.𝑛 | ⌊𝜙

3
⌋𝑛 given

Θ; Γ ⊢𝑛+1 𝑒4 : 𝜏 { 𝑒3 | 𝜙4
given

Θ; Γ ⊢𝑛 J𝑒4K : Code𝜏 { J𝑒4K𝜙
4
.𝑛 | ⌊𝜙

4
⌋𝑛 given

𝑒3 : 𝜏 ⊢𝑛 𝜙
3
{ 𝜌gm

3
let

𝑒4 : 𝜏 ⊢𝑛 𝜙
4
{ 𝜌gm

4
let

𝜌gm
3
=𝑎𝑥 𝜌gm

4
I.H.

According to the definition, suppose 𝜙
5
is the sorted ⌊𝜙

3
⌋𝑛 and 𝜙

6
is the sorted ⌊𝜙

4
⌋𝑛 . Then

𝜌gm
3
can be represented as:

spdef 𝜙
5
; spdef 𝜙

3
.𝑛; 𝑒3 : 𝜏 .

And 𝜌gm
4
can be represented as:

spdef 𝜙
6
; spdef 𝜙

4
.𝑛; 𝑒4 : 𝜏 .

Now our goal is to prove

spdef 𝜙
5
; J𝑒3K𝜙

3
.𝑛 : Code𝜏 =𝑎𝑥 spdef 𝜙

6
; J𝑒4K𝜙

4
.𝑛 : Code𝜏

We can proceed by applying the sequence of rules used to prove the equivalence of the

splice definitions for 𝜌gm
3
=𝑎𝑥 𝜌gm

4
, until we need to prove

J𝑒 ′
3
K𝜙′

3
.𝑛 : Code𝜏 =𝑎𝑥 J𝑒 ′

4
K𝜙′

4
.𝑛 : Code𝜏

whereas in I.H., we have

spdef 𝜙 ′
3
.𝑛; 𝑒 ′

3
: 𝜏 =𝑎𝑥 spdef 𝜙 ′

4
.𝑛; 𝑒 ′

4
: 𝜏 .

where 𝜙 ′
3
.𝑛, 𝜙 ′

4
.𝑛, 𝑒 ′

3
and 𝑒 ′

4
are 𝜙

3
, 𝜙

4
, 𝑒3 and 𝑒4 after the substitution caused by rule peq-

spdef-ax.

At this point, I.H. will further apply a mix of rule peq-spdef and rule peq-spdef-ax (with

refl, symm, trans, congruence in between). We can corresponding apply rule eq-ctx (with

rule eq-trans) and rule eq-spliceQuote (and refl etc respectively).

If the I.H. applies rule peq-spdef, for example between spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒5; spdef 𝜙 ′′
3
.𝑛; 𝑒 ′

3
:

𝜏 =𝑎𝑥 spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒6; spdef 𝜙 ′′
4
.𝑛; 𝑒 ′

4
: 𝜏 where 𝑒5 =𝑎𝑥 𝑒6, then our goal is to prove

J𝑒 ′
3
KΔ⊢𝑛𝑠 :𝜏=𝑒5,𝜙′′

3
.𝑛 : Code𝜏 =𝑎𝑥 J𝑒 ′

4
KΔ⊢𝑛𝑠 :𝜏=𝑒6,𝜙′′

6
.𝑛 : Code𝜏 .

We then apply rule eq-trans with an intermediate expression J𝑒 ′
3
KΔ⊢𝑛𝑠 :𝜏=𝑒6,𝜙′′

3
.𝑛 : Code𝜏 .

Note that J𝑒 ′
3
KΔ⊢𝑛𝑠 :𝜏=𝑒5,𝜙′′

3
.𝑛 : Code𝜏 =𝑎𝑥 J𝑒 ′

3
KΔ⊢𝑛𝑠 :𝜏=𝑒6,𝜙′′

3
.𝑛 : Code𝜏 holds by rule eq-ctx. And

now our goal is to prove J𝑒 ′
3
KΔ⊢𝑛𝑠 :𝜏=𝑒6,𝜙′′

3
.𝑛 : Code𝜏 =𝑎𝑥 J𝑒 ′

4
KΔ⊢𝑛𝑠 :𝜏=𝑒6,𝜙′′

6
.𝑛 : Code𝜏 .

In this case, we have assumed 𝑠 is the first splice variable in the splice definition of 𝑒 ′
3
and

𝑒 ′
4
, but it does not have to be. That means, the 𝑠 may appear in the middle of the splice

definitions.

Note that while rule peq-spdef eliminates one definition at a time, to prove our goal we

don’t eliminate the splice definition but we introduce an intermediate expression so that

our new goal will have the same splice definition at that place eliminated by rule peq-spdef

(like in the above case).
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On the other hand, if the I.H. applies rule rule peq-spdef-ax, then we will apply rule eq-

spliceQuote. Note the similarity between rule peq-spdef-ax and rule eq-spliceQuote.

The only difference is that rule eq-spliceQuote allows splices definitions in front of the 𝑠

the rule is applied on. But since in the first step we have already make all splice definitions

in the front of 𝑠 equivalent, we can safely apply rule eq-spliceQuote.

Of course if the I.H. applies the refl, symm or trans, we will apply refl, symm, trans

correspondingly.

Through this sequence of rules we can finally end up comparing the expressions 𝑒 ′′
3
and 𝑒 ′′

4

(which are 𝑒 ′
3
and 𝑒 ′′

4
after further substitution caused by rule peq-spdef-ax and rule eq-

spliceQuote respectively). And we can then apply the same rules used in the I.H. to prove

our final result.

• 𝑒1 = $𝑒3, and 𝑒2 = $𝑒4, and 𝑒3 =𝑎𝑥 𝑒4.

Θ; Γ ⊢𝑛−1 𝑒3 : Code𝜏 { 𝑒3 | 𝜙3
given

Θ; Γ ⊢𝑛 $𝑒3 : 𝜏 { 𝑠 | 𝜙
3
, • ⊢𝑛−1 𝑠 : 𝜏 = 𝑒3 given

Θ; Γ ⊢𝑛−1 𝑒4 : Code𝜏 { 𝑒4 | 𝜙3
given

Θ; Γ ⊢𝑛 $𝑒4 : 𝜏 { 𝑠 | 𝜙
4
, • ⊢𝑛−1 𝑠 : 𝜏 = 𝑒4 given

𝑒3 : Code𝜏 ⊢𝑛 𝜙
3
{ 𝜌gm

3
let

𝑒4 : Code𝜏 ⊢𝑛 𝜙
4
{ 𝜌gm

4
let

𝜌gm
3
=𝑎𝑥 𝜌gm

4
I.H.

According to the definition, suppose 𝜙
5
is the sorted ⌊𝜙

3
⌋𝑛 and 𝜙

6
is the sorted ⌊𝜙

4
⌋𝑛 . Then

𝜌gm
3
can be represented as:

spdef 𝜙
5
; 𝑒3 : Code𝜏 .

And 𝜌gm
4
can be represented as:

spdef 𝜙
6
; 𝑒4 : Code𝜏 .

So our I.H. is

spdef 𝜙
5
; 𝑒3 : Code𝜏 =𝑎𝑥 spdef 𝜙

6
; 𝑒4 : Code𝜏 .

Now our goal is to prove

spdef 𝜙
5
; spdef • ⊢𝑛−1 𝑠 : 𝜏 = 𝑒3; 𝑠 : 𝜏 =𝑎𝑥 spdef 𝜙

6
; spdef • ⊢𝑛−1 𝑠 : 𝜏 = 𝑒4; 𝑠 : 𝜏

We can prove our goal by first following the proof of the I.H., until we need to prove

spdef • ⊢𝑛−1 𝑠 : 𝜏 = 𝑒 ′
3
; 𝑠 : 𝜏 =𝑎𝑥 spdef • ⊢𝑛−1 𝑠 : 𝜏 = 𝑒 ′

4
; 𝑠 : 𝜏

where 𝑒 ′
3
and 𝑒 ′

4
are 𝑒3 and 𝑒4 after the substitution introduced by rule peq-spdef-ax.

At this point we can apply rule peq-spdef and uses the same proof used by the I.H. to

prove 𝑒3 =𝑎𝑥 𝑒4. Furthermore we have 𝑠 =𝑎𝑥 𝑠 by rule eq-refl. That concludes our proof.

• 𝑒1 = $J𝑒K, and 𝑒2 = 𝑒 .

Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒1 | 𝜙1
given

Θ; Γ ⊢𝑛 $J𝑒K : 𝜏 { 𝑠 | ⌊𝜙
1
⌋𝑛−1, • ⊢𝑛−1 𝑠 : 𝜏 = J𝑒1K𝜙

1
.𝑛−1 given

𝑒1 : 𝜏 ⊢𝑛 𝜙
1
{ spdef ⌊𝜙 ′

1
⌋𝑛−1; spdef 𝜙

1
.𝑛 − 1; 𝑒1 : Code𝜏 let

𝑠 : 𝜏 ⊢𝑛 ⌊𝜙
1
⌋𝑛−1, • ⊢𝑛−1 𝑠 : 𝜏 = J𝑒1K𝜙

1
.𝑛−1 { spdef 𝜙 ′

1
.𝑛 − 1; spdef • ⊢𝑛−1 𝑠 : 𝜏 = J𝑒1K𝜙

1
.𝑛−1; 𝑠 : 𝜏

let

Our goal is to prove

spdef ⌊𝜙 ′
1
⌋𝑛−1; spdef 𝜙

1
.𝑛 − 1; 𝑒1 : Code𝜏

=𝑎𝑥 spdef 𝜙 ′
1
.𝑛 − 1; spdef • ⊢𝑛−1 𝑠 : 𝜏 = J𝑒1K𝜙

1
.𝑛−1; 𝑠 : 𝜏 .
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We can prove the goal by a sequence of rule peq-spdef, followed by one rule peq-spdef-ax.

• 𝑒1 = J$𝑒K, and 𝑒2 = 𝑒 .

Θ; Γ ⊢𝑛 𝑒 : Code𝜏 { 𝑒1 | 𝜙1
given

Θ; Γ ⊢𝑛 J$𝑒K : Code𝜏 { J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 | 𝜙1
given

𝑒1 : Code𝜏 ⊢𝑛 𝜙
1
{ spdef 𝜙 ′

1
; 𝑒1 : Code𝜏 let

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 : Code𝜏 ⊢𝑛 𝜙
1
{ spdef 𝜙 ′

1
; J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 : Code𝜏 let

Our goal is to prove

spdef 𝜙 ′
1
; 𝑒1 : Code𝜏 =𝑎𝑥 spdef 𝜙 ′

1
; J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 : Code𝜏 .

We can prove the goal by a sequence of rule peq-spdef, followed by one rule peq-expr,

which is then proved by rule eq-qoteSplice.

□

Lemma H.2. If •; • ⊢𝑛 𝑒1 : 𝜏 , and 𝑒1 −→ 𝑒2, then •; • ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 .

Proof. By a straightforward induction on 𝑒1 −→ 𝑒2, making use of rule eq-trans.

□

Lemma H.3 (−→ Preserves ⋍𝑎𝑥 ). • Given • ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
, if 𝜌gm

1
−→∗ 𝑒1 : 𝜏 or

𝜌gm
2
−→∗ 𝑒2 : 𝜏 , then there exists 𝜌gm′

1
and 𝜌gm′

2
, such that (1) either 𝜌gm′

1
= 𝜌gm = 𝑣1 : 𝜏 ,

or 𝜌gm
1
−→+ 𝜌gm′

1
; (2) either 𝜌gm′

2
= 𝜌gm = 𝑣2 : 𝜏 , or 𝜌gm

2
−→+ 𝜌gm′

2
; (3) and • ⊢

𝜌gm′
1
⋍𝑎𝑥 𝜌gm′

2
.

• Given •; • ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 , if 𝑒1 −→∗ 𝑣1, then 𝑒2 −→∗ 𝑣2, and •; • ⊢𝑛 𝑣1 ⋍𝑎𝑥 𝑣2 : 𝜏 , and vice
versa.

Proof.Part 1 By case analysis on =𝑎𝑥 .

– Case
peq-def

𝑒1 =𝑎𝑥 𝑒2 𝜌gm
1
=𝑎𝑥 𝜌gm

2

def k : 𝜏 = 𝑒1; 𝜌gm1
=𝑎𝑥 def k : 𝜏 = 𝑒2; 𝜌gm2

𝑒1 −→∗ 𝑣1 Part 2

𝑒2 −→∗ 𝑣2
•; • ⊢𝑛 𝑣1 ⋍𝑎𝑥 𝑣2 : 𝜏

def k : 𝜏 = 𝑒1; 𝜌gm1
−→∗ def k : 𝜏 = 𝑣1; 𝜌gm1

By rule ce-pgm-def

def k : 𝜏 = 𝑒2; 𝜌gm2
−→∗ def k : 𝜏 = 𝑣2; 𝜌gm2

By rule ce-pgm-def

def k : 𝜏 = 𝑣1; 𝜌gm1
−→ 𝜌gm

1
[k ↦→ 𝑣1] rule ce-pgm-dbeta

def k : 𝜏 = 𝑣2; 𝜌gm2
−→ 𝜌gm

2
[k ↦→ 𝑣2] rule ce-pgm-dbeta

Lemma H.6

– Case
peq-spdef

𝑒1 =𝑎𝑥 𝑒2 𝜌gm
1
=𝑎𝑥 𝜌gm

2

spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒1; 𝜌gm1
=𝑎𝑥 spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒2; 𝜌gm2

𝑒1 −→∗ J𝑒 ′
1
K𝜙𝑣1

Part 2

𝑒2 −→∗ J𝑒 ′
2
K𝜙𝑣2

•; • ⊢𝑛 J𝑒 ′
1
K𝜙𝑣1
⋍𝑎𝑥 J𝑒 ′

2
K𝜙𝑣2

: Code𝜏
spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒1; 𝜌gm1

−→∗ spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒 ′
1
K𝜙𝑣

; 𝜌gm
1

By rule ce-pgm-def

spdef Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒2; 𝜌gm2
−→∗ spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒 ′

2
K𝜙𝑣2

; 𝜌gm
2

By rule ce-pgm-def
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spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒 ′
1
K𝜙𝑣1

; 𝜌gm
1
−→ 𝜌gm

1
[𝑠 ↦→ [𝜙𝑣1]𝑒 ′1] rule ce-pgm-spbeta

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒 ′
2
K𝜙𝑣2

; 𝜌gm
2
−→ 𝜌gm

2
[𝑠 ↦→ [𝜙𝑣2]𝑒 ′2] rule ce-pgm-spbeta

Lemma H.6

– Case
peq-expr

𝑒1 =𝑎𝑥 𝑒2

𝑒1 : 𝜏 =𝑎𝑥 𝑒2 : 𝜏

∗ If 𝑒1 : 𝜏 = 𝑣1 : 𝜏 and 𝑒2 : 𝜏 = 𝑣2 : 𝜏 , then by rule peq-expr we have •; • ⊢𝑛 𝑣1 ⋍𝑎𝑥 𝑣2 : 𝜏

and we are done.

∗ If 𝑒1 : 𝜏 = 𝑣1 : 𝜏 and 𝑒2 is not a value. Then by progress we have 𝑒2 −→ 𝑒 ′
2
. By preservation

we have •; • ⊢𝑛 𝑒 ′
2
: 𝜏 . By Part 2, we have •; • ⊢𝑛 𝑒2 ⋍𝑎𝑥 𝑒 ′

2
: 𝜏 . By rule eq-trans, we have

•; • ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒 ′
2
: 𝜏 . Then by rule peq-expr we have • ⊢ 𝑣1 : 𝜏 ⋍𝑎𝑥 𝑒 ′

2
: 𝜏 and we are

done.

∗ The case when 𝑒1 is not a value and 𝑒2 is a value is the same as the previous case.

∗ If neither 𝑒1 nor 𝑒2 is a value, then similar as the above case, we have 𝑒1 −→ 𝑒 ′
1
and

•; • ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒 ′
1
: 𝜏 , and also 𝑒2 −→ 𝑒 ′

2
and •; • ⊢𝑛 𝑒2 ⋍𝑎𝑥 𝑒 ′

2
: 𝜏 . By rule eq-trans, we

have •; • ⊢𝑛 𝑒 ′
1
⋍𝑎𝑥 𝑒 ′

2
: 𝜏 . Then by rule peq-expr we have • ⊢ 𝑒 ′

1
: 𝜏 ⋍𝑎𝑥 𝑒 ′

2
: 𝜏 and we

are done.

– Case
peq-spdef-ax

𝜙 ++Δ { 𝜙 ′

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙 ; 𝜌gm =𝑎𝑥 spdef 𝜙 ′
; 𝜌gm[𝑠 ↦→ 𝑒]

𝜙 −→∗ 𝜙𝑣 Part 2

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙 ; 𝜌gm
−→∗ spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙𝑣

; 𝜌gm rules ce-pgm-spdef and ce-qote

−→∗ 𝜌gm[𝑠 ↦→ [𝜙𝑣]𝑒] rule ce-pgm-spbeta

On the right:

𝜙 ′ −→∗ 𝜙𝑣
′

𝜙𝑣 ++Δ { 𝜙𝑣
′ 𝜙 ++Δ { 𝜙 ′

spdef 𝜙 ′
; 𝜌gm[𝑠 ↦→ 𝑒]

−→∗ spdef 𝜙𝑣
′
; 𝜌gm[𝑠 ↦→ 𝑒] rule ce-pgm-spdef

(dom (𝜙𝑣
′) # fv (𝜌gm)) program well-typed, dom (𝜙𝑣

′) = dom (𝜙)
−→∗ 𝜌gm[𝑠 ↦→ [𝜙𝑣

′]𝑒] rule ce-pgm-spbeta

= 𝜌gm[𝑠 ↦→ [𝜙𝑣]𝑒] 𝜙𝑣 ++Δ { 𝜙𝑣
′

Part 2 By induction on 𝑒1 =𝑎𝑥 𝑒2, making use of Lemma H.2.

□

Lemma H.4 (𝐹 JK ⋍𝑎𝑥 to 𝐹 JK ⋍𝑐𝑡𝑥 ). If Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
, then Θ ⊢ 𝜌gm

1
⋍𝑐𝑡𝑥 𝜌gm

2
: 𝜏 .

Proof. We prove the direction from 𝜌gm
1
to 𝜌gm

2
, and the other direction is the same.

Θ ⊢ 𝜌gm
1
⋍𝑎𝑥 𝜌gm

2
given

Si,Dj
𝑖, 𝑗 ∈ Θ assume

spdefSi; defDj
𝑖, 𝑗
; 𝜌gm

1
−→∗ 𝑒1 : 𝜏

𝜌gm′
1
= spdefSi; defDj

𝑖, 𝑗
; 𝜌gm

1
let
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𝜌gm′
2
= spdefSi; defDj

𝑖, 𝑗
; 𝜌gm

2
let

• ⊢ 𝜌gm′
1
⋍𝑎𝑥 𝜌gm′

2
follows

𝜌gm′
1
−→∗ 𝑒1 : 𝜏 after substitution

𝜌gm′
1
−→∗ 𝑒 ′

1
: 𝜏 Lemma H.3

𝑒1 : 𝜏 −→∗ 𝑒 ′
1
: 𝜏

𝜌gm′
2
−→∗ 𝑒2 : 𝜏

• ⊢ 𝑒 ′
1
: 𝜏 ⋍𝑎𝑥 𝑒2 : 𝜏 above

•; • ⊢0 𝑒 ′
1
⋍𝑎𝑥 𝑒2 : 𝜏 by inversion

•; • ⊢0 𝑒1 ⋍𝑎𝑥 𝑒 ′
1
: 𝜏 by Lemma H.2

•; • ⊢0 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 by rule eq-trans

•; • ⊢0 𝑒1 ⋍𝑐𝑡𝑥 𝑒2 : 𝜏 Theorem H.7

□

Theorem H.5 (𝜆J⇒K =𝑎𝑥 to 𝐹 JK ⋍𝑐𝑡𝑥 ). If pgm
1
=𝑎𝑥 pgm2

, where Θ ⊢ pgm
1
: 𝜎 { 𝜌gm

1
, and

Θ ⊢ pgm
2
: 𝜎 { 𝜌gm

2
, and Θ { Θ , and • ⊢ 𝜎 { 𝜏 , then Θ ⊢ 𝜌gm

1
⋍𝑐𝑡𝑥 𝜌gm

2
: 𝜏 .

Proof. Follows by Lemma H.1 and Lemma H.4. □

I.2 Elaboration of Source Expressions
Theorem H.7. If •; Γ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 , then •; Γ ⊢𝑛 𝑒1 ⋍𝑐𝑡𝑥 𝑒2 : 𝜏 .

Proof. We prove the direction from 𝑒1 to 𝑒2, and the other direction is the same.

•; Γ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 given

•; • ⊢0 C[𝑒1] ⋍𝑎𝑥 C[𝑒2] : Int follows

C[𝑒1] −→∗ 𝑖 assume

•; • ⊢0 C[𝑒1] ⋍𝑎𝑥 𝑖 : Int Corollary H.16

•; • ⊢0 C[𝑒2] ⋍𝑎𝑥 𝑖 : Int by rules eq-trans and eq-symm

C[𝑒2] −→∗ 𝑖 Corollary H.16

□

I.3 Axiomatic Reduction
Lemma H.8 (Transitivity). If 𝑒1 ↩→∗ 𝑒2 and 𝑒2 ↩→∗ 𝑒3, then 𝑒1 ↩→∗ 𝑒3.

Proof. By a straightforward induction on 𝑒1 ↩→∗ 𝑒2. □

Lemma H.9 (Congruence). If 𝑒1 ↩→∗ 𝑒2, then C[𝑒1] ↩→∗ C[𝑒2].

Proof. By a straightforward induction on 𝑒1 ↩→∗ 𝑒2. □

Lemma H.10 (↩→ to =𝑎𝑥 ). Given Θ;Δ ⊢𝑛 𝑒1 : 𝜏 , if 𝑒1 ↩→ 𝑒2 then Θ;Δ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 .

Proof. As ↩→ is the semantics derived from =𝑎𝑥 , the goal follows straightforwardly. Note the

type is preserved according to Preservation (Theorem E.2). □

Lemma H.11 (Confluence). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→∗ 𝑒1 and 𝑒 ↩→∗ 𝑒2, then there exists 𝑒 ′ such
that 𝑒1 ↩→∗ 𝑒 ′ and 𝑒2 ↩→∗ 𝑒 ′.

Proof. Given 𝑒 ↩→∗ 𝑒1 and 𝑒 ↩→∗ 𝑒2, by Theorem H.24, we have 𝑒 ↩→→∗ 𝑒1 and 𝑒 ↩→→∗ 𝑒2. By

confluence of ↩→→ (Theorem H.20), we know there exists an 𝑒 ′ such that 𝑒1 ↩→→∗ 𝑒 ′ and 𝑒2 ↩→→∗ 𝑒 ′.
By Theorem H.24, we have 𝑒1 ↩→∗ 𝑒 ′ and 𝑒2 ↩→∗ 𝑒 ′ and we are done. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.



61:64 Ningning Xie, Matthew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

Theorem H.12 (Church-Rosser). If Θ;Δ ⊢𝑛 𝑒1 ⋍𝑎𝑥 𝑒2 : 𝜏 , then there exists 𝑒 such that 𝑒1 ↩→∗ 𝑒 and
𝑒2 ↩→∗ 𝑒 .

Proof. By induction on =𝑎𝑥 .

• For the four axioms, the goal follows directly by choose 𝑒 = 𝑒2, as 𝑒1 ↩→ 𝑒2.

• Rule eq-refl. The goal follows trivially as 𝑒1 = 𝑒2.

• Rule eq-symm. The goal follows directly from I.H..

• Rule eq-trans. There is one 𝑒3 such that 𝑒1 =𝑎𝑥 𝑒3 and 𝑒3 =𝑎𝑥 𝑒2. By I.H., there exists 𝑒 ′ such
that 𝑒1 ↩→∗ 𝑒 ′ and 𝑒3 ↩→∗ 𝑒 ′. Also by I.H., there exists 𝑒 ′′ such that 𝑒3 ↩→∗ 𝑒 ′′ and 𝑒2 ↩→∗ 𝑒 ′′.
By Lemma H.11, there exists 𝑒 , 𝑒 ′ ↩→∗ 𝑒 and 𝑒 ′′ ↩→∗ 𝑒 . Therefore 𝑒1 ↩→∗ 𝑒 and 𝑒2 ↩→∗ 𝑒 .

• Rule eq-ctx. By I.H., there exists 𝑒 ′ such that 𝑒1 ↩→∗ 𝑒 ′ and 𝑒2 ↩→∗ 𝑒 ′. By rules ce-ax-c-trans
and ce-ax-ctx, we have C[𝑒1] ↩→∗ C[𝑒 ′] and C[𝑒2] ↩→∗ C[𝑒 ′].

□

Corollary H.13. Given Θ;Δ ⊢𝑛 𝑒 : Int, if Θ;Δ ⊢𝑛 𝑒 ⋍𝑎𝑥 𝑖 : Int then 𝑒 ↩→∗ 𝑖 .

Proof. Follows directly from Theorem H.12. □

Lemma H.14. If 𝑒 −→∗ 𝑣 , then 𝑒 ↩→∗ 𝑣 .

Proof. The goal can be derived from: if 𝑒1 −→ 𝑒2, then 𝑒1 ↩→ 𝑒2. The later can be proved by a

straightforward induction on 𝑒1 −→ 𝑒2. □

Lemma H.15. Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→∗ 𝑣 , then 𝑒 −→∗ 𝑣 ′ for some 𝑣 ′.

Proof. Given 𝑒 ↩→∗ 𝑣 , by Lemma H.28 we know 𝑒 ↩→↩→∗ 𝑣 . By Lemma H.35, we have 𝑒 −→∗ 𝑣 ′

for some 𝑣 ′. □

Corollary H.16. Given Θ;Δ ⊢𝑛 𝑒 : Int, then we have Θ;Δ ⊢𝑛 𝑒 ⋍𝑎𝑥 𝑖 : Int if and only if 𝑒 −→∗ 𝑖 .

Proof. From right to left follows directly from Lemma H.14 and Corollary H.13. From left to

right:

Θ;Δ ⊢𝑛 𝑒 ⋍𝑎𝑥 𝑖 : Int given

𝑒 ↩→∗ 𝑖 Corollary H.13

for some 𝑣1 Lemma H.15

𝑒 −→∗ 𝑣1
𝑒 ↩→∗ 𝑣1 Lemma H.14

for some 𝑣2 Lemma H.11

𝑖 ↩→∗ 𝑣2 above

𝑣1 ↩→∗ 𝑣2 above

𝑣2 = 𝑖 by inversion

𝑣1 ↩→∗ 𝑖 by substitution

𝑣1 = 𝑖 follows

□

I.4 Church-Rosser
Lemma H.17 (Substitution).

• If 𝑒1 ↩→→ 𝑒2, and 𝑒3 ↩→→ 𝑒4, then 𝑒1 [x ↦→ 𝑒3] ↩→→ 𝑒2 [x ↦→ 𝑒4].
• If 𝑒1 ↩→→ 𝑒2, then 𝑒1 [a ↦→ 𝜏] ↩→→ 𝑒2 [a ↦→ 𝜏].
• If 𝑒1 ↩→→ 𝑒2, and 𝑒3 ↩→→ 𝑒4, then 𝑒1 [𝑠 ↦→ 𝑒3] ↩→→ 𝑒2 [𝑠 ↦→ 𝑒4].
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This can be proved using the similar techniques as the substitution lemma for parallel reduction

with complexity (Lemma H.30). □

Lemma H.18 (Diamond Lemma). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→→ 𝑒1, and 𝑒 ↩→→ 𝑒2, then there exists 𝑒 ′

such that 𝑒1 ↩→→ 𝑒 ′ and 𝑒2 ↩→→ 𝑒 ′.

Proof. Suppose 𝑒 ↩→→→ 𝑒3 (Lemma H.25). Let 𝑒 ′ = 𝑒3. By Lemma H.26, we know 𝑒1 ↩→→ 𝑒3 and

𝑒2 ↩→→ 𝑒3.

□

Lemma H.19 (Strip Lemma). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→→ 𝑒1, and 𝑒 ↩→→∗ 𝑒2, then there exists 𝑒 ′ such
that 𝑒1 ↩→→∗ 𝑒 ′ and 𝑒2 ↩→→ 𝑒 ′.

Proof. By induction on 𝑒 ↩→→∗ 𝑒2.

• Case 𝑒 = 𝑒2 and 𝑒 ↩→→∗ 𝑒 . Let 𝑒 ′ = 𝑒1 and we are done.

• Case 𝑒 ↩→→ 𝑒3 and 𝑒3 ↩→→∗ 𝑒2. By Lemma H.18, there exists 𝑒4 such that 𝑒1 ↩→→ 𝑒4 and 𝑒3 ↩→→ 𝑒4.

By I.H., there exists 𝑒 ′ such that 𝑒4 ↩→→∗ 𝑒 ′ and 𝑒2 ↩→→ 𝑒 ′. By 𝑒1 ↩→→ 𝑒4 and 𝑒4 ↩→→∗ 𝑒 ′, we have
𝑒1 ↩→→∗ 𝑒 ′ so we are done.

□

Theorem H.20 (Confluence of ↩→→). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→→∗ 𝑒1, and 𝑒 ↩→→∗ 𝑒2, then there exists
𝑒 ′ such that 𝑒1 ↩→→∗ 𝑒 ′ and 𝑒2 ↩→→∗ 𝑒 ′.

Proof. By induction on 𝑒 ↩→→∗ 𝑒1.

• Case 𝑒 = 𝑒1 and 𝑒 ↩→→∗ 𝑒 . Let 𝑒 ′ = 𝑒2 and we are done.

• Case 𝑒 ↩→→ 𝑒3 and 𝑒3 ↩→→∗ 𝑒1. By lemma H.19, there exists 𝑒4 such that 𝑒3 ↩→→∗ 𝑒4 and 𝑒2 ↩→→ 𝑒4.

By I.H., there exists 𝑒 ′ such that 𝑒1 ↩→→∗ 𝑒 ′ and 𝑒4 ↩→→∗ 𝑒 ′. By 𝑒2 ↩→→ 𝑒4 and 𝑒4 ↩→→∗ 𝑒 ′ we have
𝑒2 ↩→→∗ 𝑒 ′ so we are done.

□

I.5 Parallel Reduction
Lemma H.21 (Reflexivity). 𝑒 ↩→→ 𝑒 .

Proof. By a straightforward induction on 𝑒 . □

Lemma H.22 (↩→→ simulates ↩→). If 𝑒1 ↩→ 𝑒2, then 𝑒1 ↩→→ 𝑒2.

Proof. By induction on 𝑒1 ↩→ 𝑒2. The key observation is that in 𝑒1 ↩→ 𝑒2 fewer subterms are

reduced, so we employ Lemma H.21 to fill in necessary identity reductions to obtain 𝑒1 ↩→→ 𝑒2. □

Lemma H.23 (↩→∗
simulates ↩→→). If 𝑒1 ↩→→ 𝑒2, then 𝑒1 ↩→∗ 𝑒2.

Proof. By induction on 𝑒1 ↩→→ 𝑒2, making use of Lemma H.8 and Lemma H.9.

• Cases for rules ce-ax-pa-var, ce-ax-pa-svar, and ce-ax-pa-kvar follow directly by rule ce-

ax-c-refl.

• Rule ce-ax-pa-abs where 𝜆x : 𝜏 .𝑒1 ↩→→ 𝜆x : 𝜏 .𝑒2. By I.H., we have 𝑒1 ↩→∗ 𝑒2. By Lemma H.9,

we have 𝜆x : 𝜏 .𝑒1 ↩→∗ 𝜆x : 𝜏 .𝑒2.

• The case for rule ce-ax-pa-tabs is similar as the previous one.

• Rule ce-ax-pa-app where 𝑒1 𝑒2 ↩→→ 𝑒3 𝑒4. By I.H., we have 𝑒1 ↩→∗ 𝑒3, and 𝑒2 ↩→∗ 𝑒4. By

Lemma H.9, we have 𝑒1 𝑒2 ↩→∗ 𝑒3 𝑒2. Also by Lemma H.9, we have 𝑒3 𝑒2 ↩→∗ 𝑒3 𝑒4. Thus by
Lemma H.8, we have 𝑒1 𝑒2 ↩→∗ 𝑒3 𝑒4.

• The case for rule ce-ax-pa-tapp is similar as the previous one.
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• Rule ce-ax-pa-beta where (𝜆x : 𝜏 .𝑒1) 𝑒2 ↩→→ 𝑒3 [x ↦→ 𝑒4]. By I.H., we have 𝑒1 ↩→∗ 𝑒3
and 𝑒2 ↩→∗ 𝑒4. So by Lemma H.9, we have (𝜆x : 𝜏 .𝑒1) 𝑒2 ↩→∗ (𝜆x : 𝜏 .𝑒3) 𝑒2, and also

(𝜆x : 𝜏 .𝑒3) 𝑒2 ↩→∗ (𝜆x : 𝜏 .𝑒3) 𝑒4. Further (𝜆x : 𝜏 .𝑒3) 𝑒4 ↩→∗ 𝑒3 [x ↦→ 𝑒4] by rules ce-ax-c-refl

and ce-ax-beta. So by Lemma H.8, we have (𝜆x : 𝜏 .𝑒1) 𝑒2 ↩→∗ 𝑒3 [x ↦→ 𝑒4].
• The cases for rule ce-ax-pa-tbeta is similar as the previous case.

• Rule ce-ax-pa-spliceQuote where J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i ↩→→ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′i
i ]K

𝜙 i
i . By I.H., we have

𝑒 ↩→∗ 𝑒 ′, and 𝑒i ↩→∗ 𝑒 ′′i for expressions going through the first branch, and 𝑒i ↩→∗ 𝑒 ′i for
expressions going through the second branch. Then through Lemma H.9, Lemma H.8, and

rule ce-ax-spliceQuote, we can get J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i ↩→∗ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′i
i ]K

𝜙 i
i

• Rule ce-ax-pa-qoteSplice, where J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 ↩→→ 𝑒2. By I.H., we have 𝑒1 ↩→∗ 𝑒2. By

Lemma H.9, we have J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 ↩→∗ J𝑠K•⊢𝑛𝑠 :𝜏=𝑒2 . Then, by rule ce-ax-qoteSplice, we have

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒2 ↩→∗ 𝑒2. Therefore by Lemma H.8, we have J𝑠K•⊢𝑛𝑠 :𝜏=𝑒1 ↩→∗ 𝑒2.

□

Theorem H.24 (Equivalence of Parallel Reduction and Axiomatic Semantics). 𝑒1 ↩→→∗ 𝑒2 if and
only if 𝑒1 ↩→∗ 𝑒2.

Proof. Follows directly by Lemma H.22 and Lemma H.23. □

I.6 Complete Development
Lemma H.25 (↩→→→ exists). For any 𝑒 , there exists 𝑒 ′ such that 𝑒 ↩→→→ 𝑒 ′.

Proof. By straightforward induction on 𝑒 . Of particular interest is when 𝑒 is a quotation. Then

depending on its shape we can apply rule ce-ax-cp-spliceQuote or rule ce-ax-cp-qoteSplice

correspondingly. □

Lemma H.26 (↩→→→ closes ↩→→). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→→→ 𝑒1, and 𝑒 ↩→→ 𝑒2, then 𝑒2 ↩→→ 𝑒1.

Proof. By induction on 𝑒 ↩→→→ 𝑒1.

• Rule ce-ax-cp-var. Then 𝑒 = 𝑒1 = 𝑒2 = x. The goal follows by rule ce-ax-pa-var.

• Cases for rules ce-ax-cp-svar and ce-ax-cp-kvar are similar as the previous case.

• Rule ce-ax-cp-abs where 𝑒 = 𝜆x : 𝜏 .𝑒 ′ and 𝑒1 = 𝜆x : 𝜏 .𝑒 ′
1

𝜆x : 𝜏 .𝑒 ′ ↩→→→ 𝜆x : 𝜏 .𝑒 ′
1

given

𝑒 ′ ↩→→→ 𝑒 ′
1

inversion (rule ce-ax-cp-abs)

𝑒2 = 𝜆x : 𝜏 .𝑒 ′
2

inversion (rule ce-ax-pa-abs)

𝑒 ′ ↩→→ 𝑒 ′
2

above

𝑒 ′
2
↩→→ 𝑒 ′

1
I.H.

𝜆x : 𝜏 .𝑒 ′
2
↩→→ 𝜆x : 𝜏 .𝑒 ′

1
rule ce-ax-pa-abs

• The case for rule ce-ax-cp-tabs is similar as the previous case.

• Rule ce-ax-cp-app where 𝑒 = 𝑒3 𝑒4 and 𝑒1 = 𝑒5 𝑒6.

𝑒3 𝑒4 ↩→→→ 𝑒5 𝑒6 given

𝑒3 ↩→→→ 𝑒5 inversion (rule ce-ax-cp-app)

𝑒4 ↩→→→ 𝑒6 above

𝑒3 ≠ 𝜆x : 𝜏 .𝑒 ′ above

𝑒2 = 𝑒7 𝑒8 inversion (rule ce-ax-pa-app)

𝑒3 ↩→→ 𝑒7 above

𝑒4 ↩→→ 𝑒8 above
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𝑒7 ↩→→ 𝑒5 I.H.

𝑒8 ↩→→ 𝑒6 I.H.

𝑒7 𝑒8 ↩→→ 𝑒5 𝑒6 rule ce-ax-pa-app

• The cases for rule ce-ax-cp-tapp is similar as the previous case.

• Rule ce-ax-cp-beta, where 𝑒 = (𝜆x : 𝜏 .𝑒3) 𝑒4, and 𝑒1 = 𝑒5 [x ↦→ 𝑒6].

(𝜆x : 𝜏 .𝑒3) 𝑒4 ↩→→→ 𝑒5 [x ↦→ 𝑒6] given

𝑒3 ↩→→→ 𝑒5 inversion (rule ce-ax-cp-beta)

𝑒4 ↩→→→ 𝑒6 above

There are two subcases for the derivation 𝑒 ↩→ 𝑒2.

(1) Rule ce-ax-pa-beta

𝑒2 = 𝑒7 [x ↦→ 𝑒8] inversion (rule ce-ax-pa-beta)

𝑒3 ↩→→ 𝑒7 above

𝑒4 ↩→→ 𝑒8 above

𝑒7 ↩→→ 𝑒5 I.H.

𝑒8 ↩→→ 𝑒6 I.H.

(𝜆x : 𝜏 .𝑒3) 𝑒4 ↩→→ 𝑒7 [x ↦→ 𝑒8] rule ce-ax-pa-beta

𝑒7 [x ↦→ 𝑒8] ↩→→ 𝑒5 [x ↦→ 𝑒6] Lemma H.17

(2) Rule ce-ax-pa-app

𝑒2 = 𝑒7 𝑒8 inversion (rule ce-ax-pa-beta)

𝑒3 ↩→→ 𝑒7 above

𝑒4 ↩→→ 𝑒8 above

𝑒7 ↩→→ 𝑒5 I.H.

𝑒8 ↩→→ 𝑒6 I.H.

𝑒7 𝑒8 ↩→→ 𝑒5 [x ↦→ 𝑒6] rule ce-ax-pa-beta

• The cases for rule ce-ax-cp-tbeta is similar as the previous case.

• 𝑒1 goes through rule ce-ax-cp-spliceQuote and 𝑒2 goes through rule ce-ax-pa-qoteSplice.

Impossible case as rule ce-ax-cp-spliceQuote rules out the form of 𝑒 that rule ce-ax-pa-

qoteSplice can be applied.

• Rule ce-ax-cp-spliceQuote where 𝑒 = J𝑒3KΔi⊢𝑛i𝑠i :𝜏i=𝑒i
i , and 𝑒2 also goes through rule ce-ax-

pa-spliceQuote.

We have 𝑒1 = J𝑒 ′
1
[ 𝑠i ↦→ 𝑒1 i

i ]K
𝜙
1 i

i and 𝑒3 ↩→→→ 𝑒 ′
1
. Also, 𝑒2 = J𝑒 ′

2
[ 𝑠i ↦→ 𝑒2 i

i ]K
𝜙
2 i

i and 𝑒3 ↩→→ 𝑒 ′
2
.

By I.H., 𝑒 ′
2
↩→→ 𝑒 ′

1
.

In this case, we aim to show that by one step of rule ce-ax-pa-spliceQuote, 𝑒2 can get the

same set of substitutions and quotation environments as 𝑒1, then the goal can be established

by the substitution lemma (Lemma H.17).

We know that during the derivation, for each Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒i, it may go through the first

branch in rule ce-ax-cp-spliceQuote, or the second branch.

Namely, for some 𝑒i, 𝑒i ↩→→ J𝑒 ′′i K𝜙′
i
∧ 𝜙 ′

i ++Δi { 𝜙 ′′
i ; for some 𝑒i, Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′i .

For each Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒i, we discuss the cases of its reduction in 𝑒1 and in 𝑒2. There are four

subcases.

(1) 𝑒i goes through the first branch in rule ce-ax-cp-spliceQuote and rule ce-ax-pa-spliceQuote

respectively.
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Then for 𝑒1, it has applied the substitution 𝑠i ↦→ 𝑒 ′′i , and left the splice environment 𝜙 ′′
i .

Then for 𝑒2, it has applied the substitution 𝑠i ↦→ 𝑒 ′′′i , and left the splice environment 𝜙 ′′′′
i .

𝑒i ↩→→→ J𝑒 ′′i K𝜙′
i

inversion (rule ce-ax-cp-spliceQuote)

𝜙 ′
i ++Δi { 𝜙 ′′

i above

𝑒i ↩→→ J𝑒 ′′′i K𝜙′′′
i

inversion (rule ce-ax-pa-spliceQuote)

𝜙 ′′′
i ++Δi { 𝜙 ′′′′

i above

J𝑒 ′′′i K𝜙′′′
i
↩→→ J𝑒 ′′i K𝜙′

i
I.H.

– Suppose J𝑒 ′′′i K𝜙′′′
i
↩→→ J𝑒 ′′i K𝜙′

i
has gone through rule ce-ax-pa-spliceQuote.

Then in the goal when applying rule ce-ax-pa-spliceQuote we will choose the same

branch for each splice variable in 𝜙 ′′′′
i as we did for it in 𝜙 ′′′

i . Then effectively we can

generate a bunch of substitutions that when applied turns the substitution 𝑠i ↦→ 𝑒 ′′′i into

𝑠i ↦→ 𝑒 ′′. This also leaves us with the environment 𝜙 ′′
i .

– On the other hand, suppose J𝑒 ′′′i K𝜙′′′
i
↩→→ J𝑒 ′′i K𝜙′

i
has gone through rule ce-ax-pa-qoteSplice.

Then in this case we have J𝑒 ′′′i K𝜙′′′
i
= J𝑠jK•⊢𝑛𝑠j :𝜏=𝑒′′′′′i

, and 𝑒 ′′′′′i ↩→→ J𝑒 ′′i K𝜙′
i
.

Namely, 𝑒2 hasmade a substitution 𝑠i ↦→ 𝑠j and left the splice environmentΔi ⊢𝑛 𝑠j : 𝜏 = 𝑒 ′′′′′i .

Then in the goal when applying rule ce-ax-pa-spliceQuote we will choose the first

branch for 𝑠j with 𝑒 ′′′′′i ↩→→ J𝑒 ′′i K𝜙′
i
.

This generates a substitution 𝑠j ↦→ 𝑒 ′′i , which when applied turns the substitution 𝑠i ↦→ 𝑠j
into 𝑠i ↦→ 𝑒 ′′i , and this also leaves us 𝜙 ′′

i .

(2) 𝑒i goes through the first branch in rule ce-ax-cp-spliceQuote, and goes through the

second branch in rule ce-ax-pa-spliceQuote.

Then for 𝑒1, it has applied the substitution 𝑠i ↦→ 𝑒 ′′i , and left the splice environment 𝜙 ′′
i .

Then for 𝑒2, it has applied no substitution, but left the splice environment Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′′′i .

𝑒i ↩→→→ J𝑒 ′′i K𝜙′
i

inversion (rule ce-ax-cp-spliceQuote)

𝜙 ′
i ++Δi { 𝜙 ′′

i above

𝑒i ↩→→ 𝑒 ′′′i inversion (rule ce-ax-pa-spliceQuote)

𝑒 ′′′i ↩→→ J𝑒 ′′i K𝜙′
i

I.H.

Then by applying the first branch in rule ce-ax-pa-spliceQuote, we can obtain the substi-

tutions 𝑠i ↦→ 𝑒 ′′i and the splice environment 𝜙 ′′
i .

(3) 𝑒i goes through the second branch in rule ce-ax-cp-spliceQuote and rule ce-ax-pa-

spliceQuote respectively.

Then for 𝑒1, it has applied no substitution, but left the splice environment Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′′i .
Then for 𝑒2, it has applied no substitution, but left the splice environment Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′′′i .

𝑒i ↩→→→ 𝑒 ′′i inversion (rule ce-ax-cp-spliceQuote)

𝑒 ′′i is not a quotation above

𝑒i ↩→→ 𝑒 ′′′i inversion (rule ce-ax-pa-spliceQuote)

𝑒 ′′′i ↩→→ 𝑒 ′′i I.H.

Then by applying the second branch in rule ce-ax-pa-spliceQuote, we can transform

from Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′′′i to Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′′i .
(4) 𝑒i goes through the second branch in rule ce-ax-cp-spliceQuote, and goes through the

first branch in rule ce-ax-pa-spliceQuote.

Then for 𝑒1, it has applied no substitution, but left the splice environment Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′′i .
Then for 𝑒2, it has applied the substitution 𝑠i ↦→ 𝑒 ′′′i , and left the splice environment 𝜙 ′′′′

i .
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𝑒i ↩→→→ 𝑒 ′′i inversion (rule ce-ax-cp-spliceQuote)

𝑒 ′′i is not a quotation above

𝑒i ↩→→ J𝑒 ′′′i K𝜙′′′
i

inversion (rule ce-ax-pa-spliceQuote)

𝜙 ′′′
i ++Δi { 𝜙 ′′′′

i above

J𝑒 ′′′i K𝜙′′′
i
↩→→ 𝑒 ′′i I.H.

By inversion we know J𝑒 ′′′i K𝜙′′′
i
↩→→ 𝑒 ′′i goes through rule ce-ax-qoteSplice. Therefore,

𝑒 ′′′i = 𝑠 ′. As the expression is well-typed, so 𝑠 ′ must have the same level and type as 𝑠i. We

then rewrite the above reasoning as:

𝑒i ↩→→→ 𝑒 ′′i inversion (rule ce-ax-cp-spliceQuote)

𝑒 ′′i is not a quotation above

𝑒i ↩→→ J𝑠 ′K•⊢𝑛i𝑠′:𝜏i=𝑒′i inversion (rule ce-ax-pa-spliceQuote)

• ⊢𝑛i 𝑠 ′ : 𝜏i = 𝑒 ′i n ++Δi { Δi ⊢𝑛i 𝑠 ′ : 𝜏i = 𝑒 ′i above

J𝑠 ′K•⊢𝑛i𝑠′:𝜏i=𝑒′i ↩→→ 𝑒 ′′i I.H.

𝑒 ′i ↩→→ 𝑒 ′′i by inversion (rule ce-ax-qoteSplice)

Namely for 𝑒2, it has applied the substitution 𝑠i ↦→ 𝑠 ′, and left the splice environment

Δi ⊢𝑛i 𝑠 ′ : 𝜏i = 𝑒 ′i .
By 𝛼 renaming, this is equivalent to that for 𝑒2, it has applied no substitution, and left the

splice environment Δi ⊢𝑛
′
𝑠 : 𝜏i = 𝑒 ′i .

Then by applying rule ce-ax-pa-spliceQuote, we can transform from Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′i to
Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′′i .

• Rule ce-ax-cp-qoteSplice where 𝑒 = J𝑠K•⊢𝑛𝑠 :𝜏=𝑒3 .

𝑒1 = 𝑒4 inversion (rule ce-ax-cp-qoteSplice)

𝑒3 ↩→→→ 𝑒4 above

There are two subcases for the derivation 𝑒 ↩→→ 𝑒2.

(1) Rule ce-ax-pa-qoteSplice

𝑒2 = 𝑒5 inversion (rule ce-ax-pa-qoteSplice)

𝑒3 ↩→→ 𝑒5 above

𝑒5 ↩→→ 𝑒4 I.H.

(2) Rule ce-ax-pa-spliceQuote. There are further two subcases.

– The first branch

𝑒2 = J𝑠 [𝑠 ↦→ 𝑒5]K𝜙 = J𝑒5K𝜙 inversion (rule ce-ax-pa-spliceQuote)

𝑒3 ↩→→ J𝑒5K𝜙 above

J𝑒5K𝜙 ↩→→ 𝑒4 I.H.

– the second branch

𝑒2 = J𝑠K•⊢𝑛𝑠 :𝜏=𝑒5 inversion (rule ce-ax-pa-spliceQuote)

𝑒3 ↩→→ 𝑒5 above

𝑒5 ↩→→ 𝑒4 I.H.

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒5 ↩→→ 𝑒4 rule ce-ax-pa-qoteSplice

□
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I.7 Parallel Reduction with Complexity
Lemma H.27 (Reflexivity). 𝑒 ↩→↩→ 𝑒 .

Proof. By a straightforward induction on 𝑒 .

□

Lemma H.28 (↩→↩→ simulates ↩→). If 𝑒1 ↩→ 𝑒2, then 𝑒1 ↩→→ 𝑒2.

Proof. By induction on 𝑒1 ↩→ 𝑒2. Just like for LemmaH.22, the key observation is that in 𝑒1 ↩→ 𝑒2
fewer subterms are reduced, so we employ Lemma H.27 to fill in necessary identity reductions to

obtain 𝑒1 ↩→↩→ 𝑒2.

□

Lemma H.29 (↩→∗
simulates ↩→↩→). If 𝑒1 ↩→↩→ 𝑒2, then 𝑒1 ↩→∗ 𝑒2.

Proof. By induction on 𝑒1 ↩→→ 𝑒2, making use of Lemma H.8 and Lemma H.9. The proof is the

same as Lemma H.23. □

Lemma H.30 (Substitution).

• If 𝑒1
𝑁1

↩→↩→ 𝑒2, and 𝑒3
𝑁2

↩→↩→ 𝑒4, then there exists 𝑀 , such that 𝑒1 [x ↦→ 𝑒3]
𝑀
↩→↩→ 𝑒2 [x ↦→ 𝑒4], where

𝑀 ⩽ 𝑁1 + #(x, 𝑒2) ∗ 𝑁2.

• If 𝑒1
𝑁
↩→↩→ 𝑒2, then 𝑒1 [a ↦→ 𝜏] 𝑁

↩→↩→ 𝑒2 [a ↦→ 𝜏].

Proof.Part 1 By induction on the size of 𝑒1, then we do a case analysis on 𝑒1
𝑁1

↩→↩→ 𝑒2.

– rule ce-ax-ppa-lit, where 𝑒1 = 𝑖 = 𝑒2, and 𝑁1 = 0.

So 𝑖 [x ↦→ 𝑒3] = 𝑖 , and 𝑒2 [x ↦→ 𝑒4] = 𝑖 .

The goal follows by rule ce-ax-ppa-lit where𝑀 = 0.

– rule ce-ax-ppa-var, where 𝑒1 = x = 𝑒2, and 𝑁1 = 0.

So 𝑁1 + #(x, 𝑒2) ∗ 𝑁2 = 0 + 1 ∗ 𝑁2 = 𝑁2.

The goal follows by letting𝑀 = 𝑁2.

– The cases for rule ce-ax-ppa-var where 𝑒1 = y ≠ x, and for rule ce-ax-ppa-svar, for

rule ce-ax-ppa-kvar are similar as the case for rule ce-ax-ppa-lit.

– rule ce-ax-ppa-abs, where 𝑒1 = 𝜆y : 𝜏 .𝑒5, 𝑒2 = 𝜆y : 𝜏 .𝑒6, and 𝑒5
𝑁1

↩→↩→ 𝑒6.

By I.H., 𝑒5 [x ↦→ 𝑒3]
𝑀
↩→↩→ 𝑒6 [x ↦→ 𝑒4], where𝑀 ⩽ 𝑁1 + #(x, 𝑒6) ∗ 𝑁2.

By rule ce-ax-ppa-abs, we have (𝜆y : 𝜏 .𝑒5) [x ↦→ 𝑒3]
𝑀
↩→↩→ (𝜆y : 𝜏 .𝑒6) [x ↦→ 𝑒4]. As

#(x, 𝑒6) = #(x, 𝜆y : 𝜏 .𝑒6), we have𝑀 ⩽ 𝑁1 + #(x, 𝑒6) ∗ 𝑁2.

– The case for rule ce-ax-ppa-tabs is similar as the previous case.

– rule ce-ax-ppa-app, where 𝑒1 = 𝑒5 𝑒6, 𝑒2 = 𝑒7 𝑒8, and 𝑒5
𝑁3

↩→↩→ 𝑒7, 𝑒6
𝑁4

↩→↩→ 𝑒8, and 𝑁1 = 𝑁3 + 𝑁4.

By I.H., 𝑒5 [x ↦→ 𝑒3]
𝑀1

↩→↩→ 𝑒7 [x ↦→ 𝑒4], and𝑀1 ⩽ 𝑁3 + #(x, 𝑒7) ∗ 𝑁2.

Also by I.H., 𝑒6 [x ↦→ 𝑒3]
𝑀2

↩→↩→ 𝑒8 [x ↦→ 𝑒4] and𝑀2 ⩽ 𝑁4 + #(x, 𝑒8) ∗ 𝑁2.

So by rule ce-ax-ppa-app, we have (𝑒5 𝑒6) [x ↦→ 𝑒3]
𝑀1+𝑀2

↩→↩→ (𝑒7 𝑒8) [x ↦→ 𝑒4]. Let𝑀 = 𝑀1+𝑀2,

we have𝑀 ⩽ 𝑁3 + 𝑁4 + #(x, 𝑒7 𝑒8) ∗ 𝑁2.

– The case for rule ce-ax-ppa-tapp is similar as the previous case.

– rule ce-ax-ppa-beta, where 𝑒1 = (𝜆y : 𝜏 .𝑒5) 𝑒6, 𝑒2 = 𝑒7 [y ↦→ 𝑒8], and 𝑒5
𝑁3

↩→↩→ 𝑒7, 𝑒6
𝑁4

↩→↩→ 𝑒8,

and 𝑁1 = 𝑁3 + #(y, 𝑒7) ∗ 𝑁4 + 1.

By I.H., 𝑒5 [x ↦→ 𝑒3]
𝑀1

↩→↩→ 𝑒7 [x ↦→ 𝑒4], where𝑀1 ⩽ 𝑁3 + #(x, 𝑒7) ∗ 𝑁2.

Also by I.H., 𝑒6 [x ↦→ 𝑒3]
𝑀2

↩→↩→ 𝑒8 [x ↦→ 𝑒4] and𝑀2 ⩽ 𝑁4 + #(x, 𝑒8) ∗ 𝑁2.
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By rule ce-ax-ppa-beta, (𝜆y : 𝜏 .𝑒5 [x ↦→ 𝑒3]) (𝑒6 [x ↦→ 𝑒3])
𝑀1+#(y,𝑒7 [x ↦→𝑒4 ])∗𝑀2+1

↩→↩→ (𝑒7 [x ↦→
𝑒4]) [y ↦→ 𝑒8 [x ↦→ 𝑒4]]
With y fresh (alpha-renaming), we have #(y, 𝑒7 [x ↦→ 𝑒4]) = #(y, 𝑒7)
By substitution, we have (𝑒7 [y ↦→ 𝑒8]) [x ↦→ 𝑒4] = (𝑒7 [x ↦→ 𝑒4]) [y ↦→ 𝑒8 [x ↦→ 𝑒4]].
Namely, ((𝜆y : 𝜏 .𝑒5) 𝑒6) [x ↦→ 𝑒3]

𝑀1+#(y,𝑒7)∗𝑀2+1
↩→↩→ (𝑒7 [y ↦→ 𝑒8]) [x ↦→ 𝑒4].

𝑀1 + #(y, 𝑒7) ∗𝑀2 + 1

⩽ 𝑁3 + #(x, 𝑒7) ∗ 𝑁2 + #(y, 𝑒7) ∗ (𝑁4 + #(x, 𝑒8) ∗ 𝑁2) + 1

= 𝑁3 + #(y, 𝑒7) ∗ 𝑁4 + 1 + (#(x, 𝑒7) + #(y, 𝑒7) ∗ #(x, 𝑒8)) ∗ 𝑁2

= 𝑁3 + #(y, 𝑒7) ∗ 𝑁4 + 1 + #(x, 𝑒7 [y ↦→ 𝑒8]) ∗ 𝑁2

– The case for rule ce-ax-ppa-tbeta is similar as the previous case.

– rule ce-ax-ppa-spliceQuote, where 𝑒1 = J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i , 𝑒2 = J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i
i ]K

𝜙 i
i , and 𝑒

𝑁
↩→↩→

𝑒 ′. and 𝑁1 = 𝑁 + #(𝑠i, 𝑒 ′) ∗ 𝑁i
i +𝑀i

i + 𝐿i
i + 1.

By I.H., 𝑒 [x ↦→ 𝑒3]
𝑀1

↩→↩→ 𝑒 ′[x ↦→ 𝑒4], where𝑀1 ⩽ 𝑁 + #(x, 𝑒 ′) ∗ 𝑁2.

(1) If 𝜙 i = 𝜙 ′′
i , where 𝑒i = J𝑒 ′′i K𝜙 i

, 𝑒 ′′i
𝑁i
↩→↩→ 𝑒 ′′′i , 𝜙 i

𝑁 ′
i

↩→↩→ 𝜙 ′
i , and 𝜙

′
i ++Δi { 𝜙 ′′

i .

By I.H., 𝑒 ′′i [x ↦→ 𝑒3]
𝑁 ′
i

↩→↩→ 𝑒 ′′′i [x ↦→ 𝑒4] and 𝑁 ′
i ⩽ 𝑁i + #(x, 𝑒 ′′′i ) ∗ 𝑁2.

By Part 2, 𝜙 i [x ↦→ 𝑒3]
𝐿′i
↩→↩→ 𝜙 ′

i [x ↦→ 𝑒4] and 𝐿′
i ⩽ 𝐿i + #(x, 𝜙 ′

i ) ∗ 𝑁2.

(2) If 𝜙 i = Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′i , where 𝑒i
𝑀i
↩→↩→ 𝑒 ′i .

By I.H., 𝑒i [x ↦→ 𝑒3]
𝑀i
↩→↩→ 𝑒 ′i [x ↦→ 𝑒4] and𝑀 ′

i ⩽ 𝑀i + #(x, 𝑒 ′i ) ∗ 𝑁2.

By substitution, we have (𝑒 ′[ 𝑠i ↦→ 𝑒 ′′i
i ]) [x ↦→ 𝑒4] = ((𝑒 ′[x ↦→ 𝑒4]) [ 𝑠i ↦→ 𝑒 ′′i [x ↦→ 𝑒4]

i ]).
By rule ce-ax-ppa-spliceQuote, J𝑒 [x ↦→ 𝑒3]KΔi⊢𝑛i𝑠i :𝜏i=𝑒i

i
𝑀
↩→↩→ J(𝑒 ′[ 𝑠i ↦→ 𝑒 ′′i

i ]) [x ↦→ 𝑒4]K
𝜙 i [x ↦→𝑒4 ]

i ,

where𝑀 = 𝑀1 + #(𝑠i, 𝑒 ′[x ↦→ 𝑒4]) ∗ 𝑁 ′
i
i +𝑀 ′

i
i + 𝐿′

i
i + 1

With 𝑠i fresh (alpha-renaming), we have #(𝑠i, 𝑒 ′[x ↦→ 𝑒4]) = #(𝑠i, 𝑒 ′).
Also, #(x, 𝜙 ′

i ) = #(x, 𝜙 ′′
i ).

𝑀

= 𝑀1 + #(𝑠i, 𝑒 ′[x ↦→ 𝑒4]) ∗ 𝑁 ′
i
i +𝑀 ′

i
i + 𝐿′

i
i + 1

= 𝑀1 + #(𝑠i, 𝑒 ′) ∗ 𝑁 ′
i
i +𝑀 ′

i
i + 𝐿′

i
i + 1

⩽ 𝑁 + #(x, 𝑒 ′) ∗ 𝑁2 + #(𝑠i, 𝑒 ′) ∗ (𝑁i + #(x, 𝑒 ′′′i ) ∗ 𝑁2)
i +𝑀i + #(x, 𝑒 ′i ) ∗ 𝑁2

i + 𝐿i + #(x, 𝜙 ′
i ) ∗ 𝑁2

i
+ 1

= 𝑁 + #(𝑠i, 𝑒 ′) ∗ 𝑁i
i +𝑀i

i + 𝐿i
i + 1 + (#(x, 𝑒 ′) + #(𝑠i, 𝑒 ′) ∗ #(x, 𝑒 ′′′i ) i + #(x, 𝑒 ′i )

i + #(x, 𝜙 ′′
i )

i
) ∗ 𝑁2

= 𝑁 + #(𝑠i, 𝑒 ′) ∗ 𝑁i
i +𝑀i

i + 𝐿i
i + 1 + (#(x, J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i

i ]K
𝜙 i

i )) ∗ 𝑁2

– rule ce-ax-ppa-qoteSplice, where 𝑒1 = J𝑠K•⊢𝑛𝑠 :𝜏=𝑒5 , and 𝑒5
𝑁
↩→↩→ 𝑒2. and 𝑁1 = 𝑁 + 1.

By I.H., 𝑒5 [x ↦→ 𝑒3]
𝑀1

↩→↩→ 𝑒2 [x ↦→ 𝑒4], where𝑀1 ⩽ 𝑁 + #(x, 𝑒2) ∗ 𝑁2.

By rule ce-ax-ppa-qoteSplice, we have J𝑠K•⊢𝑛𝑠 :𝜏=𝑒5 [x ↦→𝑒4 ]
𝑀1+1
↩→↩→ 𝑒2 [x ↦→ 𝑒4].

𝑀1 + 1 ⩽ 𝑁 + #(x, 𝑒2) ∗ 𝑁2 + 1.

Part 2 By a straightforward induction on the size of 𝑒1 and a case analysis on 𝑒1
𝑁
↩→↩→ 𝑒2.

□
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Lemma H.31 (Monotonicity). If 𝑣 ↩→↩→ 𝑒 , then 𝑒 is also a value.

Proof. By a straightforward induction on 𝑣 ↩→↩→ 𝑒 . □

Lemma H.32 (Transition). If 𝑒 ↩→↩→ 𝑣 , then there exists 𝑣2, such that 𝑒 −→∗ 𝑣2, and 𝑣2 ↩→↩→ 𝑣 .

Proof. By induction on the derivation complexity of 𝑒 ↩→↩→ 𝑣 .

• Case rule ce-ax-ppa-lit. The goal follows directly by letting 𝑣2 = 𝑒 . The cases for rule ce-ax-

ppa-abs, rule ce-ax-ppa-tabs are similar.

• The cases for rule ce-ax-ppa-var, rule ce-ax-ppa-svar, rule ce-ax-ppa-kvar, rule ce-ax-ppa-

app, rule ce-ax-ppa-tapp are impossible cases as they don’t result into values.

• Case rule ce-ax-ppa-beta, where 𝑒 = (𝜆x : 𝜏 .𝑒1) 𝑒2, 𝑒1 ↩→↩→ 𝑒3, 𝑒2 ↩→↩→ 𝑒4, and 𝑒3 [x ↦→ 𝑒4] = 𝑣 .

According to Lemma H.30, 𝑒1 [x ↦→ 𝑒2] ↩→↩→ 𝑒3 [x ↦→ 𝑒4] = 𝑣 .

Then by I.H., we have 𝑒1 [x ↦→ 𝑒2] −→∗ 𝑣2 ↩→↩→ 𝑣 .

Therefore (𝜆x : 𝜏 .𝑒1) 𝑒2 −→ 𝑒1 [x ↦→ 𝑒2] −→∗ 𝑣2 ↩→↩→ 𝑣 .

Namely, (𝜆x : 𝜏 .𝑒1) 𝑒2 −→∗ 𝑣2 ↩→↩→ 𝑣 .

• The case for rule ce-ax-ppa-tbeta is similar as the above case.

• Case rule ce-ax-ppa-spliceQuote, where 𝑒 ↩→↩→ 𝑣 is

J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i ↩→↩→ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i
i ]K

𝜙 i
i .

Since the right hand side is a value, we know 𝜙 i are value splice environments.

(1) If 𝜙 i = 𝜙 ′′
i , where 𝑒i = J𝑒 ′′i K𝜙 i

, and 𝑒 ′′i ↩→↩→ 𝑒 ′′′i , and 𝜙 i ↩→↩→ 𝜙 ′
i , and 𝜙

′
i ++Δi { 𝜙 ′′

i , then 𝜙 ′
i

are also value splice environments.

By I.H. on every expression in 𝜙 i, we get 𝜙 i −→∗ 𝜙𝑣 i, and 𝜙𝑣 i ↩→↩→ 𝜙 ′
i .

Let 𝑣i = J𝑒 ′′i K𝜙𝑣 i
.

(2) If 𝜙 i = Δi ⊢𝑛i 𝑠i : 𝜏i = 𝑒 ′i , where 𝑒i ↩→↩→ 𝑒 ′i , then as we know 𝜙 i is a value splice environment,

we know 𝑒 ′i is a value.
By I.H., 𝑒i −→∗ 𝑣i, and 𝑣i ↩→↩→ 𝑒 ′i .

So we have J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i −→∗ J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑣i

i ↩→↩→ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i
i ]K

𝜙 i
i .

• Case rule ce-ax-ppa-qoteSplice, where J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 , and 𝑒 ↩→↩→ 𝑣 .

Then by I.H., we have 𝑒 −→∗ 𝑣2 ↩→↩→ 𝑣 .

Therefore J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 −→∗ J𝑠K•⊢𝑛𝑠 :𝜏=𝑣2 ↩→↩→ 𝑣 .

□

Lemma H.33 (Permutation). Given Θ;Δ ⊢𝑛 𝑒1 : 𝜏 , if 𝑒1 ↩→↩→ 𝑒2, and 𝑒2 −→ 𝑒3, then there exists 𝑒4,
such that 𝑒1 −→∗ 𝑒4, and 𝑒4 ↩→↩→ 𝑒3.

Proof. By induction on the derivation complexity of 𝑒1 ↩→↩→ 𝑒2, and then on the size of 𝑒1. We do

a case analysis on 𝑒1 ↩→↩→ 𝑒2.

• Case rule ce-ax-ppa-lit. The case is impossible, as there is no 𝑒3 such that 𝑖 −→ 𝑒3.

• The cases for rule ce-ax-ppa-var, rule ce-ax-ppa-svar, rule ce-ax-ppa-kvar, rule ce-ax-ppa-

abs, rule ce-ax-ppa-tabs are all impossible.

• Case rule ce-ax-ppa-app, where 𝑒1 = 𝑒5 𝑒6, 𝑒5 ↩→↩→ 𝑒7, and 𝑒6 ↩→↩→ 𝑒8, and 𝑒2 = 𝑒7 𝑒8.

Now we do a case analysis on 𝑒2 −→ 𝑒3.

– 𝑒3 = 𝑒9 𝑒8, where 𝑒7 −→ 𝑒9.

Then by I.H., we have 𝑒5 −→∗ 𝑒10 ↩→↩→ 𝑒9.

Therefore 𝑒5 𝑒6 −→∗ 𝑒10 𝑒6 ↩→↩→ 𝑒9 𝑒8.

– 𝑒7 = 𝜆x : 𝜏 .𝑒9, and 𝑒3 = 𝑒9 [x ↦→ 𝑒8].
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We know 𝑒5 ↩→↩→ 𝑒7 = 𝜆x : 𝜏 .𝑒9. By Lemma H.32, we have 𝑒5 −→∗ 𝑣 , and 𝑣 ↩→↩→ 𝜆x : 𝜏 .𝑒9. By

analyzing 𝑣 ↩→↩→ 𝜆x : 𝜏 .𝑒9, we know that it must be 𝑣 = 𝜆x : 𝜏 .𝑒10 (𝑣 cannot be a quotation

which is ill-typed.), and 𝑒10 ↩→↩→ 𝑒9.

Therefore 𝑒5 𝑒6 −→∗ (𝜆x : 𝜏 .𝑒10) 𝑒6 −→ 𝑒10 [x ↦→ 𝑒6].
By Lemma H.30, we have 𝑒10 [x ↦→ 𝑒6] ↩→↩→ 𝑒9 [x ↦→ 𝑒8].
Namely 𝑒5 𝑒6 −→∗ 𝑒10 [x ↦→ 𝑒6] ↩→↩→ 𝑒9 [x ↦→ 𝑒8].

• The case for rule ce-ax-ppa-tapp is similar as the previous one.

• Case rule ce-ax-ppa-beta where 𝑒1 = (𝜆x : 𝜏 .𝑒5) 𝑒6, 𝑒5 ↩→↩→ 𝑒7, and 𝑒6 ↩→↩→ 𝑒8, and 𝑒2 = 𝑒7 [x ↦→
𝑒8].
Then 𝑒1 −→ 𝑒5 [x ↦→ 𝑒6].
By Lemma H.30, 𝑒5 [x ↦→ 𝑒6] ↩→↩→ 𝑒7 [x ↦→ 𝑒8] −→ 𝑒3.

By I.H., 𝑒5 [x ↦→ 𝑒6] −→∗ 𝑒9 ↩→↩→ 𝑒3 for some 𝑒9.

Therefore 𝑒1 −→ 𝑒5 [x ↦→ 𝑒6] −→∗ 𝑒9 ↩→ 𝑒3.

Namely 𝑒1 −→∗ 𝑒9 ↩→↩→ 𝑒3.

• Case rule ce-ax-ppa-tbeta where 𝑒1 = (Λa.𝑒5) 𝜏 , 𝑒5 ↩→↩→ 𝑒6, and 𝑒2 = 𝑒6 [a ↦→ 𝜏].
Then 𝑒1 −→ 𝑒5 [a ↦→ 𝜏].
By Lemma H.30, 𝑒5 [a ↦→ 𝜏] ↩→↩→ 𝑒6 [a ↦→ 𝜏] −→ 𝑒3.

By I.H., 𝑒5 [a ↦→ 𝜏] −→∗ 𝑒7 ↩→↩→ 𝑒3 for some 𝑒7.

Therefore 𝑒1 −→ 𝑒5 [a ↦→ 𝜏] −→∗ 𝑒7 ↩→↩→ 𝑒3.

Namely 𝑒1 −→∗ 𝑒7 ↩→↩→ 𝑒3.

• Case rule ce-ax-ppa-spliceQuote, where 𝑒1 ↩→↩→ 𝑒2 is

J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i ↩→↩→ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i
i ]K

𝜙 i
i .

We have J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i
i ]K

𝜙 i
i −→ 𝑒3. Then it must be 𝑒3 = J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i

i ]K
𝜙′
i
i , and 𝜙 i

i −→ 𝜙 ′
i
i
.

According to reduction, 𝜙 ′
i
i
is 𝜙 i

i
, except for one Δ5 ⊢𝑛5 𝑠5 : 𝜏5 = 𝑒5 ∈ 𝜙 i, we have 𝑒5 −→ 𝑒 ′

5
.

(1) 𝑒i = J𝑒 ′′i K𝜙′′
i
, and 𝑒 ′′i ↩→↩→ 𝑒 ′′′i , and 𝜙 ′′

i ↩→↩→ 𝜙 ′′′
i and 𝜙 ′′′

i ++Δi { 𝜙 i.

We denote 𝜙 ′′′′
i as the splice environment 𝜙 ′′′

i after 𝑒5 −→ 𝑒 ′
5
. Then 𝜙 ′′′′

i ++Δi { 𝜙 ′
i .

Therefore 𝜙 ′′
i ↩→↩→ 𝜙 ′′′

i −→ 𝜙 ′′′′
i .

By I.H. on 𝑒5, we know there is 𝜙 ′′′′′
i , such that 𝜙 ′′

i −→∗ 𝜙 ′′′′′
i ↩→↩→ 𝜙 ′′′′

i .

Let 𝑒 ′′′′i
𝑖
= 𝑒i

𝑖
for every index, except for i, where 𝑒 ′′′′i = J𝑒 ′′i K𝜙′′′′′

i
.

Therefore

J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i −→∗ J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒′′′′i

i ↩→↩→ J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i
i ]K

𝜙′
i
i .

(2) 𝜙 i = Δ5 ⊢𝑛5 𝑠5 : 𝜏5 = 𝑒5, where 𝑒i ↩→↩→ 𝑒5.

Namely, 𝑒i ↩→↩→ 𝑒5 −→ 𝑒 ′
5
.

By I.H., 𝑒i −→∗ 𝑒6, and 𝑒6 ↩→↩→ 𝑒 ′
5
.

Let 𝑒 ′i
𝑖
= 𝑒i

𝑖
for every index, except for i, where 𝑒 ′i = 𝑒6.

Therefore

J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒i

i −→∗ J𝑒K
Δi⊢𝑛i𝑠i :𝜏i=𝑒′i

i ↩→↩→ 𝑒3J𝑒 ′[ 𝑠i ↦→ 𝑒 ′′′i
i ]K

𝜙′
i
i .

• Case rule ce-ax-ppa-qoteSplice, where 𝑒 = J𝑠K•⊢𝑛𝑠 :𝜏=𝑒5 , and 𝑒5 ↩→↩→ 𝑒2, and 𝑒2 −→ 𝑒3.

By I.H., 𝑒5 −→∗ 𝑒4 ↩→↩→ 𝑒3.

Therefore J𝑠K•⊢𝑛𝑠 :𝜏=𝑒5 −→∗ J𝑠K•⊢𝑛𝑠 :𝜏=𝑒4 .
If 𝑒3 is not a quotation, then by rule ce-ax-ppa-qoteSplice, or otherwise by rule ce-ax-ppa-

spliceQuote, J𝑠K•⊢𝑛𝑠 :𝜏=𝑒4 ↩→↩→ 𝑒3.

□
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Lemma H.34 (Push Back). Given Θ;Δ ⊢𝑛 𝑒1 : 𝜏 , if 𝑒1 ↩→↩→ 𝑒2, and 𝑒2 −→∗ 𝑣1, then there exists 𝑣2,
such that 𝑒1 −→∗ 𝑣2, and 𝑣2 ↩→↩→ 𝑣1.

Proof. We first virtualize the hypothesis, where 𝑒2 −→∗ 𝑣1 corresponds to a chain of evaluation:

𝑒1 ↩→↩→ 𝑒2 −→ 𝑒3 −→ ...𝑒𝑖−1 −→ 𝑒i −→ 𝑣1
Apply Lemma H.33, we have

𝑒1 −→∗ 𝑒 ′
2
↩→↩→ 𝑒3 −→ ...𝑒𝑖−1 −→ 𝑒i −→ 𝑣1

Keep applying Lemma H.33 𝑖 − 2 times, then we get

𝑒1 −→∗ 𝑒 ′
2
−→∗ 𝑒 ′

3
−→∗ ...𝑒 ′𝑖−1 −→∗ 𝑒 ′i ↩→↩→ 𝑣1

Apply Lemma H.32, we have

𝑒1 −→∗ 𝑒 ′
2
−→∗ 𝑒 ′

3
−→∗ ...𝑒 ′𝑖−1 −→∗ 𝑒 ′i −→∗ 𝑣2 ↩→↩→ 𝑣1

Namely

𝑒1 −→∗ 𝑣2 ↩→↩→ 𝑣1
□

Lemma H.35 (−→∗
simulates ↩→↩→∗

). Given Θ;Δ ⊢𝑛 𝑒 : 𝜏 , if 𝑒 ↩→↩→∗ 𝑣 , then there exists 𝑣2 such that
𝑒 −→∗ 𝑣2, and 𝑣2 ↩→↩→∗ 𝑣 .

Proof. If 𝑒 is a value, then let 𝑣2 = 𝑒 and we are done.

Otherwise, by Lemma H.31, 𝑒 ↩→↩→∗ 𝑣 can be visualized as a chain of parallel reduction:

𝑒 ↩→↩→ 𝑒1 ↩→↩→ ... ↩→↩→ 𝑒i ↩→↩→ 𝑣1 ↩→↩→∗ 𝑣
where 𝑒1 to 𝑒i are non-values.

By Lemma H.32, we have

𝑒 ↩→↩→ 𝑒1 ↩→↩→ ... ↩→↩→ 𝑒i −→∗ 𝑣2 ↩→↩→ 𝑣1 ↩→↩→∗ 𝑣
Namely,

𝑒 ↩→↩→ 𝑒1 ↩→↩→ ... ↩→↩→ 𝑒i −→∗ 𝑣2 ↩→↩→∗ 𝑣
By Lemma H.34, we get

𝑒 ↩→↩→ 𝑒1 ↩→↩→ ... ↩→↩→ 𝑒𝑖−1 −→∗ 𝑣3 ↩→↩→ 𝑣2 ↩→↩→∗ 𝑣
Namely,

𝑒 ↩→↩→ 𝑒1 ↩→↩→ ... ↩→↩→ 𝑒𝑖−1 −→∗ 𝑣3 ↩→↩→∗ 𝑣
Keep applying Lemma H.34, then we get

𝑒 −→∗ 𝑣𝑖+2 ↩→↩→∗ 𝑣
□
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