
Handling the Selection Monad

GORDON PLOTKIN, Google DeepMind, United States

NINGNING XIE, Google DeepMind and University of Toronto, Canada

The selection monad on a set consists of selection functions. These select an element from the set, based on a

loss (dually, reward) function giving the loss resulting from a choice of an element. Abadi and Plotkin used

the monad to model a language with operations making choices of computations taking account of the loss

that would arise from each choice. However, their choices were optimal, and they asked if they could instead

be programmer provided.

In this work, we present a novel design enabling programmers to do so. We present a version of algebraic

effect handlers enriched by computational ideas inspired by the selection monad. Specifically, as well as the

usual delimited continuations, our new kind of handlers additionally have access to choice continuations, that
give the possible future losses. In this way programmers can write operations implementing optimisation

algorithms that are aware of the losses arising from their possible choices.

We give an operational semantics for a higher-order model language 𝜆𝐶 , and establish desirable properties

including progress, type soundness, and termination for a subset with a mild hierarchical constraint on

allowable operation types. We give this subset a selection monad denotational semantics, and prove soundness

and adequacy results. We also present a Haskell implementation and give a variety of programming examples.

CCS Concepts: • Software and its engineering→ Control structures; Semantics; • Theory of computa-
tion→ Denotational semantics; Operational semantics.

Additional Key Words and Phrases: Effect handlers, Selection monad, Continuations, Machine Learning

Programming

ACM Reference Format:
Gordon Plotkin and Ningning Xie. 2025. Handling the Selection Monad. Proc. ACM Program. Lang. 9, PLDI,
Article 218 (June 2025), 25 pages. https://doi.org/10.1145/3729321

1 Introduction
The selection monad [Escardó and Oliva 2010a, 2011, 2015, 2010b,c,d] has been used to explain

fundamental phenomena in various areas of logic, including game theory, proof theory, and

computational interpretations; it has also been used in connection with CPS transformations and

with algorithm design [Hartmann and Gibbons 2022; Hedges 2015]. The monad has the form

𝑆 (𝑋) = (𝑋 → 𝑅) → 𝑋 , where 𝑅, typically an ordered set such as the real numbers, can be thought

of as a set of losses. A computation, meaning an element of 𝑆 (𝑋), is a selection function that, given a

loss function from 𝑋 to 𝑅, picks an element of 𝑋 . For example, the well-known selection function

argmin takes a loss function and returns an element that minimizes its value.
1
The selection

monad can be combined with other auxiliary monads 𝑇 to produce augmented selection monads

𝑆𝑇 (𝑋) = (𝑋 → 𝑅) → 𝑇 (𝑋) [Abadi and Plotkin 2019; Escardó and Oliva 2015]. This generalization

proves useful when combining the selection monad with additional effects.

1
Dually, we can think of 𝑅 as a set of rewards, and recall the argmax function that picks a maximising element; the two

viewpoints are equivalent in case 𝑅 has a negation function, as with the reals. Below we talk only of losses.

Authors’ Contact Information: Gordon Plotkin, Google DeepMind, Mountain View, United States, plotkin@google.edu;

Ningning Xie, Google DeepMind and University of Toronto, Toronto, Canada, ningningxie@cs.toronto.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART218

https://doi.org/10.1145/3729321

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0001-8496-6096
HTTPS://ORCID.ORG/0000-0002-5961-1493
https://doi.org/10.1145/3729321
https://orcid.org/0000-0001-8496-6096
https://orcid.org/0000-0002-5961-1493
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729321
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3729321&domain=pdf&date_stamp=2025-06-13

218:2 Gordon Plotkin and Ningning Xie

The connection between programming languages with decision-making operations and the

selection monad was investigated by Abadi and Plotkin [2021, 2023]. They considered a language

for a selection monad augmented by the writer monad𝑊 (𝑋) = 𝑅 × 𝑋 . It had a binary choice
operation which could choose between two computations based on the losses the two choices

entailed. Losses were reported by a loss operation. (They also considered a probabilistic extension.)

A key question they left open was how to empower programmers with the ability to define

their own choice operations, with the choice of computations (i.e., the selection strategy) again

based on the losses the possible choices of computation entail. Specifically, Abadi and Plotkin

used argmax to model binary choice so that selections were optimal (or optimal-in-expectation).

Implementing optimal selection implies perfect knowledge of all available choices and the ability to

consistently make the best decision. As they acknowledge, this is not at all a reasonable assumption

for applications such as, for example, learning algorithms [Carbune et al. 2019; Goodfellow et al.

2016; Ruder 2017] or game-playing, since programmers generally do not have efficient, or perhaps

any, access to optimal choices. Considerations of this sort motivated their question asking for a

mechanism allowing programmers to employ their own selection strategies.

We give one such way, answering their key open question. To do so, we develop a suitable

version of algebraic effect handlers [Pretnar and Plotkin 2013]. Algebraic effect handlers provide a

flexible mechanism for modular programming with user-defined effects. They have been explored

in various languages including OCaml [Sivaramakrishnan et al. 2021], C/C++ [Alvarez-Picallo et al.

2024; Ghica et al. 2022], and WebAssembly [Phipps-Costin et al. 2023]. Algebraic effect handlers

achieve modularity by decoupling syntax from semantics: the syntax is defined by user-specified

effect operations, while their semantics are determined by handlers. A handler’s operation receives

the operation’s argument and a delimited continuation which captures the evaluation context, i.e.,

from where the operation is performed to where its result can be used. Handlers can manipulate the

continuation in various ways. For instance, a handler may choose to not resume the continuation,

effectively implementing an exception mechanism, or it could resume the the continuation multiple

times enabling backtracking and non-deterministic behaviors. However, standard algebraic effect

handlers cannot handle operations based on a program’s loss information, unless this information

is provided explicitly as an argument to the operation or returned as part of the final result of

the continuation — but both options are restrictive. Specifically, when performing an operation,

complete loss information may not be immediately available. Similarly, returning the loss as part

of the final result of the continuation would require all continuations (and functions) to return

loss-result pairs, which is impractical.

We propose a novel language design that empowers programmers to write choice operations that can
choose computations based on the losses the possible choices of computation entail. In this way they can
employ their own selection strategies.Our fundamental insight is to combine algebraic effect handlers

with computational ideas inspired by the selection monad. We achieve this by providing effect

handlers with choice continuations (as well as the usual delimited continuations). These are a kind

of loss continuation that yields the loss arising from an operation’s possible result. Handlers can

then define choice operations which compute selections from these choice continuations and use

the result for their choice of computation, e.g., as an argument to a delimited continuation. Notably,

choice continuations are not delimited, but have scopes that can be controlled by a localising

construct that determines how much loss information is accessible. Such scopes can vary from

inside the handler to beyond. As in Abadi and Plotkin [2021], losses are prescribed using a loss effect.
We make several contributions:

• We connect up the selection monad with effect handlers via 𝜆𝐶 , a higher-order model language

incorporating the new kind of handlers with their choice continuations. We present a novel

loss-continuation-based operational semantics for the language.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:3

• We give 𝜆𝐶 a selection-monad-based denotational semantics and establish soundness and ade-

quacy theorems for both big-step and giant-step operational semantics (Theorems 5.4, 5.5, and

5.6). We thereby both show that our computational ideas are in accord with the monadic ones

which inspired them and establish a theoretical foundation for our extended effect handlers.

• We provide a library implementation in Haskell, following the operational semantics, and present

programming examples, demonstrating expressiveness.

• Our work presents a novel combination of delimited and choice continuations. Our techniques

may extend to other combinations of different kinds of continuations.

The rest of the paper is structured as follows. In §2, we review the selection monad and algebraic

effect handlers, and illustrate our new language design. In §3 we present 𝜆𝐶 , our higher-order

model language, extending effect handlers with loss primitives and choice continuations. We give

𝜆𝐶 a deterministic, progressive, and type-safe small-step operational semantics (Theorem 3.2). We

prove that termination holds for a subset of the language with a hierarchical constraint on handler

interfaces (Theorem 3.5); this is needed for the results in §5. In §4 we give a Haskell library, and

give programming examples illustrating potential applications of the new language design. We

hope our examples offer fresh insights in the effect handlers application space. In §5, we connect

up the selection monad with our computational contributions. We give the hierarchical part of

𝜆𝐶 a selection-monad-based denotational semantics and establish our soundness and adequacy

theorems. For space reasons, some rules and all proofs are omitted. A full version of proofs can be

found in Plotkin and Xie [2025]. Finally, we discuss related and future work in §6.

2 Overview
We first introduce the selection monad, and algebraic effect handlers. We then present our language

design, specifically how computational ideas inspired by the selection monad are combined with

algebraic effect handlers.

2.1 The Selection Monad
While the selection monad 𝑆 (𝑋) = (𝑋 → 𝑅) → 𝑋 is available in any cartesian closed category, we

focus on the category of sets. We assume 𝑅 is a commutative monoid (𝑅,+, 0) (for example, the

reals, or a finite product of the reals). This will be needed for the loss operation. As we have said, a

computation 𝐹 ∈ 𝑆 (𝑋) acts as a selection function taking a loss function 𝛾 ∈ (𝑋 → 𝑅) and picking

an element 𝐹 (𝛾) ∈ 𝑋 . The loss associated to 𝐹 ∈ 𝑆 (𝑋), given a loss function 𝛾 :𝑋 → 𝑅, is defined

to be R(𝐹 |𝛾) =def 𝛾 (𝐹 (𝛾)). (We remark that the selection monad is closely connected to the more

familiar continuation monad 𝐶 (𝑋) = (𝑋 → 𝑅) → 𝑅. For, given 𝐹 in 𝑆 (𝑋), 𝜆𝛾 . R (𝐹 |𝛾) is in 𝐶 (𝑋).)
So, for example, taking 𝑅 to be the real numbers (with their usual addition), for finite sets 𝑋 ,

argmin𝑋 : (𝑋 → 𝑅) → 𝑋 is an example selection function. Given a loss function 𝛾 : 𝑋 → 𝑅,

argmin𝑋 (𝛾) is an element 𝑥 of 𝑋 minimising 𝛾 (𝑥) (we assume available some way to choose when

there is more than one such element). Then R (argmin𝑋 |𝛾) is just the minimum value that 𝛾 obtains.

To fully specify the selection monad we give its Kleisli triple structure, viz the units (𝜂𝑆)𝑋 :

𝑋 → 𝑆 (𝑋) and the Kleisli extensions 𝑓 †𝑆 : 𝑆 (𝑋) → 𝑆 (𝑌) of maps 𝑓 :𝑋 → 𝑆 (𝑌). (As explained
in [Benton et al. 2000] these correspond, modulo currying, to Haskell’s monadic return and bind

(>>=) operations.) The units are given by: 𝜂𝑆 (𝑥) = 𝜆𝛾 . 𝑥 (Here, and below, we omit the objects

𝑋 , when writing units.) For the Kleisli extension, first associate a loss continuation transformer
˜𝑓 : (𝑌 → 𝑅) → (𝑋 → 𝑅) to 𝑓 by

˜𝑓 (𝛾) = 𝜆𝑥 ∈ 𝑋 .R (𝑓 (𝑥) |𝛾)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:4 Gordon Plotkin and Ningning Xie

where we use 𝑓 (𝑥) as the 𝑌 selection function. (Connecting again to the continuation monad, note

that, modulo currying,
˜𝑓 has type 𝑋 → 𝐶 (𝑌).) Then the Kleisli extension is given by:

𝑓 †𝑆 (𝐹) = 𝜆𝛾 ∈ 𝑌 → 𝑅. 𝑓 (𝐹 (˜𝑓 𝛾)) 𝛾

Here the loss function 𝛾 on 𝑌 is transformed into a loss function
˜𝑓 (𝛾) on 𝑋 , which is then used by

𝐹 to select an element 𝑥 = 𝐹 (˜𝑓 (𝛾)) of 𝑋 . Finally, 𝑓 uses 𝑥 and the original loss function 𝛾 to select

an element of 𝑌 . As always, the Kleisli structure determines the monad’s functorial action by the

formula 𝑆 (𝑓) = (𝜂𝑆 ◦ 𝑓)†𝑆 , which latter, in this case, is 𝜆𝛾 ∈ 𝑌 → 𝑅. 𝑓 (𝛾 ◦ 𝑓).
Continuing the example, Kleisli extension allows us to solve one-move games with evaluation

function eval : 𝑋 × 𝑌 → 𝑅. Suppose 𝑓 : 𝑋 → 𝑆 (𝑋 × 𝑌) is defined by:

𝑓 (𝑥) (𝛾) = (𝑥, argmin(𝜆𝑦.𝛾 (𝑥,𝑦))
Then 𝑓 †𝑆 (argmax) (eval) is a minimax pair (𝑥0, 𝑦0) for eval, with 𝑥0 ∈ 𝑋 maximising all possible

eval(𝑥,𝑦), and 𝑦0 ∈ 𝑌 minimising all possible eval(𝑥0, 𝑦).
Turning to augmented monads 𝑆𝑇 (𝑋) = (𝑋 → 𝑅) → 𝑇 (𝑋), as an example, take 𝑇 to be the

writer monad𝑊 (𝑋) = 𝑅 × 𝑋 , with 𝑅 the reals. An example (augmented) selection function is then

the “loss-recording" version of argmin that sends 𝛾 to (𝛾 (argmin(𝑥)), argmin(𝛾)). The unit of 𝑆𝑊
is 𝜂𝑆𝑊 (𝑥) = 𝜆𝛾 . (0, 𝑥). The loss associated to 𝐹 ∈ 𝑆𝑊 (𝑋) and 𝛾 : 𝑋 → 𝑅 is the sum of the loss

incurred by 𝐹 and the loss incurred by the loss function: R𝑊 (𝐹 |𝛾) = 𝜋0 (𝐹 (𝛾)) + 𝛾 (𝜋1 (𝐹 (𝛾))). The
Kleisli extension 𝑓 †𝑆𝑊 : 𝑆𝑊 (𝑋) → 𝑆𝑊 (𝑌) for 𝑓 : 𝑋 → 𝑆𝑊 (𝑌) is then defined as below, where the

losses incurred by 𝐹 and 𝑓 are added up (and where
˜𝑓 is defined similarly to the above):

𝑓 †𝑆𝑊 (𝐹) = 𝜆𝛾 : 𝑌 → 𝑅. 𝑙𝑒𝑡 ⟨𝑟1, 𝑥⟩ = (𝐹 (˜𝑓 𝛾)) 𝑖𝑛
𝑙𝑒𝑡 ⟨𝑟2, 𝑦⟩ = (𝑓 𝑥 𝛾) 𝑖𝑛 ⟨𝑟1 + 𝑟2, 𝑦⟩

The functorial action in this case is: 𝑆𝑊 (𝑓) = 𝜆𝛾 .𝑊 (𝑓) (𝑓 ◦𝛾). In general (see, e.g., Abadi and Plotkin
[2023]) augmented selection monads 𝑆𝑇 are available when 𝑅 forms a 𝑇 -algebra 𝛼 :𝑇 (𝑅) → 𝑅. In

the case of the writer monad𝑊 (𝑋) just considered, 𝛼 :𝑊 (𝑅) → 𝑅 = +.
For the denotational semantics of our model language 𝜆𝐶 we use families 𝐹𝜖 (𝑊 (𝑋)) of auxiliary

monads and loss sets 𝐹𝜖 (𝑅), with 𝑅 the reals, parameterized by multisets 𝜖 of certain effects ℓ , where

𝐹𝜖 (𝑋) is a free algebra monad with signature specified by 𝜖 . The resulting augmented selection

monads are used to give the semantics of 𝜆𝐶 programs with effect multisets 𝜖 .

2.2 Algebraic Effect Handlers
Algebraic effect handlers provide a structured approach to managing effects in computations. We

give a brief introduction here; for a more in depth account see, e.g. Bauer and Pretnar [2015]; Pretnar

[2015]. Consider a non-deterministic choice operation, decide, which takes a unit and returns a

Bool as its result. A computation can invoke operations by providing its argument. For example,

the following program performs decide twice, and returns the conjunction of the results:
2

𝑓 ≜ 𝑥 ← decide(); 𝑦 ← decide(); 𝑥 && 𝑦

We can define a handler for decide to specify its semantics. The handler below handles decide by
invoking the continuation 𝑘 with True and False respectively, and collecting the results:

with { decide ↦→ 𝜆𝑥 𝑘. (𝑘 True) ++ (𝑘 False), return ↦→ 𝜆𝑥. [𝑥] } handle 𝑓
Within the decide clause, 𝑥 is the operation argument, in this case a unit, and 𝑘 represents the

captured delimited continuation that takes the operation’s result and resumes the computation from

the original call site. The handler explores both branches of the non-deterministic computation

2
For clarity, we write 𝑥 ← 𝑒1;𝑒2 as syntactic sugar for (𝜆𝑥. 𝑒2) 𝑒1; and 𝑒1;𝑒2 for when 𝑥 ∉ fv(𝑒2) .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:5

by calling 𝑘 twice and concatenates the result lists. The return clause applies when a value 𝑥 is

returned from the computation. Here, it simply wraps 𝑥 in a singleton list. The return clause is

optional, as a handler that has no special return behavior can have return ↦→ 𝜆𝑥. 𝑥 . By applying

this handler to 𝑓 , we effectively explore all possible results of the decide operation, resulting in

[True, False, False, False].
As can be seen, effect handlers offer modularity by separating syntax and semantics of effect op-

erations. However, an effect handler’s implementation can only depend on the operation argument

and the continuation result, and it cannot use a program’s loss information to make decisions. In

practice, a program’s loss may actually depend on the operation result, and programs don’t always

return a loss value as their final output.

2.3 This Work: Handling the Selection Monad
This paper introduces a novel language design that integrates algebraic effect handlers with

computational ideas derived from the selection monad. Programmers can write handlers that

make use of loss continuations to make selections. Our design allows programmers to define

custom selection functions. More broadly, handlers, while maintaining modularity by only handling

operations within their scope, can now additionally leverage future loss information.

To see how our handler design works, consider the following example program where we write

loss to record a loss value:

𝑝𝑔𝑚 ≜ 𝑏 ← decide(); 𝑖 ← if 𝑏 then 1 else 2; loss(2 ∗ 𝑖); if 𝑏 then ′𝑎′ else ′𝑏′

The loss operation is a dedicated writer effect operation that records a loss value. As it is a writer

effect, multiple loss operations within such programs will be aggregated. This allows for a flexible

and modular approach to incorporating loss computations.

We can handle the choice operation decide using the loss information; for example,

with { decide ↦→ 𝜆𝑥 𝑘 𝑙 . 𝑦 ← 𝑙 True; 𝑧 ← 𝑙 False;
if 𝑦 <= 𝑧 then 𝑘 True else 𝑘 False } handle 𝑝𝑔𝑚

Importantly, as we see in this example, losses are made accessible to handlers through special

choice continuations. These are loss continuations which associate a loss to each possible result

of an operation. Concretely, handler operation definitions receive the choice continuation as an

additional argument. The example handler given above compares the losses associated with True
and False, and resumes computation with the choice (boolean selection) minimizing the loss. Using

this handler to handle the previous program, 𝑏 will be assigned True, resulting a loss of 2 and result
′𝑎′. In this case, the handler implements argmin, corresponding to Abadi and Plotkin [2021, 2023].

Importantly, however, with our design the selection is implemented as a separate handler. With the

delimited continuations and choice continuations available, the handler can implement a variety of

selections beyond argmax, as we will see in §4.3.

semantics
loss function 𝛾, 𝑘, 𝑙

syntax
loss continuation g

choice continuation 𝑙, 𝑓𝑙
delimited continuation 𝑘, 𝑓𝑘

Fig. 1. Terminology

Notably, while the continuation 𝑘 is delimited, the choice

continuation 𝑙 has a useful different scope discipline, which

is delimited by a local construct, and otherwise global. This

allows the handler to make decisions based on fine-grained

control over choice continuations and losses. We make use of it

to, e.g. restrict choice continuation scopes within while loops.

Further, we do not lose generality: restricting the loss value to

be the loss accumulated from the continuation can be implemented as a special case by using local.

From the semantical perspective, as shown by the Adequacy Theorem (Theorem 5.5), the design

corresponds to a programmable selection monad.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:6 Gordon Plotkin and Ningning Xie

Fig. 1 presents our terminology and corresponding symbols (ambiguities are resolved by context).

The loss continuation g is the programming manifestations of the loss function 𝛾 of the selection

monad, which takes the result of the program and returns a loss. On the other hand, when an

operation is handled, the choice continuation 𝑙 , takes an operation result and returns a loss.

3 A Model Calculus
In this section we present 𝜆𝐶 , our higher-order model language incorporating the new kind of

handlers with both choice and delimited continuations. We give it an operational semantics, show

the standard progress and type safety theorems, and prove termination for a subset of it subject to

a mild restriction permitting no “effect loops” in operations.

3.1 Syntax
The syntax of types and effects is given in Fig. 2. Types are ranged over by 𝜎 and 𝜏 . We also write

par, in, out for types when talking about parameter or operation types.

We assume available a set of basic types 𝑏 (including loss), and a set of effect labels ℓ . We take

effects 𝜖 to be multisets of effect labels; we use juxtaposition 𝜖𝜖′ for multiset union and write 𝜖 ⊆ 𝜖′
for sub-multiset. As well as basic types, types include product types (𝜎1, . . . , 𝜎𝑛), sum types (𝜎 + 𝜏),
natural numbers nat, and lists list(𝜎) for iterations and folds (two examples of simple inductive

types), and function types (𝜎 → 𝜏 ! 𝜖), with argument type 𝜎 , and result type 𝜏 and effect 𝜖 .

We further assume available a signature Σ of effect label typings ℓ :Op(ℓ) associating effect labels
ℓ to finite non-empty sets of ℓ-operations op (with disjoint sets associated to different effect labels).

Our language is patterned after the Koka language [Leijen 2014] with its grouping of operations op
into effects ℓ . Each op ∈ Op(ℓ) is typed op :out → in; we often write op :out ℓ−→ in for op ∈ Op(ℓ) 3.

Expressions 𝑒 and handlers ℎ are given in Fig. 3, where 𝑥,𝑦, 𝑝, 𝑘, 𝑙 . . . range over variables. Note

that expressions include loss continuation expressions g. We make use of standard 𝜆-calculus

abbreviations, for example 𝜆𝜖 (𝑥,𝑦) : (𝜎, 𝜏). 𝑒 for functions of pairs.
Expressions include constants 𝑐 and applications of basic functions 𝑓 . Abstractions 𝜆𝜖𝑥 :𝜎. 𝑒 are

explicitly typed, and annotated with their result effect 𝜖 . We support parameterized handlers [Plotkin
and Pretnar 2009], which generalize effect handlers by keeping a local handler parameter that can be

updated during resumption. Having parameterized handlers is not necessary, but is convenient when

implementing stateful effects. The parameterized handler expression with ℎ from 𝑒1 handle 𝑒2
handles the computation 𝑒2 using handler ℎ, whose parameter has initial value 𝑒1. A program can

perform an operation op(𝑒) by passing the operation op an argument 𝑒 . The expression loss(𝑒)
invokes the writer effect operation loss, adding a loss 𝑒 . Note that, unlike other operations, it is a

built-in effect not associated to any effect label and so cannot be handled; it can however be used

in handlers, e.g., to define variant loss operations.

The expression 𝑒1 ▶ (𝜆𝜖𝑥 :𝜎. 𝑒2) is used to build loss continuations g; these form a subset of

expressions. Loss continuations g begin with the zero loss continuation 0𝜎,𝜖 =def 𝜆
𝜖𝑥 :𝜎. 0, and get

extended by 𝜆𝜖𝑥 :𝜎. 𝑒 ▶ g (we assume ▶ binds more tightly than 𝜆). Intuitively, (▶) (pronounced as

"then") accumulates losses: it first evaluates 𝑒1, collects the loss, and passes the evaluation result as

𝑥 to 𝑒2. The expression ⟨𝑒⟩𝜖g localises loss continuations to expressions 𝑒 by executing them with

loss continuation g; in contrast, the expression reset 𝑒 localises losses to 𝑒 , preventing them from

passing outside reset 𝑒 . To impose both forms of localisation the two constructs can be combined,

and we write ⟨⟨𝑒⟩⟩𝜖
g
for reset ⟨𝑒⟩𝜖

g
. While the language supports the most general local construct ⟨𝑒⟩𝜖

g
,

3
One might rather have expected op : in→ out. The idea here is that an operation is an effect: an element of 𝑜𝑢𝑡 is sent to

start the effect, then the operation returns an element of 𝑖𝑛 to continue the computation. It may help to think of, e.g., I/O

effects, where, with the present convention, output operations have type out → () and input operations have type () → in.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:7

type 𝜎, 𝜏 ::= 𝑏 | (𝜎1, . . . , 𝜎𝑛) (𝑛 ⩾ 0) | 𝜎 + 𝜏 | nat | list(𝜎) | (𝜎 → 𝜏 ! 𝜖)

effect 𝜖 ::= {} | 𝜖ℓ Σ ::= {ℓ𝑖 : Op(ℓ𝑖)} Op(ℓ) ::= {op𝑖 :out𝑖 → in𝑖 }

Fig. 2. Syntax of types and effects

expr 𝑒 ::= 𝑐 | 𝑓 (𝑒) | 𝑥 | 𝜆𝜖𝑥 :𝜎. 𝑒 | 𝑒1 𝑒2
| (𝑒1, . . . , 𝑒𝑛) | 𝑒.𝑖
| inl𝜎,𝜏 (𝑒) | inr𝜎,𝜏 (𝑒) | cases 𝑒 of 𝑥1 :𝜎1 . 𝑒1 8 𝑥2 :𝜎2. 𝑒2
| zero | succ(𝑒) | iter(𝑒1, 𝑒2, 𝑒3)
| nil𝜎 | cons(𝑒1, 𝑒2) | fold(𝑒1, 𝑒2, 𝑒3)
| op(𝑒) | loss(𝑒) | with ℎ from 𝑒1 handle 𝑒2
| 𝑒1 ▶ 𝜆𝜖𝑥 :𝜎. 𝑒2 | ⟨𝑒⟩𝜖g | reset 𝑒

loss cont exp g ::= 𝜆𝜖𝑥 :𝜎. 0 | 𝜆𝜖𝑥 :𝜎. 𝑒 ▶ g

handler ℎ ::=


op

1
↦→ 𝜆𝜖𝑧 : (par, out1, (par, in1) → loss ! 𝜖, (par, in1) → 𝜎 ′ ! 𝜖). 𝑒1,

. . . ,

op𝑛 ↦→ 𝜆𝜖𝑧 : (par, out𝑛, (par, in𝑛) → loss ! 𝜖, (par, in𝑛) → 𝜎 ′ ! 𝜖). 𝑒𝑛,
return ↦→ 𝜆𝜖𝑧 : (par, 𝜎). 𝑒


(op

1
, . . . , 𝑜𝑝𝑛 enumerates some Op(ℓ))

Fig. 3. Syntax of expressions and handlers

with any g, we find that ⟨𝑒⟩𝜖
0𝜎,𝜖

, localizing the loss with respect to the zero continuation, suffices for

our examples (§4.3). Thus, (▶) and loss continuations need not be part of the user-facing syntax.

A handler ℎ includes a list of operation definitions and a return definition; it handles ℓ if this
list enumerates Op(ℓ) and has result effect 𝜖 if the abstractions in the definitions have result effect

𝜖 . Operations op takes a parameter, an operation argument, a choice continuation 𝑙 (following

our design), and a delimited continuation 𝑘 . The choice continuation is the key innovation of this

calculus. Both continuations take a potentially updated parameter and the operation result. Note

that 𝑙 returns loss, while 𝑘 returns 𝜎 ′, and the two continuations are decorated by the effects 𝜖 they

may cause. Finally, the return clause takes the final parameter and the computation result of type 𝜎 .

Remark. For space reasons, in the rest of the paper we focus on a subset of the language excluding

sum types, natural numbers, and lists. The full language is detailed in the appendix.

3.2 Typing Rules
Fig. 4 presents the typing rules. As usual, environments Γ are finite sets of bindings 𝑥 :𝜎 of types

to variables, with no variable bound twice (equivalently, functions from a finite set Dom(Γ) of
variables to types). The judgment Γ ⊢ 𝑒 :𝜎 ! 𝜖 is that under the context Γ, the expression 𝑒 has type
𝜎 and may produce effects in 𝜖 . The type 𝜎 is determined, due to the type and effect annotations in

the syntax. When Γ is empty, we may write 𝑒 :𝜎 ! 𝜖 ; we may also write Γ ⊢ 𝑒 :𝜎 or 𝑒 :𝜎 to show the

judgments hold for some 𝜖 . The judgment Γ ⊢ ℎ :par, 𝜎 ! 𝜖ℓ ⇒ 𝜎 ′ ! 𝜖 is that ℎ takes a parameter of

type par and a computation of 𝜎 and returns a result of type 𝜎 ′, producing one less effect ℓ ; all of
par , 𝜎 , 𝜖 , ℓ and 𝜎 ′ are determined. True judgments have unique derivations.

The typing rules are mostly standard for effect handler calculi. For rules const and fun, we

assume available the types of constants 𝑐 :𝑏, including 𝑟 : loss, for all 𝑟 ∈ 𝑅, and primitive functions

𝑓 :𝜎 → 𝜏 (with 𝜎 and 𝜏 first order), including + : (loss, loss) → loss (which we will write infix).

Values can have any effect (rules const, var, prd, and abs). In particular, in rule abs, the function

body has the annotated type 𝜖 but the abstraction can have any effect 𝜖′. In rule app, we check that

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:8 Gordon Plotkin and Ningning Xie

Γ ⊢ 𝑒 :𝜎 ! 𝜖 (Typing Expressions)
var

𝑥 :𝜎 ∈ Γ
Γ ⊢ 𝑥 :𝜎 ! 𝜖

const

(𝑐 :𝑏)
Γ ⊢ 𝑐 :𝑏 ! 𝜖

fun

Γ ⊢ 𝑒 :𝜎 ! 𝜖 (𝑓 :𝜎 → 𝜏)
Γ ⊢ 𝑓 (𝑒) :𝜏 ! 𝜖

prd

Γ ⊢ 𝑒𝑖 :𝜎𝑖 ! 𝜖 (𝑖 = 1, . . . , 𝑛)
Γ ⊢ (𝑒1, . . . , 𝑒𝑛) : (𝜎1, . . . , 𝜎𝑛) ! 𝜖

prj

Γ ⊢ 𝑒 : (𝜎1, . . . , 𝜎𝑛) ! 𝜖 (𝑖 = 1, . . . , 𝑛)
Γ ⊢ 𝑒.𝑖 :𝜎𝑖 ! 𝜖

abs

Γ, 𝑥 :𝜎 ⊢ 𝑒 :𝜏 ! 𝜖
Γ ⊢ 𝜆𝜖𝑥 :𝜎. 𝑒 : (𝜎 → 𝜏 ! 𝜖) ! 𝜖′

app

Γ ⊢ 𝑒1 : (𝜎 → 𝜏 ! 𝜖) ! 𝜖 Γ ⊢ 𝑒 :𝜎 ! 𝜖
Γ ⊢ 𝑒1 𝑒2 :𝜏 ! 𝜖

op

op :out ℓ−→ 𝑖𝑛 ∈ Σ Γ ⊢ 𝑒 :out ! 𝜖 ℓ ∈ 𝜖
Γ ⊢ op(𝑒) : in ! 𝜖

loss

Γ ⊢ 𝑒 : loss ! 𝜖
Γ ⊢ loss(𝑒) : () ! 𝜖

handle

Γ ⊢ ℎ :par, 𝜎 ! 𝜖ℓ ⇒ 𝜎 ′ ! 𝜖 Γ ⊢ 𝑒1 :par ! 𝜖 Γ ⊢ 𝑒2 :𝜎 ! 𝜖ℓ
Γ ⊢ with ℎ from 𝑒1 handle 𝑒2 :𝜎 ′ ! 𝜖

then

Γ ⊢ 𝑒1 :𝜎 ! 𝜖1
Γ, 𝑥 :𝜎 ⊢ 𝑒2 : loss ! 𝜖2 (𝜖2 ⊆ 𝜖1)
Γ ⊢ 𝑒1 ▶ (𝜆𝜖2𝑥 :𝜎. 𝑒2) : loss ! 𝜖1

glocal

Γ ⊢ 𝑒 :𝜎 ! 𝜖1
Γ ⊢ g :𝜎 → loss ! 𝜖2 (𝜖2 ⊆ 𝜖1 ⊆ 𝜖)

Γ ⊢ ⟨𝑒⟩𝜖1
g
:𝜎 ! 𝜖

reset

Γ ⊢ 𝑒 :𝜎 ! 𝜖
Γ ⊢ reset 𝑒 :𝜎 ! 𝜖

Γ ⊢ ℎ :par, 𝜎 ! 𝜖ℓ ⇒ 𝜎 ′ ! 𝜖 (Typing Handlers)

handler

Op(ℓ) = {op
1
, . . . , op𝑛} op𝑖 :out𝑖 → in𝑖 (𝑖 = 1, . . . , 𝑛)

Γ ⊢ 𝑒𝑖 : ((par, out𝑖 , (par, 𝑖𝑛𝑖) → loss ! 𝜖, (par, 𝑖𝑛𝑖) → 𝜎 ′ ! 𝜖) → 𝜎 ′ ! 𝜖) ! 𝜖 Γ ⊢ 𝑒 : ((par, 𝜎) → 𝜎 ′ ! 𝜖) ! 𝜖
Γ ⊢

{
op

1
↦→ 𝑒1, . . . , op𝑛 ↦→ 𝑒𝑛, return ↦→ 𝑒

}
:par, 𝜎 ! 𝜖ℓ ⇒ 𝜎 ′ ! 𝜖

Fig. 4. Typing rules for 𝜆𝐶

the argument has the expected type, and that the effects of the function, the function body, and the

argument match.
4
Rules prd and prj are self-explanatory.

When performing an operation (rule op), the global context tells us that the operation takes a

type out and has return type 𝑖𝑛. Then we check that the operation argument has type out, and the

return type is 𝑖𝑛. Moreover, we need to make sure that the result effect 𝜖 includes the effect label ℓ .

For the loss operation (rule loss), the operation takes a loss and has unit return type.

Rule handle takes care of handling. The rule checks that 𝑒1 has the correct parameter type, and

the computation being handled has type 𝜎 , while the handler ℎ takes a computation in 𝜎 and has

return type 𝜎 ′, and thus the final result has type 𝜎 ′. Rule then checks the loss calculation expression.

Note that 𝜆𝜖2𝑥 :𝜎. 𝑒2 may produce fewer effects than than the expression 𝑒 . Rule glocal checks

loss-continuation-localized computations. Note again that the loss continuation may produce fewer

effects than the localized computation; further there is an “effect conversion" from the effects of

that computation to the effects of the whole localized computation. These variations in effects

are needed to account for the loss continuations built up by the operational semantics (see the

discussion of rule (F) below); they also provide programming flexibility.

Finally, the rule handler type-checks handler definitions. A handler for ℓ handles all operations

in Op(ℓ). For each operation op𝑖 : out𝑖 → in𝑖 , the corresponding clause 𝑒𝑖 takes a parameter of type

par , an operation argument of type out𝑖 , a choice continuation of type ((par, 𝑖𝑛𝑖) → loss ! 𝜖) and
a delimited continuation of type ((par, 𝑖𝑛𝑖) → 𝜎 ′ ! 𝜖), and has return type 𝜎 ′. The return clause 𝑒

4
Our type-theoretical formalism does not enjoy sub-effecting, similar to row-based effect style [Hillerström and Lindley 2016;

Leijen 2017]. Semantically too there is an obstacle. For a sub-effecting rule app, the outer 𝜖 should be any super-effects of the

inner one. However, a semantics using a monad family𝑇𝜖 , then needs covariance in the 𝜖 and our selection monad family is

not. On the other hand, rules rule then and rule glocal employ sub-effecting—needed for the operational semantics, and

holding in our denotational semantics. (See the discussions in Sections 3.3 and 5.)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:9

takes a parameter of type par and the computation result of type 𝜎 , and has return type 𝜎 ′. Because
of the return clause, the handler takes a 𝜎-computation and returns a 𝜎 ′-computation.

3.3 Operational Semantics
In this section, we present the small-step operational semantics of 𝜆𝐶 . Our rules axiomatize a

judgment g ⊢𝜖 𝑒
𝑟−→ 𝑒′ that under the loss continuation g, 𝑒 makes a transition to 𝑒′, producing

loss 𝑟 ∈ 𝑅. The decorative 𝜖 provides auxiliary information needed to construct loss continuations.

Here g produces the loss caused by the rest of the program, given the result of executing 𝑒 .

Before giving the rules we need some syntax to cover values, contexts, stuck expressions, and

redexes. Fig. 5 presents the syntactical classes needed for the operational semantics. Values 𝑣 include
variables, constants, value tuples, and lambda expressions. (Note that values can be typed with any

effect, and we generally just write Γ ⊢ 𝑣 :𝜎 or ⊢ 𝑣 :𝜎 .) Continuation contexts 𝐾 are either a hole □, or

a regular frame 𝐹 or special frame 𝑆 followed by a continuation context. (We distinguish between

regular frames and special frames,since, as we will see, they extend loss continuations differently.)

We write 𝐾 [𝑒] for the expression obtained by filling the hole in 𝐾 with 𝑒 .

Stuck expressions 𝑢 = 𝐾 [op(𝑣)] are operation invocations op(𝑣) that cannot be handled by

handlers in continuation contexts 𝐾 ; We write heff (𝐾) for the multiset of effect labels that 𝐾

handles; it is defined inductively with main clause heff (with ℎ from 𝑣 handle𝐾 ′) = heff (𝐾 ′)ℓ ,
where ℎ handles ℓ ; we further set hop (𝐾) = {op ∈ Op(ℓ) |ℓ ∈ heff (𝐾)}, the set of operations handled
by 𝐾 . Terminal expressions 𝑤 are values or stuck expressions; they cannot reduce; in contrast,

(closed) redexes 𝑅 are expressions that do.

Expressions can be analysed uniquely:

Lemma 3.1 (Expression analysis). Every expression has exactly one of the following five forms: (1) a
value 𝑣 (for a unique 𝑣), (2) a stuck expression 𝐾 [op(𝑣)] (for unique 𝐾 , op, and 𝑣), (3) a redex 𝑅 (for a
unique 𝑅), (4) 𝐹 [𝑒] (for unique 𝐹 and 𝑒 , with 𝑒 not a value or stuck), or (5) 𝑆 [𝑒] (for unique 𝑆 and 𝑒 ,
with 𝑒 not a value or stuck).

Small-step operational semantics. Fig. 6 presents our small-step operation semantics rules for

the judgment g ⊢𝜖 𝑒
𝑟−→ 𝑒′. Program execution starts with the zero loss continuation. Further loss

continuations are progressively built up during execution, in order for subprograms to pass their

results to their enclosing contexts and so on to the program’s loss continuation. (All this is quite

analogous to how one computes with ordinary continuations.)

Redexes.Many redex rules do not use the loss continuation, and produce a zero loss. For (R1), we

assume available deterministic total reductions for primitive functions. In (R4), loss(𝑟) produces a
loss 𝑟 returning (). Rules (R8) and (R9) are natural, expressing that the computation terminates

once a value is reached.

Operations get handled by rule (R5). The handler operation clause is applied to parameter 𝑣1,

operation argument 𝑣2, delimited continuation 𝑓𝑘 , and choice continuation 𝑓𝑙 . The continuation
𝑓𝑘 takes the handler parameter and the operation result to be used when resuming, localised to

the current loss continuation g when called, since the continuation is captured under the loss

continuation g. The choice continuation 𝑓𝑙 is built from the standard handler continuation and the

current loss continuation using the ▶ construct; it therefore has access to all the losses resulting

from executing the operation, and so the handler can make decisions based on that information. In

rule (R6), when a value returns from a handler, the return clause from the handler applies, taking

as arguments the current handler parameter and the value. In rule (R7), we evaluate 𝑣 ▶ 𝜆𝜖2𝑥 :𝜎. 𝑒

by substituting 𝑣 for 𝑥 in 𝑒 and localising the resulting expression to the zero loss continuation, as

the purpose of ▶ is to calculate a loss independently of the current loss continuation.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:10 Gordon Plotkin and Ningning Xie

value 𝑣 ::= 𝑥 | 𝑐 | (𝑣1, . . . , 𝑣𝑛) | 𝜆𝜖𝑥 :𝜎. 𝑒
regular frame 𝐹 ::= 𝑓 (□) | (𝑣1, . . . , 𝑣𝑘 ,□, 𝑒𝑘+2, . . . , 𝑒𝑛) | □.𝑖 | □ 𝑒 | 𝑣 □

| op(□) | loss(□) | with ℎ from □ handle 𝑒
special frame 𝑆 ::= with ℎ from 𝑣 handle□ | □ ▶ (𝜆𝜖𝑥 :𝜎.𝑒) | ⟨□⟩𝜖

g
| reset□

cont context 𝐾 ::= □ | 𝐹 [𝐾] | 𝑆 [𝐾]
stuck expr 𝑢 ::= 𝐾 [op(𝑣)] (op ∉ hop (𝐾))
terminal expr 𝑤 ::= 𝑣 | 𝑢
redex 𝑅 ::= 𝑓 (𝑣) | 𝑣 .𝑖 | 𝑣1 𝑣2 | loss(𝑣)

| with ℎ from 𝑣1 handle𝐾 [op(𝑣2)] (op ∉ hop (𝐾), op ∈ ℎ)
| with ℎ from 𝑣1 handle 𝑣2
| 𝑣 ▶ 𝜆𝜖𝑥 :𝜎.𝑒1 | ⟨𝑣⟩𝜖g | reset 𝑣

Fig. 5. Syntactical classes used for operational semantics

(𝑅1) g ⊢𝜖 𝑓 (𝑣)
0−→ 𝑣 ′ (𝑓 (𝑣) → 𝑣 ′)

(𝑅2) g ⊢𝜖 (𝑣1, . . . , 𝑣𝑛).𝑖
0−→ 𝑣𝑖

(𝑅3) g ⊢𝜖 (𝜆𝜖𝑥 :𝜎. 𝑒) 𝑣
0−→ 𝑒 [𝑣/𝑥]

(𝑅4) g ⊢𝜖 loss(𝑟) 𝑟−→ ()

(𝑅5)

op ∉ hop (𝐾) op ↦→ 𝑣𝑜 ∈ ℎ 𝑣1 : 𝑝𝑎𝑟 op :out
ℓ−→ in

ℎ has effect 𝜖 𝑓𝑘 = 𝜆𝜖 (𝑝,𝑦) : (𝑝𝑎𝑟, 𝑖𝑛) . ⟨with ℎ from 𝑝 handle𝐾 [𝑦]⟩𝜖
g

𝑓𝑙 = 𝜆
𝜖 (𝑝,𝑦) : (𝑝𝑎𝑟, 𝑖𝑛). (with ℎ from 𝑝 handle𝐾 [𝑦]) ▶ g

g ⊢𝜖 with ℎ from 𝑣1 handle𝐾 [op(𝑣2)]
0−→ 𝑣𝑜 (𝑣1, 𝑣2, 𝑓𝑙 , 𝑓𝑘)

(𝑅6) g ⊢𝜖 with ℎ from 𝑣1 handle 𝑣2
0−→ 𝑣𝑟 (𝑣1, 𝑣2) (return ↦→ 𝑣𝑟 ∈ ℎ)

(𝑅7) g ⊢𝜖 𝑣 ▶ 𝜆𝜖1𝑥 :𝜎.𝑒
0−→ ⟨𝑒 [𝑣/𝑥]⟩𝜖1

𝜆𝜖1𝑥 :𝜎. 0

(𝑅8) g ⊢𝜖 ⟨𝑣⟩𝜖1g1
0−→ 𝑣

(𝑅9) g ⊢𝜖 reset 𝑣
0−→ 𝑣

(𝐹)
𝜆𝜖𝑥 :𝜏 . 𝐹 [𝑥] ▶ g ⊢𝜖 𝑒

𝑟−→ 𝑒′

g ⊢𝜖 𝐹 [𝑒]
𝑟−→ 𝐹 [𝑒′]

(𝑆1)

ℎ has effect 𝜖 ℎ handles ℓ return ↦→ 𝑣𝑟 ∈ ℎ
𝑣𝑟 : (par, 𝜎) → 𝜎 ′ ! 𝜖 𝜆𝜖𝑥 :𝜎. (𝑣𝑟 (𝑣, 𝑥) ▶ g) ⊢𝜖ℓ 𝑒

𝑟−→ 𝑒′

g ⊢𝜖 with ℎ from 𝑣 handle 𝑒
𝑟−→ with ℎ from 𝑣 handle 𝑒′

(𝑆2)
g1 ⊢𝜖 𝑒

𝑟−→ 𝑒′

g ⊢𝜖 (𝑒 ▶ g1)
0−→ 𝑟 + (𝑒′ ▶ g1)

(𝑆3)
g1 ⊢𝜖1 𝑒

𝑟−→ 𝑒′

g ⊢𝜖 ⟨𝑒⟩𝜖1g1
𝑟−→ ⟨𝑒′⟩𝜖1

g1

(𝑆4)
g ⊢𝜖 𝑒

𝑟−→ 𝑒′

g ⊢𝜖 reset 𝑒
0−→ reset 𝑒′

Fig. 6. Small-step operational semantics rules

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:11

Regular frames. Rule (F) evaluates expressions 𝑒 inside regular frames 𝐹 .5 Importantly, we adjust

the loss continuation g to 𝜆𝜖𝑥 :𝜏 . 𝐹 [𝑥] ▶ g when evaluating 𝑒 . This is because the loss continuation

of 𝑒 is to pass its result 𝑣 to the context 𝐹 [𝑣] whose value is then passed to its enclosing loss context,

meanwhile accumulating incurred losses. Note that, to apply this rule, the decorative 𝜖 is used. This

is the only rule that does so, and it is needed to make the rule deterministic.

Special frames. Lastly, (S1)-(S4) evaluate inside special frames. These adjust the loss continuations

or losses differently from rule (F). The loss continuation in (S1) uses the return clause from the

handler, since after 𝑒 is evaluated with the aid of the handler the final result is passed to the return

function. Also, rule (S1) is where the effect associated with the judgment changes. It changes from

𝜖 to 𝜖ℓ , when evaluating 𝑒 . Rule (R5) builds up a loss continuation by combining an expression with

a loss continuation with fewer effects. As a result, sub-effecting is needed in the typing rule then

to ensure type safety of the operational semantics. Similarly, sub-effecting is used in the typing

rule glocal, since rule (R7) further wraps the body of a loss continuation within a local construct.

In rule (S2), the current loss continuation is not imported inside the “then" construct. Instead 𝑒 is

evaluated relative to the loss continuation g1; moreover, the loss 𝑟 produced during the evaluation is

added to the final result. In rule (S3) the loss continuation also changes, as with the local construct;

note that the loss created by 𝑒 is exported. Finally, in rule (S4) the loss continuation does not change,

but the loss created by 𝑒 is not exported. The standard results hold for our operational semantics:

Theorem 3.2.

(1) (Terminal expressions) If 𝑒 is terminal, then it can make no transition, i.e., g ⊢𝜖 𝑒
𝑟−→ 𝑒′ holds for no

g, 𝑟 , 𝜖 , 𝑒′.

(2) (Determinism) If g ⊢𝜖 𝑒
𝑟−→ 𝑒′ and g ⊢𝜖 𝑒

𝑟 ′−→ 𝑒′′ then 𝑟 = 𝑟 ′ and 𝑒′ = 𝑒′′.
(3) (Progress) If 𝑒 : 𝜎 ! 𝜖1 is non-terminal, then g ⊢𝜖1 𝑒

𝑟−→ 𝑒′ holds for some 𝑟 and 𝑒′ for any
g :𝜎 → loss ! 𝜖2 with 𝜖2 ⊆ 𝜖1.

(4) (Type safety) If g :𝜎 → loss ! 𝜖2, g ⊢𝜖1 𝑒
𝑟−→ 𝑒′, with 𝜖2 ⊆ 𝜖1, and 𝑒 :𝜎 ! 𝜖1 then 𝑒′ :𝜎 ! 𝜖1.

Example. We consider the example program from §2.3 to demonstrate the operational semantics:

𝑝𝑔𝑚 ≜ 𝑏 ← decide(); 𝑖 ← if 𝑏 then 1 else 2; loss(2 ∗ 𝑖); if 𝑏 then ′𝑎′ else ′𝑏′

ℎ ≜ { decide ↦→ 𝜆𝑥 𝑘 𝑙 . 𝑦 ← 𝑙 True; 𝑧 ← 𝑙 False; if 𝑦 <= 𝑧 then 𝑘 True else 𝑘 False }
We evaluate the program under the zero continuation, and omit handler parameters. We write 𝐶

for the character type, and 𝐵 for the boolean type. First, the operation is handled (rule (R5)):

0𝐶,{} ⊢{} with ℎ handle 𝑝𝑔𝑚
0−→ (𝑦 ← 𝑓𝑙 True; 𝑧 ← 𝑓𝑙 False; if 𝑦 <= 𝑧 then 𝑓𝑘 True else 𝑓𝑘 False) (1)

where 𝑓𝑘 = 𝜆𝑏 : 𝐵. ⟨with ℎ handle (𝑖 ← if 𝑏 then 1 else 2; loss(2 ∗ 𝑖); if 𝑏 then ′𝑎′ else ′𝑏′)⟩{}
0𝐶,{}

𝑓𝑙 = 𝜆𝑏 : 𝐵. (with ℎ handle (𝑖 ← if 𝑏 then 1 else 2; loss(2 ∗ 𝑖); if 𝑏 then ′𝑎′ else ′𝑏′)) ▶ 0𝐶,{}

We then evaluate (𝑓𝑙 True). Rule (F) changes the loss continuation to g ≜ 𝜆𝜖𝑦 :𝜏 . (𝑧 ← 𝑓𝑙 False;
if 𝑦 <= 𝑧 then 𝑓𝑘 True else 𝑓𝑘 False) ▶ 0𝐶,{} . Rule (R3) reduces the application and produces a 0

loss. Now we evaluate the following expression under g:

g ⊢{} (with ℎ handle (𝑖 ← if True then 1 else 2; loss(2 ∗ 𝑖); if True then ′𝑎′ else ′𝑏′)) ▶ 0𝐶,{} (2)

Importantly, the ▶ operator disregards g, and evaluates the expression under 0𝐶,{} (rule (S2)). This
behavior ensures that continuations are consistently evaluated under the loss continuation they

are captured at. Without it, evaluating continuations would yield different results based on how

continuations are used within the handler, which is undesirable. Then, evaluating the program

0𝐶,{} ⊢{} (with ℎ handle (𝑖 ← if True then 1 else 2; loss(2 ∗ 𝑖); if True then ′𝑎′ else ′𝑏′)) (3)

5
The use of frames is a way to present the administrative rules of small-step semantics via a single rule; the idea seems to

be folklore. We could as well have used evaluation contexts [Felleisen and Hieb 1992].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:12 Gordon Plotkin and Ningning Xie

produces a loss 2 and a value
′𝑎′. According to rule (S2), the loss is added to the result of (′𝑎′ ▶ 0𝐶,{}),

producing the result 2 + 0 = 2. Substituting 2 for 𝑦 in expression (1), we get

(𝑧 ← 𝑓𝑙 False; if 2 <= 𝑧 then 𝑓𝑘 True else 𝑓𝑘 False) (4)

Similarly, (𝑓𝑙 False) evaluates to 4, and thus the computation reduces to (𝑓𝑘 True). Continuing the

evaluation will produce the final result
′𝑎′ and the loss 2.

Big-step operational semantics. Finally, we define a big-step operational semantics judgment

g ⊢ 𝑒 𝑟
=⇒ 𝑤 , that under loss continuation g, expression 𝑒 evaluates to terminal expression𝑤 .

g ⊢𝜖 𝑤
0

=⇒ 𝑤

g ⊢𝜖 𝑒1
𝑟−→ 𝑒2 g ⊢𝜖 𝑒2

𝑠
=⇒ 𝑤

g ⊢𝜖 𝑒
𝑟+𝑠
=⇒ 𝑤

Fig. 7. Big-step operational semantics rules

It follows immediately from Theorem 3.2 that the big-step semantics is deterministic and type safe:

Corollary 3.3. Given 𝑒 :𝜎 ! 𝜖 , and g :𝜎 → bool ! 𝜖′ with 𝜖′ ⊆ 𝜖 , there is at most one 𝑟 ∈ 𝑅 and
terminal expression𝑤 such that g ⊢ 𝑒 𝑟

=⇒ 𝑤 and then𝑤 :𝜎 ! 𝜖 .

3.4 Termination
We establish termination with a suitable well-foundedness assumption on the effects allowed in

the input and output types of operations. We use the termination result to establish adequacy in §5.

A result of this type for a standard handler calculus appears in Forster et al. [2017]. However they

did not have loss continuations which, as we will see, leads to complex computability definitions.

Well-foundness of effects. Unfortunately, not all effect handler programs terminate. Adapting

from Bauer and Pretnar [2013], consider an effect 𝑐𝑜𝑤 with the corresponding handler ℎ:

𝑐𝑜𝑤 : { 𝑚𝑜𝑜 : unit→ (unit→ unit ! 𝑐𝑜𝑤) } ℎ = { 𝑚𝑜𝑜 ↦→ 𝜆(𝑝, 𝑥, ℓ, 𝑘). 𝑘 (𝜆𝑐𝑜𝑤𝑦.𝑚𝑜𝑜 (()) ()) }

Then the program 𝑒 ≜ with ℎ from 𝑣 handle𝑚𝑜𝑜 (()) () diverges:

𝑒 −→ with ℎ from 𝑣 handle (𝜆𝑐𝑜𝑤𝑦. 𝑚𝑜𝑜 (()) ()) () −→ 𝑒 −→ . . .

To rule out such programs where effect labels occur inside the input or output types of their

operations, for this subsection and §5 we make use of a well-foundedness assumption on effects.

Specifically, we write 𝑒 (𝜖) and 𝑒 (𝜎) for the set of effect labels appearing in 𝜖 or 𝜎 . So, for example

𝑒 (𝜎 → 𝜏 ! 𝜖) = 𝑒 (𝜎) ∪𝑒 (𝜏) ∪{ℓ |ℓ ∈ 𝜖}. Our well-foundedness assumption is that there is an ordering

ℓ1, . . . , ℓ𝑛 of the labels such that:

op :out
ℓ𝑗−→ in ∧ ℓ𝑖 ∈ 𝑒 (out) ∪ 𝑒 (in) =⇒ 𝑖 < 𝑗

We then define the effect levels of 𝜖 and 𝜎 by: 𝑙 (𝜖) =max𝑖 {𝑖 |ℓ𝑖 ∈ 𝑒 (𝜖)} and 𝑙 (𝜎) =max𝑖 {𝑖 |ℓ𝑖 ∈ 𝑒 (𝜎)}.
The size |𝜎 | of types is defined standardly (e.g., |𝜎 → 𝜏 ! 𝜖 | = 1 + |𝜎 | + |𝜏 | + |𝜖 |).

Our denotational semantics is defined for programs satisfying the assumption.We remark that the

assumption holds for all our programming examples. In the (also terminating) EFF language [Forster

et al. 2017], the assumption is baked into the language design: operation types are only well-defined

if they can be shown so using only previously well-typed operations.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:13

Computability. Our proof uses suitable mutually recursively-defined notions of computabil-

ity [Tait 1967]. We define the following main notions:

- computability of closed values 𝑣 :𝜎 ,

- loss computability of closed loss continuations g :𝜎 → loss ! 𝜖 , and
- computability of closed expressions 𝑒 :𝜎 ! 𝜖 .

We define these notions by the following mutually-recursive clauses. They employ two auxiliary

notions. One is an inductively defined notion of𝐺-computability of expressions, where𝐺 is a set of

loss continuations; the other is a notion of R-computability of real-valued expressions. A proof of

termination involving a similar inductively defined computability predicate was given in Kuchta

[2022] for a handler language without loss continuations.

(1) (a) Every constant 𝑐 :𝑏 of ground type is computable.

(b) A closed value (𝑣1, . . . , 𝑣𝑛) : (𝜎1, . . . , 𝜎𝑛) is computable if every 𝑣𝑖 :𝜎𝑖 is computable.

(c) A closed value 𝜆𝜖𝑥 :𝜎. 𝑒 :𝜎 → 𝜏 ! 𝜖 is computable if, for every computable value 𝑣 :𝜎 , the

expression 𝑒 [𝑣/𝑥] :𝜏 ! 𝜖 is computable.

(2) The property of 𝐺-computability of closed expressions 𝑒 : 𝜎 ! 𝜖 , for a set 𝐺 of closed loss

continuations of type g :𝜎 → loss ! 𝜖′ for some 𝜖′ ⊆ 𝜖 , is the least such property 𝑃𝜎,𝜖 of these

expressions such that one of the following three possibilities holds:

(a) 𝑒 is a computable closed value.

(b) 𝑒 is a stuck expression 𝐾 [op(𝑣)], with op :out
ℓ−→ in, where 𝑣 : out is a computable closed

value, and where, for every computable closed value 𝑣1 : in, 𝑃𝜎,𝜖 (𝐾 [𝑣1]) holds.
(c) For every g ∈ 𝐺 , if g ⊢𝜖 𝑒

𝑟−→ 𝑒′ then 𝑃𝜎,𝜖 (𝑒′) holds.
(3) (a) An expression 𝑒 : loss ! 𝜖 is R-computable iff it is {0loss,𝜖 }-computable.

(b) A closed loss continuation 𝜆𝜖𝑥 : 𝜎. 𝑒 : 𝜎 → loss ! 𝜖 is loss computable if 𝑒 [𝑣/𝑥] : loss ! 𝜖 is
R-computable for every computable closed value 𝑣 :𝜎 .

(4) A closed expression 𝑒 :𝜎 ! 𝜖 is computable iff it is 𝐿-computable, where 𝐿 is the set of closed

loss-computable loss continuations g :𝜎 → loss ! 𝜖′, for some 𝜖′ ⊆ 𝜖 .
To see these definitions are proper, note that each is parameterized by types 𝜎 and effects 𝜖

associated to the relevant syntactic entities, namely (𝜎, {}) for values 𝑣 : 𝜎 , and (𝜎, 𝜖) for loss
continuations g : 𝜎 → loss ! 𝜖 and expressions 𝑒 : 𝜎 ! 𝜖 . We associate pairs of natural numbers,

lexicographically ordered, to such pairs by:𝑚(𝜎, 𝜖) = (𝑙 (𝜎)max 𝑙 (𝜖), |𝜎 |). These measures do not

increase in passing from the definition of one notion to another, so every link in the multigraph of

definitional dependencies is non-increasing. The measures also decrease when passing from the

value-computability to itself or to computability. So every loop in the graph contains a decreasing

link, andwe see that the various notions arewell-defined. Computability extends to open expressions

and loss continuations in the usual way, via substitution by computable closed values.

Lemma 3.4 (Fundamental Lemma).

(1) Every loss continuation Γ ⊢ g :𝜎 → loss ! 𝜖 is loss computable.
(2) Every expression Γ ⊢ 𝑒 :𝜎 ! 𝜖 is computable.

We can deduce termination from computability.

Theorem 3.5 (Termination). For 𝑒1 :𝜎 ! 𝜖 and g :𝜎 → bool ! 𝜖′ with 𝜖′ ⊆ 𝜖 , there are no infinite
sequences: g ⊢ 𝑒1

𝑟1−→ 𝑒2
𝑟2−→ . . .

𝑟𝑛−2−−−→ 𝑒𝑛−1
𝑟𝑛−1−−−→ 𝑒𝑛 . . .

Combining this with Theorem 3.3 we obtain the following theorem. It covers any effect multiset

𝜖 ; when 𝜖 is empty, the terminal is a value by the well-typing.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:14 Gordon Plotkin and Ningning Xie

Theorem 3.6. For 𝑒 :𝜎 ! 𝜖 and g :𝜎 → bool ! 𝜖′ with 𝜖′ ⊆ 𝜖 we have g ⊢ 𝑒 𝑟
=⇒ 𝑤 for a unique 𝑟 ∈ 𝑅

and terminal expression𝑤 (and then𝑤 :𝜎 ! 𝜖).

4 Programming with the Selection Monad
Having established the operational semantics of our design, we implemented it as an effect handler

library in Haskell. In this section we first present the programming interface, then briefly explain

the embedding, and, lastly, present programming examples.

4.1 Effect Handler Interface
We begin with a simple example to demonstrate the programming interface. An effect is declared

as a datatype with its fields being operations. For example, the following datatype:

[effect | data NDet = NDet {decide :: Op () Bool }]

declares a NDet effect (§2.2) with an operation decide from () to Bool. This embedding uses a

Template Haskell interface (similar to Kammar et al. [2013]) to reduce burdensome syntax.

We can perform an operation and handle an effectful program as follows. A handler

pgm =

handlerRet (𝜆x → return [x])
(NDet {decide = operation (𝜆x l k →
(++) ⟨$⟩ k True ⟨∗⟩ k False) }) $

do y ← perform decide (); return (not y)

(NDet {decide = operation (...) }) is simply an

instance of the data type with field decide. The
function operation takes a lambda expression

(𝜆x l k → e) and returns type Op, whose argu-
ments are, respectively, the operation argument,

the choice continuation, and the delimited con-

tinuation. The function handlerRet takes a return clause, a handler definition, and the computation

to be handled. We can also use handler without a return clause. The implementation also supports

parameterized handlers.

Finally, a computation is written in a do block. This can invoke operations using perform, by
providing an operation and its argument (in this case decide and ()). We can run the program by

calling runSel. For example, runSel pgm returns [False, True].

4.2 The Selection Monad
We define the key datatype Sel r e a implementing the programming interface: the loss type r is
any Monoid (not just a specific numerical type), e is the program’s effect, and a is it’s type:

newtype Sel r e a = Sel {unSel ::Monoid r ⇒ (a→ Eff r e r) → Eff r e (r, a)) }

It takes a loss continuation (a → Eff r e r) and returns a loss-value tuple (r, a). (Note that the
definition corresponds to the semantic model 𝑆𝜖 (𝑋) = (𝑋 → 𝐹𝜖 (𝑅)) → 𝐹𝜖 (𝑊 (𝑋)) (§2.1).) We

use the Eff datatype to represent effectful programs. Our design is independent of the concrete

strategy used for implementing effect handlers. We implemented them usingmulti-prompt delimited
continuations [Dyvbig et al. 2007; Xie and Leijen 2021]. This implementation closely follows the

operational semantics of effect handlers. For example, we can define loss as follows:

loss r = Sel $ 𝜆 → return (r, ())

The definition corresponds to rule (𝑅4) in Fig. 6, which ignores the loss continuation, produces a

loss 𝑟 , and returns a unit value.

We present the monad instance declaration for Sel on the right. The definition requires some

explanations. The return definition is straightforward: we ignore the loss continuation and the

handler context, and return a pure tuple with a zero loss. This corresponds to the evaluation of

terminal expressions (Fig. 7). The bind definition corresponds to rule (𝐹) in Fig. 6. First, given the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:15

instance Monad (Sel r e) where
return x = Sel (𝜆g → return (mempty, x))
e >>= f = Sel $ 𝜆g → do
(r1, a) ← unSel e (𝜆a→ (f a) ⊲ g)
(r2, b) ← unSel (f a) g
return (r1<>r2, b)

loss continuation g, we would first like to evaluate e.
However, we first need to extend the loss continuation.

Here, g is a loss continuation for (e >>= f), not for e.
Therefore, we transform the loss continuation where

⊲ implements the then operator, and evaluate e to the

extended loss continuation. The result of evaluating e
is then passed to f , where f takes a and the loss continuation g, yielding a loss r2 and a value b.
Lastly, the two losses are combined (r1<>r2), and the final result is b.

4.3 Examples
Example: Greedy algorithms. A greedy selection strategy always picks the choice that max-

imizes (or minimizes) losses. We define the Max effect with a max operation; a corresponding

handler can selects the element maximizing the loss, where maxWith implements argmax:

[effect | data Max =Max {max :: Op [a] a}]
hmax = handler Max {max = operation (𝜆x l k → do b← maxWith l x ; k b) }

As an example, we can define criteria for selecting a String based on its length and the number of

distinct characters, with greater losses (really, rewards) for better strings:

len x = loss (fromIntegral (length x))
distinct x = let i = fromIntegral (length (group (sort x))) in loss (i ∗ i)

where sort sorts the string, and the group function collects consecutive identical characters into

separate lists. Thus, the number of groups is the number of distinct characters in the string.

password = do
s← perform max ["aaa", "aabb", "abc"]
len s
distinct s
return $ "password is " ++ s

We can then define a program password that picks

a password from a list based on these criteria, where

++ concatenates two lists. Using hmax to handle max ,
runSel $ hmax password returns "password is abc",
since "abc" has the greatest reward.

Example: Optimizations. Greedy algorithms always pick the optimal option. However, it is

not always possible to enumerate all possible choices and identify the best one.

We consider optimization algorithms, specifically stochastic gradient descent (SGD), a widely used
method for iterative optimization. Starting with initial parameters, SGD minimizes a cost function

by repeatedly updating the parameters in the direction opposite to their gradients, calculated after

processing each randomly selected data point.

We implement gradient descent as a handler that chooses new parameters as follows, where the

[effect | data Opt = Opt {optimize :: Op [Float] [Float] }]
hOpt = handler (Opt {optimize = operation (𝜆p l k →

do ds← autodiff l p
let p’ = zipWith (𝜆w d → (w − 0.01 ∗ d)) p ds
k p’) })

function autodiff f x calculates the gra-
dient of a differentiable function f at

point x . The optimize clause first calcu-
lates the gradient ds by differentiating

the choice continuation l with respect

to the parameters p. It then updates the

parameters using zipWith, where 0.01 is the learning rate. Lastly, it resumes the continuation with

updated parameters p’.
As a concrete example, we use the simplest form of linear regression [Legendre 1806] with only

one variable, a standard example when explaining SGD. Given a dataset of (𝑥𝑖 , 𝑦𝑖)𝑖=1,..,𝑛 , where 𝑥𝑖
and 𝑦𝑖 are real numbers, the goal is to find a weight𝑤 and a bias 𝑏 that minimize the cost function∑

𝑖=1,..𝑛, (𝑓 (𝑥𝑖) − 𝑦𝑖)2 for the linear model 𝑓 (𝑥) =𝑤𝑥 + 𝑏.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:16 Gordon Plotkin and Ningning Xie

linearReg [w, b] x target =
do [w’, b’] ← perform optimize [w, b]

let y = w’ ∗ x + b’
loss $ (target − y) ∗ (target − y)
return [w’, b’]

The program linearReg on the right defines a linear

regression model. It takes the current parameters w and

b (represented as a list) and a data point x and target , and
returns new parameters w’ and b’.

The program first calls an operation optimize with the

current parameters [w, b] and receives updated param-

eters [w’, b’]. It then calculates the predicted value y using these new parameters and calls loss
with the corresponding squared error. Finally, the program returns updated parameters.

We combine the hOpt handler and the linearReg program as follows.

foldM (𝜆p (x, y) → lreset $ hOpt $ linearReg p x y) random_params training_data

The program traverses the training dataset, applying gradient descent to each data point. Note

that we apply lreset that combines local and reset within the loop body, so each iteration makes

decisions based on its own loss. Moreover, we can introduce a random effect to shuffle the training

data, introducing stochasticity into the process.

Example: Hyperparameters. In the gradient descent handler, we used the learning rate 0.01. For

training programs, variables such as the learning rate that govern the training process are called

[effect | data LR = LR { lrate :: Op () Float }]
gd = handler (Opt {optimize = operation (𝜆p l k →

do ds← autodiff l p
𝛼 ← perform lrate ()
let p’ = zipWith (𝜆w d → (w − 𝛼 ∗ d)) p ds
k p’) })

hyperparameters. The process of finding their op-
timal configuration is known as hyperparameter
optimization [Feurer and Hutter 2019].

We can abstract the learning rate as a separate

effect operation as shown on the right. A handler

that always returns a pre-defined learning rate

can be defined as follows:

readLR 𝛼 = handler (LR { lrate = operation (𝜆x k → k 𝛼) })

More interestingly, a handler for hyperparameter tuning can compare losses from different

configurations. As an example, the handler below implements a simple grid search that exhaustively

explores a subset of the hyperparameter space, in this case, for simplicity, two options:

tuneLR (𝛼1, 𝛼2) = handlerRet (𝜆 → return 𝛼1)
LR { lrate = operation (𝜆 l → do err1← l 𝛼1; err2← l 𝛼2

if err1 < err2 then return 𝛼1 else return 𝛼2) }

The handler calculates the losses for the two learning rates respectively, and returns the one with a

lower loss, without resuming the computation.

A

B

Left Right

Left 5 3

Right 2 9

Example: Two-player games. A minimax game corresponds to the

philosophy of minimizing potential loss in a worst-case scenario. It involves

two players: maximizer, who seeks to maximize the loss, and minimizer,

who aims to minimize it (§2.1). As an example, consider a game with four

final states. The losses associated with both player’s decisions are shown in the table on the right.

data Strategy = Left | Right deriving (Enum)
minimax = do

a← perform max [Left, Right]
b← perform min [Left, Right]
loss $ [[5, 3], [2, 9]] !! (fromEnum a) !! (fromEnum b)
return (a, b)

A corresponding minimizer handler can be

defined as:

[effect | data Min a =Min {min :: Op [a] a}]
hmin = handler Min {min = operation (𝜆x l k →

do b← minWith l x ; k b) }

We can then play this simple game, where

the maximizer A chooses over the minimizer B, as given on the right, where we encode the loss

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:17

table as a nested list, and (!!) is list index operator. The program (runSel $ hmax $ hmin minimax)
returns (Left, Right) with loss 3. This is because A maximizes over the choices of B. Specifically,

B, the minimizer, chooses 3 (between 3 and 5), and 2 (between 2 and 9). Then A, the maximizer,

chooses 3 (between 3 and 2). Note how the loss is shared by two handlers.

In the training domain, generative adversarial networks [Goodfellow et al. 2014] is also a two-player

game. The algorithm simultaneously trains two models that contest with each other: the generative

model learns to generate samples, while the discriminative model learns to distinguish between

real and generated samples. More explicitly, it corresponds to min𝐺 max𝐷 (E𝑥∼𝑝data [log𝐷 (𝑥)] +
E𝑧∼𝑝noise [log(1−𝐷 (𝐺 (𝑧)))]), where the discriminator is a minimizer and the generator is a maximizer.

Example: Nash equilibrium. In game theory, a Nash equilibrium describes a situation where

no player can improve their outcome by unilaterally changing their strategy, assuming all other

players maintain their current strategies.

A classic example is the prisoner’s dilemma, illustrated in the table below. Here, the loss is

represented as a pair, indicating the respective prison sentences for prisoner A and prisoner B. If both

A

B

defects cooperates

defects (3, 3) (0, 5)

cooperates (5, 0) (1, 1)

prisoners cooperate (by staying silent), they each serve one

year (loss of 1). However, if one prisoner cooperates while the

other defects, the cooperating prisoner serves 5 years, while the

defecting prisoner goes free. If both defect, they each serve 3

years. In this scenario, defection always yields a better individual

outcome regardless of the other prisoner’s choice.

We define game steps as follows, using Strategy for defection (Left) and cooperation (Right).

data Step =Move Strategy | Stay Strategy deriving (Eq)
[effect | data Play = Play {play :: Op (Step, Step) (Step, Step) }]

hNash = handler Play {play = operation (𝜆(a, b) l k → do
let (a1, b1) = (getStrtgy a, getStrtgy b)
let (a2, b2) = (move a1,move b1)
l1← l (Stay a1, Stay b1); l2← l (Stay a2, Stay b1)
l3← l (Stay a1, Stay b2)
if (fst l2 < fst l1) then k (Move a2, Stay b1)
else if (snd l3 < snd l1) then k (Stay a1,Move b2)
else k (Stay a1, Stay b1)) }

Given both players’ strategies, the han-

dler on the right tries to reduce one

player’s loss by adjusting their strategy

while holding the other player’s strat-

egy unchanged. The function getStrtgy ex-

tracts the strategy from the current step,

andmovemodifies the strategy of the spec-

ified player. Each player compares their

own loss and decides whether to adjust

their strategy or stay unchanged.

The game program below iteratively adjusts the players’ strategies until both choose to Stay .
This signifies that a Nash equilibrium has been reached, and the program terminates. The program

game a b = do
(a’, b’) ← lreset $ hNash $ do
(a1, b1) ← perform play (a, b)
let (a2, b2) = (getStrtgy a1, getStrtgy b1)
loss $ [[(3, 3), (0, 5)], [(5, 0), (1, 1)]]

!! (fromEnum a2) !! (fromEnum b2))
return (a1, b1)

if isStay a’ && isStay b’ then return (a, b)
else lreset $ game a’ b’

runSel $ game (Move Right) (Move Right) returns
the strategies (Stay Left, Stay Left) through 2 steps,

indicating that both prisoners defect. This outcome

represents a Nash equilibrium, as neither prisoner

can improve their individual outcome by unilaterally

changing their strategy. It is easy to imagine an al-

ternative handler that minimizes the total loss for

both players. In that case, the game would return

(Stay Right, Stay Right), which minimizes the com-

bined loss.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:18 Gordon Plotkin and Ningning Xie

5 Denotational semantics
We next give 𝜆𝐶 a denotational semantics using a suitably augmented selection monad. We give

soundness and adequacy theorems, thereby both showing that our computational ideas inspired by

the selection monad are in fact in accord with it, and also providing a theoretical foundation for

our combination of algebraic effect handlers and the selection monad.

5.1 Semantics of Types
As discussed in Section 2.1, our semantics employs a family 𝑆𝜖 (𝑋) = (𝑋 → 𝑅𝜖) → 𝑊𝜖 (𝑋) of
augmented selection monads where𝑊𝜖 (𝑋) = 𝐹𝜖 (𝑅 × 𝑋) and 𝑅𝜖 = 𝐹𝜖 (𝑅), with 𝑅 the reals. The 𝐹𝜖
are used to interpret unhandled effect operations, and 𝑅𝜖 is the free𝑊𝜖 -algebra on the one-point set.

The𝑊𝜖 are the commutative combination [Hyland et al. 2006] of the 𝐹𝜖 and the writer monad 𝑅 ×−.
Algebraically this choice of monad combination corresponds to the loss operation commuting

with the other operations. Semantically it results in loss effects commuting with operation calls;

via the Soundness Theorem 5.4, this is congruent with the operational semantics. Also, recalling

the discussion on subtyping in §3.2, note that the 𝑆𝜖 are not effect-covariant, as the 𝑅𝜖 appear

contravariantly.

We define 𝐹𝜖 (𝑋) to be the least set 𝑌 such that:

𝑌 =
©­­«

∑︁
ℓ∈𝜖,op:out

ℓ−→in,0<𝑖⩽𝜖 (ℓ)

S[|out |] × 𝑌 S[|in |]
ª®®¬ + 𝑋

There is an inclusion 𝐹𝜖1 (𝑋) ⊆ 𝐹𝜖 (𝑋) if 𝜖1 ⊆ 𝜖; which we use without specific comment. The

elements of 𝐹𝜖 (𝑋) can be thought of as effect values or interaction trees, much as in [Forster et al.

2017; Plotkin and Power 2001; Xia et al. 2019]. They are trees whose internal nodes are decorated

with four things: an effect ℓ ∈ 𝜖 , an ℓ-operation op : out → in, a handler execution depth index, and

an element of S[|out |]. Nodes have successor nodes for each element of S[|in|]; and the leaves of the
tree are decorated with elements of 𝑋 . The idea is that such trees indicate possible computations in

which various operations occur before finally yielding a value in 𝑋 . Trees of this kind were used to

give a monadic denotational semantics to an algebraic effect language in [Forster et al. 2017].

Note the circularity in these definitions: the 𝐹𝜖 are defined from the 𝑆𝜖 ,and vice versa. However

the effect levels strictly decrease in the first case (because of the well-foundedness assumption) and

do not increase in the second (recall §3.4), justifying the definitions.

Given the 𝑆𝜖 we can define S[|𝜎 |] the semantics of types, as in Figure 8, where we assume

available a given semantics [|𝑏 |] of basic types, including S[|loss|] = 𝑅.

S[|𝑏 |] = [|𝑏 |]
S[|(𝜎1, . . . , 𝜎𝑛) |] = S[|𝜎1 |] × · · · × S[|𝜎𝑛 |]
S[|𝜎 → 𝜏 ! 𝜖 |] = S[|𝜎 |] → 𝑆𝜖 (S[|𝜏 |])

Fig. 8. Semantics of types

5.2 Monads
For our semantics we need the monadic structure of the 𝑆𝜖 , which is available via the free algebra

structures of the𝑊𝜖 and the 𝐹𝜖 . For the 𝐹𝜖 , say that an 𝜖-algebra is a set 𝑋 equipped with functions

𝜑ℓ,op,𝑖 : S[|out |] × 𝑋 S[|in |] → 𝑋 (ℓ ∈ 𝜖, op :out ℓ−→ in, 0 < 𝑖 ⩽ 𝜖 (ℓ))
Then 𝐹𝜖 (𝑋) is the free such algebra taking the functions to be: 𝜑𝑋ℓ,op,𝑖 (𝑜, 𝑘) =def ((ℓ, op, 𝑖), (𝑜, 𝑘)),
with the unit at 𝑋 being given by 𝜂𝐹𝜖 (𝑥) = 𝑥 , ignoring injections into sums. If (𝑌,𝜓ℓ,op,𝑖) is another

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:19

such algebra, the unique homomorphic extension 𝑓 †𝐹𝜖 of a function 𝑓 : 𝑋 → 𝑌 is given by setting

𝑓 †𝑊𝜖 (𝑥) = 𝑓 (𝑥) 𝑓 †𝐹𝜖 ((ℓ, op, 𝑖), (𝑜, 𝑘)) =𝜓ℓ,op,𝑖 (𝑜, 𝑓 †𝐹𝜖 ◦ 𝑘)
Turning to𝑊𝜖 (𝑋) = 𝐹𝜖 (𝑅 ×𝑋), we can again see this as a free algebra monad. Say that an action

𝜖-algebra is an 𝜖-algebra (𝑌,𝜓ℓ,op,𝑖) together with an additive action · : 𝑅 ×𝑌 → 𝑌 commuting with

the𝜓ℓ,𝛾,op,𝑖 (by an additive action we mean one such that 0 · 𝑦 = 𝑦 and 𝑟 · (𝑠 · 𝑦) = (𝑟 + 𝑠) · 𝑦). Then
𝐹𝜖 (𝑅 × 𝑋) is the free such algebra with operations 𝜑𝑅×𝑋ℓ,op,𝑖 and action given by:

𝑟 · 𝑢 =def let𝐹𝜖 𝑠 ∈ 𝑅, 𝑥 ∈ 𝑋 be 𝑢 in (𝑟 + 𝑠, 𝑥)
The unit is 𝜂𝑊𝜖

(𝑥) = (0, 𝑥), and if (𝑌,𝜓ℓ,op,𝑖 , ·) is another such algebra, the unique homomorphic

extension 𝑓 †𝑊𝜖 of a function 𝑓 : 𝑋 → 𝑌 is given by 𝑓 †𝑊𝜖 (𝑟, 𝑥) = 𝑟 · 𝑓 (𝑥) and:
𝑓 †𝑊𝜖 ((ℓ, op, 𝑖), (𝑜, 𝑘)) =𝜓ℓ,op,𝑖 (𝑜, 𝑓 †𝑊𝜖 ◦ 𝑘)

Turning finally to the augmented selection monad 𝑆𝜖 (𝑋) = (𝑋 → 𝑅𝜖) →𝑊𝜖 (𝑋). The unit 𝜂𝑆𝜖
at 𝑋 is given by 𝜂𝑆𝜖 (𝑥) = 𝜆𝛾 ∈ 𝑋 → 𝑅𝜖 . 𝜂𝑊𝜖

(𝑥) (and recall that 𝜂𝑊𝜖
(𝑥) = (0, 𝑥)). For the Kleisli

extension, rather than follow the definitions in, e.g., Abadi and Plotkin [2021] via a𝑊𝜖 -algebra on

𝑅𝜖 we give definitions that are a little easier to read.

First, 𝑅𝜖 is an action 𝜖-algebra, with 𝜓ℓ,op,𝑖 : S[|out |] × 𝑅S[|in |]𝜖 → 𝑅𝜖 given by 𝜓ℓ,op,𝑖 (𝑜, 𝑘) =
𝜑𝑅ℓ,op,𝑖 (𝑜, 𝑘) and action 𝑅 ×𝑅𝜖 → 𝑅𝜖 given by: 𝑟 ·𝑢 =def let𝐹1,𝜖 𝑠 ∈ 𝑅 be 𝑢 in 𝑟 + 𝑠 . Next (using that 𝑅𝜖
is an action 𝜖-algebra) the loss R𝜖 (𝐹 |𝛾) ∈ 𝑅𝜖 associated to 𝐹 ∈ 𝑆𝜖 (𝑌) and loss function 𝛾 :𝑌 → 𝑅𝜖 is

R𝜖 (𝐹 |𝛾) =def 𝛾
†𝑊𝜖 (𝐹 (𝛾))

Then the Kleisli extension 𝑓 †𝑆𝜖 :𝑆𝜖 (𝑋) → 𝑆𝜖 (𝑌) of a function 𝑓 :𝑋 → 𝑆𝜖 (𝑌) is defined by:

𝑓 †𝑆𝜖 (𝐹) = 𝜆𝛾 ∈ 𝑌 → 𝑅𝜖 . let𝑊𝜖
𝑥 ∈ 𝑋 be 𝐹 (𝜆𝑥 ∈ 𝑋 .R𝜖 (𝑓 𝑥 |𝛾)) in 𝑓 𝑥𝛾 (5)

Finally 𝑆𝜖 (𝑋) is an 𝜖-algebra, with functions 𝜑 ℓ,op,𝑖 : S[|out |] × 𝑆𝜖 (𝑋)S[|in |] → 𝑆𝜖 (𝑋)𝜖 given by:

𝜑𝑋ℓ,op,𝑖 (𝑜, 𝑓) (𝛾) = 𝜑𝑅×𝑋ℓ,op,𝑖 (𝑜, 𝜆𝑥 ∈ in. 𝑓 (𝑥) (𝛾))

5.3 Semantics of Expressions and Handlers
Given an environment Γ = 𝑥1 :𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 we takeS[|Γ |] to be the functions (called environments)
𝜌 on Dom(Γ) such that 𝜌 (𝑥𝑖) ∈ S[|𝜎𝑖 |], for 𝑖 = 1, . . . , 𝑛. In Figure 9 we give semantics to typed

expressions, and handlers according to the following schemes:

Γ ⊢ 𝑒 :𝜎 ! 𝜖
S[|𝑒 |] : S[|Γ |] → 𝑆𝜖 (S[|𝜎 |])

Γ ⊢ ℎ :par, 𝜎 ! 𝜖ℓ ⇒ 𝜎 ′ ! 𝜖

S[|ℎ |] : S[|Γ |] → (S[|par |] × 𝑆𝜖ℓ (S[|𝜎 |])) → 𝑆𝜖 (S[|𝜎 ′ |])
We make use of an abbreviation, available for any monad𝑀 :

let𝑀 𝑥 ∈ 𝑋 be 𝑒𝑥𝑝1 in 𝑒𝑥𝑝2 =def (𝜆𝑥 ∈ 𝑋 . 𝑒𝑥𝑝2)†𝑀 (𝑒𝑥𝑝1)
for mathematical expressions 𝑒𝑥𝑝1 and 𝑒𝑥𝑝2. This abbreviation makes monadic binding available

at the meta-level, and that makes for more transparent formulas. We assume given semantics

[|𝑐 |] ∈ [|𝑏 |], for constants 𝑐 :𝑏, and [|𝑓 |] : [|𝜎 |] → [|𝜏 |] for basic function symbols 𝑓 : 𝜎 → 𝜏 (with

[|𝑟 |] = 𝑟 and + denoting the addition of 𝑅). We also use an auxiliary “loss function" semantics. For

Γ, 𝑥 :𝜎 ⊢ 𝑒 : loss ! 𝜖 we define L[|𝜆𝜖𝑥 :𝜎. 𝑒 |] :S[|Γ |] → S[|𝜎 |] → 𝑅𝜖 by:

L[|𝜆𝜖𝑥 :𝜎. 𝑒 |] (𝜌) = 𝜆𝑎 ∈ S[|𝜎 |] . let𝐹𝜖 𝑟1, 𝑟2 ∈ 𝑅 be S[|𝑒 |] (𝜌 [𝑎/𝑥]) (𝜆𝑟 ∈ 𝑅. 0) in 𝑟2
The denotational semantics of expressions, up to application, is generic to any monadic semantics

of call-by-value effectful languages. The semantics of operation calls uses the 𝜖-algebraic structure

of the 𝑆𝜖 . Other semantics read as denotational versions of operational computations. For example,

the semantics of 𝑒1 ▶ 𝜆𝜖𝑥 :𝜎1 . 𝑒2 ignores the current loss continuation, passes the value 𝑎 of 𝑒1 (with

loss continuation the loss denotation of 𝜆𝜖𝑥 :𝜎1. 𝑒2) to 𝑒2, evaluates that (with zero loss continuation),

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:20 Gordon Plotkin and Ningning Xie

Γ ⊢ 𝑒 :𝜎 ! 𝜖
S[|𝑒 |] : S[|Γ |] → 𝑆𝜖 (S[|𝜎 |])

(Expressions)

S[|𝑥 |] (𝜌) = 𝜂𝑆𝜖 (𝜌 (𝑥))
S[|𝑐 |] (𝜌) = 𝜂𝑆𝜖 ([|𝑐 |])
S[|𝑓 (𝑒) |] (𝜌) = let𝑆𝜖 𝑎 ∈ S[|𝜎1 |] be S[|𝑒 |] (𝜌) in 𝜂𝑆𝜖 ([|𝑓 |] (𝑎)) (𝑓 :𝜎1 → 𝜎)
S[|(𝑒1, . . . , 𝑒𝑛) |] (𝜌) = let𝑆𝜖 𝑎1 ∈ S[|𝜎1 |] be S[|𝑒1 |] (𝜌) in

. . .

let𝑆𝜖 𝑎𝑛 ∈ S[|𝜎𝑛 |] be S[|𝑒𝑛 |] (𝜌) in
𝜂𝑆𝜖 ((𝑎1, . . . , 𝑎𝑛)) (𝜎 = (𝜎1, . . . , 𝜎𝑛))

S[|𝑒.𝑖 |] (𝜌) = 𝑆𝜖 (𝜋𝑖) (S[|𝑒 |] (𝜌))
S[|𝜆𝜖1𝑥 :𝜎. 𝑒 |] (𝜌) = 𝜂𝑆𝜖 (𝜆𝑎 ∈ S[|𝜎 |] .S[|𝑒 |] (𝜌 [𝑎/𝑥]))
S[|𝑒1 𝑒2 |] (𝜌) = let𝑆𝜖 𝜑 ∈ S[|𝜎1 |] → 𝑆𝜖 (S[|𝜎 |]) be S[|𝑒1 |] (𝜌) in

let𝑆𝜖 𝑎 ∈ S[|𝜎1 |] be S[|𝑒2 |] (𝜌) in 𝜑 (𝑎)
(Γ ⊢ 𝑒1 :𝜎1 → 𝜎 ! 𝜖)

S[|op(𝑒) |] (𝜌) = let𝑆𝜖 𝑎 ∈ S[|out |] be S[|𝑒 |] (𝜌) in 𝜑𝑋ℓ,op,𝜖 (ℓ) (𝑎, (𝜂𝑆𝜖)S[|in |])
(op :out ℓ−→ in, 𝜎 = in)

S[|with ℎ from 𝑒1 handle 𝑒2 |] (𝜌) = let𝑆𝜖 𝑎 ∈ S[|𝑝𝑎𝑟 |] be S[|𝑒1 |] (𝜌) in S[|ℎ |] (𝜌) (𝑎,S[|𝑒2 |] (𝜌))
(Γ ⊢ 𝑒1 :𝑝𝑎𝑟)

S[|loss(𝑒) |] (𝜌) = 𝜆𝛾 ∈ 𝑅S[|𝜎 |]𝜖 . let𝐹𝜖 𝑟 ∈ 𝑅, 𝑎 ∈ 𝑅 be S[|𝑒 |] (𝜌) (𝛾) in (𝑎 + 𝑟, ())
S[|𝑒1 ▶ 𝜆𝜖1𝑥 :𝜎1 . 𝑒2 |] (𝜌) = 𝜆𝛾 ∈ 𝑅S[|𝜎 |]𝜖 .

let𝐹𝜖 𝑟1 ∈ 𝑅, 𝑎 ∈ S[|𝜎1 |] be S[|𝑒1 |] (𝜌) (L[|𝜆𝜖𝑥 :𝜎1 . 𝑒2 |] (𝜌)) in
let𝐹𝜖

1

𝑟2, 𝑟3 ∈ 𝑅 be S[|𝑒2 |] (𝜌 [𝑎/𝑥]) (𝜆𝑟 ∈ 𝑅. 0) in (𝑟2, 𝑟1 + 𝑟3)
S
[��⟨𝑒⟩𝜖1

g

��] (𝜌) = 𝜆𝛾 ∈ 𝑅S[|𝜎 |]𝜖 .S[|𝑒 |] (𝜌)L[|g |] (𝜌)
S[|reset 𝑒 |] (𝜌) = 𝜆𝛾 ∈ 𝑅S[|𝜎 |]𝜖 . let𝐹𝜖 𝑟1 ∈ 𝑅, 𝑎 ∈ S[|𝜎 |] be S[|𝑒 |] (𝜌) (𝛾) in 𝜂𝑊𝜖 (𝑎)

Fig. 9. Semantics of expressions

and adds the loss 𝑟1 of 𝑒1 to the result 𝑟3, keeping the resulting loss 𝑟2. The sub-effecting in the

typing rule then is here reflected in the semantic inclusion 𝐹𝜖1 (𝑋) ⊆ 𝐹𝜖 (𝑋).

Semantics of Handlers. We build up the semantics of handlers in stages. Here is the high-level idea.

Ignoring environments and parameters, we seek a semantics: S[|ℎ |] : 𝑆𝜖ℓ (S[|𝜎 |]) → 𝑆𝜖 (S[|𝜎 ′ |]),
equivalently S[|ℎ |]𝛾𝐺 ∈ 𝑊𝜖 (S[|𝜎 ′ |]) for 𝛾 : S[|𝜎 ′ |] → 𝑅𝜖 , and 𝐺 ∈ 𝑆𝜖ℓ (S[|𝜎 |]). Following the

standard approach to the semantics of handlers [Pretnar and Plotkin 2013] we exploit a free algebra

property, here that of of 𝐹𝜖ℓ (𝑅 × S[|𝜎 |]), constructing an 𝜖ℓ-algebra on 𝐹𝜖 (𝑅 × S[|𝜎 ′ |]) using ℎ’s
operation definitions (it may not be an action one), then obtaining a homomorphism to it from

𝐹𝜖ℓ (𝑅 × S[|𝜎 |]), and finally applying that to 𝐺𝛾 ′, with 𝛾 ′ obtained from 𝛾 using ℎ’s return function.

So, consider a handler ℎ:
op

1
↦→ 𝜆𝜖𝑧 : (par, out1, (par, in1) → loss ! 𝜖, (par, in1) → 𝜎 ′ ! 𝜖) . 𝑒1, . . . ,

op𝑛 ↦→ 𝜆𝜖𝑧 : (par, out𝑛, (par, in𝑛) → loss ! 𝜖, (par, in𝑛) → 𝜎 ′ ! 𝜖) . 𝑒𝑛,
return ↦→ 𝜆𝜖𝑧 : (par, 𝜎). 𝑒𝑟


where Γ ⊢ ℎ : par, 𝜎 ! 𝜖ℓ ⇒ 𝜎 ′ ! 𝜖 , and fix 𝜌 ∈ S[|Γ |] and 𝛾 ∈ 𝑅S𝜖 [|𝜎 ′ |]. We first construct an

𝜖ℓ-algebra on 𝐴 =𝑊𝜖 (S[|𝜎 ′ |])S[|par |] . So for ℓ1 ∈ 𝜖ℓ , op : out
ℓ1−→ in, and 0 < 𝑖 ⩽ (𝜖ℓ)ℓ1 we need

functions𝜓ℓ,op,𝑖 :S[|out |] ×𝐴S[|in |] → 𝐴. For ℓ1 ∈ 𝜖 , op :out
ℓ1−→ in, and 0 < 𝑖 ⩽ 𝜖 (ℓ1), we set

𝜓ℓ1,op,𝑖 (𝑜, 𝑘) = 𝜆𝑝 ∈ S[|par |] . ((ℓ1, op, 𝑖), (𝑜, 𝜆𝑎 ∈ S[|in|] . 𝑘𝑎𝑝))

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:21

and, for op 𝑗 and 𝑖 = 𝜖 (ℓ) + 1 we set

𝜓ℓ,op 𝑗 ,𝑖 (𝑜, 𝑘) = 𝜆𝑝 ∈ S[|par |] .S
[��𝑒 𝑗 ��] (𝜌 [(𝑝, 𝑜, 𝑙1, 𝑘1)/𝑧])𝛾

where 𝑘1 (𝑝, 𝑎) = 𝑘𝑎𝑝 and 𝑙1 (𝑝, 𝑎) = 𝜆𝛾1 ∈ 𝑅S[|𝜎
′ |]

𝜖 . 𝛿𝜖 (𝛾†𝑊𝜖 (𝑘𝑎𝑝)). (in the definition of 𝑙1 we use

the fact that 𝑅𝜖 is an action 𝜖-algebra, and 𝛿𝜖 :𝐹𝜖 (𝑅) → 𝐹𝜖 (𝑅 × 𝑅) is 𝐹𝜖 (𝜆𝑟 ∈ 𝑅. (0, 𝑟))).
We use this algebra to extend the map 𝑠 :𝑅 × S[|𝜎 |] → 𝐴 defined by

𝑠 (𝑟, 𝑎) = 𝜆𝑝 ∈ S[|par |] . 𝑟 · (S[|𝑒𝑟 |] (𝜌 [(𝑝, 𝑎)/𝑧])𝛾)

(Recall that return ↦→ 𝜆𝜖𝑧 : (par, 𝜎). 𝑒𝑟 is in ℎ.) The semantics of the handler ℎ is then given by:

S[|ℎ |] (𝜌) (𝑝,𝐺) (𝛾) = 𝑠†𝐹𝜖ℓ (𝐺 (𝜆𝑎 ∈ S[|𝜎 |] . R𝜖 (S[|𝑒 |] (𝜌 [(𝑝, 𝑎)/𝑧]) |𝛾))) (𝑝)

5.4 Soundness and Adequacy of Operational Semantics
Below we may omit 𝜌 in S[|𝑒 |] (𝜌) (or V[|𝑣 |] (𝜌)) when 𝑒 (respectively 𝑣) is closed. In Fig. 10 we

define a “value semantics" V[|𝑣 |] : S[|Γ |] → S[|𝜎 |] for values Γ ⊢ 𝑣 : 𝜎 . It helps us to state our

soundness and adequacy results.

V[|𝑥 |] (𝜌) = 𝜌 (𝑥) V[|(𝑣1, . . . , 𝑣𝑛) |] (𝜌) = (V[|𝑣1 |] (𝜌), . . . ,V[|𝑣𝑛 |] (𝜌))
V[|𝑐 |] (𝜌) = [|𝑐 |] V[|𝜆𝜖1𝑥 :𝜎1 .𝑒 |] (𝜌) = 𝜆𝑎 ∈ S[|𝜎 |] .S[|𝑒 |] (𝜌 [𝑎/𝑥])

Fig. 10. Semantics of values

Lemma 5.1. For any value Γ ⊢ 𝑣 :𝜎 ! 𝜖 we have: S[|𝑣 |] (𝜌) = 𝜂𝑆𝜖 (V[|𝑣 |] (𝜌)).

As terminal expressions can be stuck we also need a lemma for their semantics:

Lemma 5.2. For terminal Γ ⊢ 𝐾 [op(𝑣)] :𝜎 ! 𝜖 with op :out
ℓ−→ in we have:

S[|𝐾 [op(𝑣)] |] (𝜌) = 𝜆𝛾 . 𝜑𝑅×S[|𝜎 |]
ℓ,op,𝜖 (ℓ) (V[|𝑣 |] (𝜌), 𝜆𝑎 ∈ S[|in|] .S[|𝐾 [𝑥] |] (𝜌 [𝑎/𝑥]) (𝛾))

For soundness, we assume that the semantics of basic functions is sound w.r.t. the operational

semantics, i.e. 𝑓 (𝑣) → 𝑣 ′ =⇒ [|𝑓 |] ([|𝑣 |]) = [|𝑣 ′ |]. We have small-step soundness:

Theorem 5.3 (Small-step Soundness). Suppose 𝑒 :𝜎 ! 𝜖 and g :𝜎 → loss ! 𝜖1 with 𝜖1 ⊆ 𝜖 . Then:

g ⊢𝜖 𝑒
𝑟−→ 𝑒′ =⇒ S[|𝑒 |]L[|g |] = 𝑟 · (S[|𝑒′ |]L[|g |])

and that implies evaluation (big-step) soundness:

Theorem 5.4 (Evaluation soundness). For all 𝑒 :𝜎 ! 𝜖 and g :𝜎 → loss ! 𝜖′ with 𝜖′ ⊆ 𝜖 we have:
(1) If g ⊢𝜖 𝑒

𝑟
=⇒ 𝑣 then S[|𝑒 |]L[|g |] = (𝑟,V[|𝑣 |]).

(2) If g ⊢𝜖 𝑒
𝑟
=⇒ 𝐾 [op(𝑣)] then S[|𝑒 |]L[|g |] = 𝑟 · S[|𝐾 [op(𝑣)] |]L[|g |]

Combining soundness and termination (Theorem 3.5) we obtain adequacy:

Theorem 5.5 (Adeqacy). For all 𝑒 :𝜎 ! 𝜖 and g :𝜎 → loss ! 𝜖′ with 𝜖′ ⊆ 𝜖 we have:
(1) If S[|𝑒 |]L[|g |] = (𝑟, 𝑎) then, for some 𝑣 , g ⊢𝜖 𝑒

𝑟
=⇒ 𝑣 andV[|𝑣 |] = 𝑎.

(2) If S[|𝑒 |]L[|g |] = 𝜑𝑅×S[|𝜎 |]
ℓ,op,𝜖 (ℓ) (𝑎, 𝑓) then, for some 𝐾 [op(𝑣)], g ⊢𝜖 𝑒

𝑟
=⇒ 𝐾 [op(𝑣)], 𝑎 =V[|𝑣 |],

and 𝑓 = 𝜆𝑏 ∈ S[|in|] . 𝑟 · S[|𝐾 [𝑥] |] (𝑥 ↦→ 𝑏)L[|g |].

As usual, if 𝜎 is first-order and the denotation map [|𝑐 |] of constants is 1-1, we have the corollary:
g ⊢𝜖 𝑒

𝑟
=⇒ 𝑣 ⇐⇒ S[|𝑒 |]L[|g |] = (𝑟,V[|𝑣 |])

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

218:22 Gordon Plotkin and Ningning Xie

Fixing 𝜎 and 𝜖 , set 𝐸 = {𝑒 : 𝜎 ! 𝜖}, and let EV, the set of effect values, be the least set such that:

EV =
∑︁

ℓ∈𝜖,op:out
ℓ−→in

𝑉out × EV𝑉in + (𝑅 ×𝑉𝜎)

where, for any 𝜏 , 𝑉𝜏 =def {𝑣 |𝑣 :𝜏}. Following [Plotkin 2009; Plotkin and Power 2001], we evaluate

expressions as far as effect values. Fixing g :𝜎 → loss ! 𝜖′ (with 𝜖′ ⊆ 𝜖) define (using the evident

𝑅-action on EV) a giant step evaluation function Eval : E ⇀ EV (shown total via computability) by:

Eval(𝑒) =

(𝑟, 𝑣) (g ⊢𝜖 𝑒

𝑟
=⇒ 𝑣)

((ℓ, op), (𝑣, 𝜆𝑤 ∈ Vin . 𝑟 · Eval(𝐾 [𝑤])) (g ⊢𝜖 𝑒
𝑟
=⇒ 𝐾 [op(𝑣)], op : out

ℓ−→ in)

Next let ⪯ be the least relation between EV and𝑊𝜖 (S[|𝜎 |]) such that (1) (𝑟, 𝑣) ⪯ (𝑟,V[|𝑣 |]) and
(2)((ℓ, op), (𝑣, 𝑓)) ⪯ ((ℓ, op, 𝜖 (ℓ)), (V[|𝑣 |], 𝑔)) if ∀𝑤 ∈ 𝑉in .𝑓 (𝑤) ⪯ 𝑔(V[|𝑤 |]).

Theorem 5.6 (Giant Step Adeqacy). For all 𝑒 :𝜎 ! 𝜖 we have: Eval(𝑒) ⪯ S[|𝑒 |]L[|g |].

6 Related Work and Conclusion
Our work may be the first advocating a language design based on effect handlers and the selection

monad. It is closest to Abadi and Plotkin [2021, 2023] who used an argmax selection function

to make their choices. As they themselves said, this is unreasonable when there is no access to

optimal strategies. Further, neither handlers nor choice continuations were provided (though they

did suggest trying monadic reflection and reification [Filinski 1994]). Lago et al. [2022] proposed

using effect handlers for reinforcement learning (RL) [Sutton and Barto 2018], but did not support

choice continuations. Basic RL (e.g., multi-armed bandits as in Lago et al. [2022]), does not need

choice continuations as action losses are directly given, and can be transmitted to a user-defined

loss effect (and ordinary state effects can be used to represent learner’s states). More sophisticated

RL algorithms benefit from choice continuations, e.g., deep reinforcement learning [Riedmiller 2005]

where policies are approximated by neural networks, and so need gradient descent.

There are several directions for future work. First, we are interested in improving the performance

of the selection monad. Specifically, the choice continuation shares expressions with the delimited

continuation, (though this need not lead to recomputations). For instance, in the gradient descent

handler ℎ𝑂𝑝𝑡 in §4.3, 𝑙 is differentiated with respect to the current parameter, and 𝑘 is resumed

with the updated parameter. In broader scenarios, we expect that further program transformations

and advanced compiler optimizations (e.g., memoization) will mitigate recomputations. Moreover, a

more efficient approach to jointly make nested choices is described in Hartmann et al. [2024], using

a generalized form of selection monad. We would also like to integrate our design into existing

languages and frameworks. e.g., JAX [Bradbury et al. 2018], a functional programming DSL popular

for large-scale ML tasks (see [Piponi 2022]). Interesting too are frameworks providing choices for

users, such as Carbune et al. [2019]. There are several interesting possibilities for advancing our

framework: adding recursive functions or iteration; adding effect polymorphism as in Leijen [2017];

obtaining subeffecting using effect inclusions 𝜖′ ⊆ 𝜖 to type expressions yielding 𝜖 results from

𝜖′-continuations; and allowing users to locally vary the reward monoid (e.g., to a product with

independent localising constructs, facilitating multi-objective optimization).

Acknowledgments
We thank Martín Abadi, Adam Paszke, Dimitrios Vytiniotis, and Dan Zheng for helpful discussion,

and the reviewers for their helpful comments.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

Handling the Selection Monad 218:23

References
Martín Abadi and Gordon Plotkin. 2021. Smart choices and the selection monad. In Proceedings of the 36th Annual ACM/IEEE

Symposium on Logic in Computer Science (Rome, Italy) (LICS ’21). Association for Computing Machinery, New York, NY,

USA, Article 81, 14 pages. doi:10.1109/LICS52264.2021.9470641

Martín Abadi and Gordon Plotkin. 2023. Smart choices and the selection monad. Logical Methods in Computer Science 19
(2023). doi:10.46298/lmcs-19(2:3)2023

Martín Abadi and Gordon D. Plotkin. 2019. A Simple Differentiable Programming Language. Proc. ACM Program. Lang. 4,
POPL, Article 38 (dec 2019), 28 pages. doi:10.1145/3371106

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley. 2024. Effect Handlers for C via Coroutines. Proc.
ACM Program. Lang. 8, OOPSLA2, Article 358 (Oct. 2024), 28 pages. doi:10.1145/3689798

Andrej Bauer and Matija Pretnar. 2013. An effect system for algebraic effects and handlers. In Algebra and Coalgebra in
Computer Science: 5th International Conference, CALCO 2013, Warsaw, Poland, September 3-6, 2013. Proceedings 5. Springer,
1–16. doi:10.1007/978-3-642-40206-7_1

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of logical and algebraic
methods in programming 84, 1 (2015), 108–123. doi:10.1016/j.jlamp.2014.02.001

Nick Benton, John Hughes, and Eugenio Moggi. 2000. Monads and effects. In International Summer School on Applied
Semantics. Springer, 42–122. doi:10.1007/3-540-45699-6_2

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula,

Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

Victor Carbune, Thierry Coppey, Alexander Daryin, Thomas Deselaers, Nikhil Sarda, and Jay Yagnik. 2019. SmartChoices:

Hybridizing Programming and Machine Learning. doi:10.48550/ARXIV.1810.00619

R. Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. 2007. A monadic framework for delimited continuations. Journal of
Functional Programming 17, 6 (2007), 687–730. doi:10.1017/S0956796807006259

Martin Escardó and Paulo Oliva. 2010a. Selection functions, bar recursion and backward induction. Mathematical Structures
in Computer Science 20, 2 (2010), 127–168. doi:10.1017/S0960129509990351

Martin Escardó and Paulo Oliva. 2011. Sequential games and optimal strategies. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 467, 2130 (2011), 1519–1545. doi:10.1098/rspa.2010.0471

Martin Escardó and Paulo Oliva. 2015. The Herbrand Functional Interpretation of the Double Negation Shift.

arXiv:1410.4353 [cs.LO] https://arxiv.org/abs/1410.4353

Martín Hötzel Escardó and Paulo Oliva. 2010b. Computational Interpretations of Analysis via Products of Selection

Functions.. In CiE. Springer, 141–150. doi:10.1007/978-3-642-13962-8_16
Martín Hötzel Escardó and Paulo Oliva. 2010c. The Peirce Translation and the Double Negation Shift. In Programs,

Proofs, Processes, Fernando Ferreira, Benedikt Löwe, Elvira Mayordomo, and Luís Mendes Gomes (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 151–161. doi:10.1007/978-3-642-13962-8_17

Martín Hötzel Escardó and Paulo Oliva. 2010d. What Sequential Games, the Tychonoff Theorem and the Double-Negation

Shift Have in Common. In Proceedings of the Third ACM SIGPLAN Workshop on Mathematically Structured Functional
Programming (Baltimore, Maryland, USA) (MSFP ’10). Association for Computing Machinery, New York, NY, USA, 21–32.

doi:10.1145/1863597.1863605

Matthias Felleisen and Robert Hieb. 1992. The revised report on the syntactic theories of sequential control and state.

Theoretical computer science 103, 2 (1992), 235–271. doi:10.1016/0304-3975(92)90014-7
Matthias Feurer and Frank Hutter. 2019. Hyperparameter optimization. Automated machine learning: Methods, systems,

challenges (2019), 3–33. doi:10.1007/978-3-030-05318-5_1
Andrzej Filinski. 1994. Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Portland, Oregon, USA) (POPL ’94). Association for Computing Machinery, New York, NY,

USA, 446–457. doi:10.1145/174675.178047

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2017. On the expressive power of user-defined effects:

effect handlers, monadic reflection, delimited control. Proc. ACM Program. Lang. 1, ICFP, Article 13 (Aug. 2017), 29 pages.
doi:10.1145/3110257

Dan Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-level effect handlers in C++. Proc. ACM
Program. Lang. 6, OOPSLA2, Article 183 (Oct. 2022), 29 pages. doi:10.1145/3563445

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems, Z. Ghahramani,

M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.), Vol. 27. Curran Associates, Inc. https://proceedings.

neurips.cc/paper_files/paper/2014/file/f033ed80deb0234979a61f95710dbe25-Paper.pdf

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press, Cambridge, MA, USA. http:

//www.deeplearningbook.org.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

https://doi.org/10.1109/LICS52264.2021.9470641
https://doi.org/10.46298/lmcs-19(2:3)2023
https://doi.org/10.1145/3371106
https://doi.org/10.1145/3689798
https://doi.org/10.1007/978-3-642-40206-7_1
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1007/3-540-45699-6_2
http://github.com/google/jax
https://doi.org/10.48550/ARXIV.1810.00619
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0960129509990351
https://doi.org/10.1098/rspa.2010.0471
https://arxiv.org/abs/1410.4353
https://arxiv.org/abs/1410.4353
https://doi.org/10.1007/978-3-642-13962-8_16
https://doi.org/10.1007/978-3-642-13962-8_17
https://doi.org/10.1145/1863597.1863605
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3563445
https://proceedings.neurips.cc/paper_files/paper/2014/file/f033ed80deb0234979a61f95710dbe25-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/f033ed80deb0234979a61f95710dbe25-Paper.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

218:24 Gordon Plotkin and Ningning Xie

Johannes Hartmann and Jeremy Gibbons. 2022. Algorithm design with the selection monad. In International Symposium on
Trends in Functional Programming. Springer, 126–143. doi:10.1007/978-3-031-21314-4_7

Johannes Hartmann, Tom Schrijvers, and Jeremy Gibbons. 2024. Towards a more efficient Selection Monad. Trends in
Functional Programming, Proceedings (2024). doi:10.1007/978-3-031-74558-4_3

Jules Hedges. 2015. The selection monad as a CPS transformation. arXiv:1503.06061 [cs.PL] https://arxiv.org/abs/1503.06061

Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. In Proceedings of the 1st International
Workshop on Type-Driven Development (Nara, Japan) (TyDe 2016). Association for Computing Machinery, New York, NY,

USA, 15–27. doi:10.1145/2976022.2976033

Martin Hyland, Gordon Plotkin, and John Power. 2006. Combining effects: Sum and tensor. Theoretical Computer Science
357, 1 (2006), 70–99. doi:10.1016/j.tcs.2006.03.013 Clifford Lectures and the Mathematical Foundations of Programming

Semantics.

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Action. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming (Boston, Massachusetts, USA) (ICFP ’13). Association for Computing

Machinery, New York, NY, USA, 145–158. doi:10.1145/2500365.2500590

Wiktor Kuchta. 2022. Normalisation for Algebraic Effect Handlers. Master’s thesis. University of Wroclaw. Available at

https://github.com/wikku/normalization-effect-handlers/blob/main/fscd-term.pdf.

Ugo Dal Lago, Francesco Gavazzo, and Alexis Ghyselen. 2022. On Reinforcement Learning, Effect Handlers, and the State

Monad. arXiv:2203.15426 [cs.PL] https://arxiv.org/abs/2203.15426

Adrien Marie Legendre. 1806. Nouvelles méthodes pour la détermination des orbites des comètes: avec un supplément contenant
divers perfectionnemens de ces méthodes et leur application aux deux comètes de 1805. Courcier.

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In Proceedings 5th Workshop on Mathematically
Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014 (EPTCS, Vol. 153), Paul Blain Levy

and Neel Krishnaswami (Eds.). 100–126. doi:10.4204/EPTCS.153.8

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing Machinery,

New York, NY, USA, 486–499. doi:10.1145/3009837.3009872

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar,

and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2, Article
238 (Oct. 2023), 26 pages. doi:10.1145/3622814

Dan Piponi. 2022. https://colab.sandbox.google.com/drive/1HGs59anVC2AOsmt7C4v8yD6v8gZSJGm6

Gordon Plotkin. 2009. Adequacy for infinitary algebraic effects. In Algebra and Coalgebra in Computer Science, Alexander
Kurz, Marina Lenisa, and Andrzej Tarlecki (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–2. doi:10.1007/978-3-

642-03741-2_1

Gordon Plotkin and John Power. 2001. Adequacy for algebraic effects. In International Conference on Foundations of Software
Science and Computation Structures. Springer, 1–24. doi:10.1007/3-540-45315-6_1

Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic effects. In Programming Languages and Systems: 18th
European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings 18. Springer, 80–94. doi:10.1007/978-3-642-00590-9_7

Gordon Plotkin and Ningning Xie. 2025. Handling the Selection Monad (Full Version). arXiv:2504.03890 [cs.PL] https:

//arxiv.org/abs/2504.03890

Matija Pretnar. 2015. An introduction to algebraic effects and handlers. invited tutorial paper. Electronic notes in theoretical
computer science 319 (2015), 19–35. doi:10.1016/j.entcs.2015.12.003

Matija Pretnar and Gordon D Plotkin. 2013. Handling algebraic effects. Logical methods in computer science 9 (2013).

doi:10.2168/LMCS-9(4:23)2013

Martin Riedmiller. 2005. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning

method. In Machine Learning: ECML 2005: 16th European Conference on Machine Learning, Porto, Portugal, October 3-7,
2005. Proceedings 16. Springer, 317–328. doi:10.1007/11564096_32

Sebastian Ruder. 2017. An overview of gradient descent optimization algorithms. arXiv:1609.04747 [cs.LG] https://arxiv.

org/abs/1609.04747

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting Effect

Handlers onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,

206–221. doi:10.1145/3453483.3454039

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.

William W Tait. 1967. Intensional interpretations of functionals of finite type I. The journal of symbolic logic 32, 2 (1967),
198–212. doi:10.2307/2271658

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

https://doi.org/10.1007/978-3-031-21314-4_7
https://doi.org/10.1007/978-3-031-74558-4_3
https://arxiv.org/abs/1503.06061
https://arxiv.org/abs/1503.06061
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1145/2500365.2500590
https://github.com/wikku/normalization-effect-handlers/blob/main/fscd-term.pdf
https://arxiv.org/abs/2203.15426
https://arxiv.org/abs/2203.15426
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3622814
https://colab.sandbox.google.com/drive/1HGs59anVC2AOsmt7C4v8yD6v8gZSJGm6
https://doi.org/10.1007/978-3-642-03741-2_1
https://doi.org/10.1007/978-3-642-03741-2_1
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/978-3-642-00590-9_7
https://arxiv.org/abs/2504.03890
https://arxiv.org/abs/2504.03890
https://arxiv.org/abs/2504.03890
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1007/11564096_32
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.2307/2271658

Handling the Selection Monad 218:25

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2019.

Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL, Article 51
(Dec. 2019), 32 pages. doi:10.1145/3371119

Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for Effect Handlers: Efficient Compilation of Effect

Handlers to C. Proc. ACM Program. Lang. 5, ICFP, Article 71 (aug 2021), 30 pages. doi:10.1145/3473576

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 218. Publication date: June 2025.

https://doi.org/10.1145/3371119
https://doi.org/10.1145/3473576

	Abstract
	1 Introduction
	2 Overview
	2.1 The Selection Monad
	2.2 Algebraic Effect Handlers
	2.3 This Work: Handling the Selection Monad

	3 A Model Calculus
	3.1 Syntax
	3.2 Typing Rules
	3.3 Operational Semantics
	3.4 Termination

	4 Programming with the Selection Monad
	4.1 Effect Handler Interface
	4.2 The Selection Monad
	4.3 Examples

	5 Denotational semantics
	5.1 Semantics of Types
	5.2 Monads
	5.3 Semantics of Expressions and Handlers
	5.4 Soundness and Adequacy of Operational Semantics

	6 Related Work and Conclusion
	Acknowledgments
	References

