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Algebraic effects and handlers are a promising technique for incorporating composable computational effects

into functional programming languages. Effect handlers enable concisely programming with different effects,

but they do not offer a convenient way to program with different instances of the same effect. As a solution to

this inconvenience, previous studies have introduced named effect handlers, which allow the programmer to

distinguish among different effect instances. However, existing formalizations of named handlers are both

involved and restrictive, as they employ non-standard mechanisms to prevent the escaping of handler names.

In this paper, we propose a simple and flexible design of named handlers. Specifically, we treat handler

names as first-class values, and prevent their escaping while staying within the ordinary 𝜆-calculus. Such a

design is enabled by combining named handlers with scoped effects, a novel variation of effects that maintain

a scope via rank-2 polymorphism. We formalize two combinations of named handlers and scoped effects,

and implement them in the Koka programming language. We also present practical applications of named

handlers, including a neural network and a unification algorithm.
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1 INTRODUCTION

łWhat’s in a name? That which we call a rose by any other name would smell as sweet.ž
ś William Shakespeare

The question of how to represent computational effects has been studied for decades in the
programming languages community. Algebraic effects and handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] are one of the solutions to this problem. Since their introduction, effect handlers
have been applied to diverse domains, such as Web programming [Hillerström and Lindley 2016],
reactive programming [Bračevac et al. 2018], and probabilistic programming [Bingham et al. 2019].

A key advantage of effect handlers is that they can be freely composed. For example, if we have a
program that uses both mutable state and exceptions, we can simply run it under two handlers: one
for state and the other for exceptions. When an effectful operation is performed, it is automatically
handled by the innermost handler for that effect.
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On the other hand, plain effect handlers do not provide a convenient way to program with
different instances of the same effect. For example, if we wish to use multiple states or multiple files,
we typically need to insert code for skipping intervening handlers [Biernacki et al. 2017; Convent
et al. 2020; Leijen 2014; Wu et al. 2014]. This is cumbersome and fragile.
As a generalization of effect handlers, Biernacki et al. [2019] and Zhang and Myers [2019]

formalize a named variant of handlers. With named handlers, the programmer can distinguish
among different effect instances by passing a handler name as an argument to an operation. However,
named handlers increase the complexity of the calculus, because, without special care, handler
names can easily escape the scope of their handler during evaluation. Previous studies address
this challenge by introducing names as second-class values with special syntactic constructs, in
combination with a richer type system (e.g., a form of region typing) to prevent name escaping.
This restricts the expressiveness of the calculus, and makes it hard to incorporate named handlers
into existing frameworks.

In this paper, we study a new design of named handlers, where handler names are first-class values,
and where well-scopedness of handler names is guaranteed through higher-rank polymorphism.
We realize this by combining named handlers with scoped effects, a novel variation of effects for
safe management of resources. To explore the design space of named handlers, we present two
combinations of named handlers and scoped effects, and discuss their trade-offs. We believe that
our work will provide new insights into the design of named handlers, and more generally, increase
the expressive power of effect handlers. Our specific contributions are summarized as follows:

• We demonstrate the practicality of named handlers through various examples (Section 2). In
particular, we use a file handling program to show how named handlers allow us to interact
with resources (Section 2.3.1).

• We present a novel technique of combining a regular handler (called umbrella handler) and
named handlers, which enables dynamic creation of named handlers using finite types. We
illustrate this by implementing a first-class heap with dynamic mutable references as named
handlers (Section 2.3.2).

• We establish the notion of scoped effects as a solution to the name escaping problem (Sec-
tion 3.2.2). We maintain scopes using rank-2 polymorphism [Jones 1996; McCracken 1984],
a well-understood technique found in work on monadic encapsulation [Peyton Jones and
Launchbury 1995; Timany et al. 2017]. As an application of scoped effects, we show an
implementation of safe resource interface.

• We formalize two combinations of named handlers and scoped effects (Sections 4 and 5),
where handler names are first class. Both combinations are a higher-order polymorphically
typed lambda calculus in the style of System F𝜔 , extended with row-polymorphic algebraic
effects [Hillerström and Lindley 2016; Leijen 2014]. Their difference is in the expressiveness
and complexity; in particular, one of the combinations has simple typing rules but cannot
express umbrella handler, whereas the other combination can fully express our heap example
but has more complex typing rules.

• We implemented named handlers and scoped effects in Koka [Koka 2019], a programming
language with native support for algebraic effects and handlers (Section 6). We show how our
formalization of named handlers allows straightforward integration into the Koka compiler.
We further present two larger applications of first-class named handlers: a neural network
and a unification algorithm (Section 7). The implementation and samples are available as an
artifact [Xie et al. 2022].

In the appendix of the supplementary technical report [Xie et al. 2021], we provide the full typing
rules and soundness proofs of the two systems discussed in Sections 4 and 5. We also present the
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specification of two systems that are not detailed in the paper, one featuring only named handlers,
and the other featuring only scoped effects.

2 PROGRAMMING WITH NAMED HANDLERS

In this section, we demonstrate how named handlers are useful in practice, using various examples
enabled by our design of named handlers in Koka. We begin with a brief introduction to algebraic
effects and handlers (Section 2.1), and motivate the need for named handlers (Section 2.2). We
then present two applications of named handlers: file handling (Section 2.3.1) and first-class heap
(Section 2.3.2). We show that the two applications can both be implemented in a fully functional
way, thanks to the expressiveness of effect handlers (Section 2.4).

2.1 Effect Handlers in Koka

Algebraic effects [Plotkin and Power 2003] and handlers [Plotkin and Pretnar 2013] are an abstrac-
tion of user-defined effects. Intuitively, the abstraction can be understood as a generalization of
exceptions and their handlers. That is, the programmer can declare their own effect, and specify its
behavior using a handler.
Let us illustrate the idea of algebraic effects by implementing a read-only state in the Koka

language. The first step is to write the signature of the read effect:

effect read
ask() : int

The keyword effect defines a new effect signature, consisting of an effect label read and a control
operation ask. The type of ask tells us that, when given a unit argument, it returns an integer and
produces a read effect.
We next specify the behavior of the read effect by implementing a handler for this effect1:

fun read(x, action)
(handler

ask(){ resume(x) }
)(action)

The handler expression takes a set of operation definitions, and returns a function that takes as
its argument a thunked computation action to be handled. In our example, the handler defines
the interpretation of ask() as resuming with x. Here, the resume keyword represents the delimited
continuation from the ask operation up to the handler; passing x to resume thus means that every
call to ask() in the handled computation action returns x as its result. Hence, we can view the
operation ask as a statically typed, but dynamically bound function.
We can now write a program that uses the ask operation:

fun main()
read(1, fn(){ ask().println }) // prints 1

Using algebraic effects and handlers, one can implement a wide range of computational effects,
such as exceptions, nondeterminism, async/await style interleaved computations, backtracking,
etc [Leijen 2017; Pretnar 2015] . In fact, it has been shown that algebraic effects and handlers are
equally expressive as monads in an untyped setting [Forster et al. 2019].

The Dot Syntax. In the above program, we have an expression ask().println that uses the dot
syntax. The expression is equivalent to println(ask()), i.e., it passes the expression ask() as the
first argument to println. Koka provides the dot syntax as a convenient way of writing function
applications. Formally, the syntax is defined as follows:

1In both Koka and our formalization, types and values are in separate name spaces. Therefore, in our example, we can

define a function read that handles the read effect type. For clarity, we use a teal color for all types in this paper.
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e.f(e1,...,en) ⇝ f(e,e1,...,en)

The dots associate to the left, making it easy to compose multiple functions. For instance, we can
write [1,2,3].map(inc).sum.println instead of println(sum(map([1,2,3],inc))).

With-statements. Recall that handlers take a thunked computation. If we want to handle a
computation that is not already a function (e.g., ask.println), we must wrap it around a lambda
abstraction (e.g., fn(){ ask().println }). Koka provides the with statements as syntactic sugar
to avoid writing such abstractions explicitly. There are two variants of the with statements, both
of which allow the programmer to apply a function over the rest of the scope without manually
needing to wrap it with a lambda abstraction:

with f(e1, ..., en) body ⇝ f(e1, ..., en, fn(){ body })
with x <- f(e1, ..., en) body ⇝ f(e1, ..., en, fn(x){ body })

Using with, we can write the previous main function as:

fun main()
with read(1)
ask().println // prints 1

The with syntax can also be applied to handler expressions. For example, we can rewrite the
definition of the read function as follows.

fun read(x, action)
with handler
ask(){ resume(x) }

action()

We will use the with syntax throughout the rest of the paper.

2.2 Named Handlers

The read effect discussed above allows us to maintain a single, read-only state. The ability is
however not sufficient when we wish to use multiple instances of such state. Consider the following
program:

fun main()
with read(2)
with read(1)
(ask() + ask()).println // prints 2

The program creates two read handlers and makes two calls to the ask operation. Since operations
are always handled by the inner-most enclosing handler, both occurrences of ask() are interpreted
as 1, and hence the program prints 2.
But what if we would like the first ask to be handled by the inner handler, and the second

ask by the outer handler? One possible solution is to use the masking technique [Biernacki et
al. 2017; Convent et al. 2020; Leijen 2014; Wu et al. 2014]. Intuitively, masking allows one to skip
the innermost handler surrounding an operation. For instance, the following program interprets
the first ask() operation using the outer reader handler, and thus evaluates to 3:

fun main()
with read(2)
with read(1)
(mask⟨read⟩{ ask() } + ask()).println // prints 3

The main purpose of mask is however to encapsulate effects, and hence it is not an ideal tool for
selecting specific handlers. In general, if we use mask to choose among nested handlers, we must
know the exact number and order of handlers surrounding an expression.
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named effect file
read-line() : string

fun file(fname, action)
var ls := read-text-file(fname).lines
with f <- named handler
read-line()

match ls
Nil → resume("")
Cons(x,xx) → { ls := xx; resume(x) }

action(f)

fun catlines( t )
t.fst.read-line() ++ ","
++ t.snd.read-line()

fun main()
with f1 <- file("foo.txt".path)
with f2 <- file("bar.txt".path)
catlines( (f1,f2) ).println

Fig. 1. File Handling

A better solution to the above problem is to use named handlers. Named handlers have a unique
name, which allows the programmer to specify the intended association between an operation and
a handler. In Koka, we can implement the read effect using named handlers as:

named effect read
ask() : int

fun read(x, action)
with h <- named handler

ask(){ resume(x) }
action(h)

fun main()
with h2 <- read(2)
with h1 <- read(1)
(h2.ask() + h1.ask()).println
// prints 3

In the definition of the read function, the action is a function taking in a handler name, rather
than a mere thunk. In the main program, the inner and outer handlers are given names h1 and
h2, respectively, and the two calls to the ask operation use these names to specify the intended
interpretation. This allows the first ask to skip the inner handler h1 and be handled by the outer
handler h2. Thus, the program prints 3 as desired.
Of particular interest here is that the handler names h1 and h2 are first-class values, introduced

simply by lambda abstractions. Indeed, if we expand the syntactic sugar of with, we get:

fun main()
read(2, fn(h2){ read(1), fn(h1) {(h2.ask() + h1.ask()).println} }) // prints 3

The first-class status of handler names and their introduction by lambda abstractions are different
from existing named handler calculi (see Section 8). Furthermore, as we show in the next section,
these allow us to build interesting programs using named handlers.

2.3 Examples of Named Handlers

Having seen a simple example of named handlers, we look at two programs that use named handlers
in a more interesting way enabled by our design. The two examples presented in this section both
rely on the first-class status of handler names (and thus cannot be written in existing named handler
calculi [Biernacki et al. 2019; Zhang and Myers 2019]). Moreover, the second example also uses
dynamic instantiation of handlers.

2.3.1 File Handling. In this section, we model file handling as an effect, and use named handlers to
handle multiple opened files independently at the same time.
Figure 1 presents a program that prints the first lines of two files. We first declare file as a

named effect, using the keywords named effect, with a single operation read-line. We next define
the file function that creates a handler for the given file. Here, we use Koka’s library functions
(read-text-file and lines) and local mutable state (var) to open the file and store its content as a list
of lines. When the content is non-empty, we use the first line as the interpretation of the read-line
operation. Then, in the main program, we call the file function to create two file handlers: f1 for
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effect heap
newref(init : int) : ref

named effect ref
get() : int
set(value : int) : ()

fun ref(init, action)
var s := init
with r <- named handler

get() { resume(s) }
set(x){ s := x; resume(()) }

action(r)

fun heap(action)
with handler

newref(init){ ref(init, resume) }
action()

fun maketwo(x,y)
(newref(x), newref(y))

fun main()
with heap
val (r1, r2) <- maketwo(20,22)
println( r1.get() + r2.get() ) // 42

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2. First-class Heap

foo.txt, and f2 for bar.txt. Since handler names are first-class values, we can package them in a
tuple after creating handlers, and pass it to catlines, which uses the standard fst and snd functions
to select out the handler names, reads a line from the two files, and returns the concatenated result.
Note that, without named handlers, the two calls of read-line would both evaluate to the first

line of "bar.txt", just like what would happen when calling ask twice under two unnamed handlers.
With named handlers, we can deal with each file independently, and easily read the content of a
particular file in the presence of multiple opened files.
Note also that, if handler names were not first class, they could not be put into a tuple and

selected out using standard functions. When being first class, handler names can be freely passed
around, which is crucial for realistic applications (see Section 7).

2.3.2 A First-Class Heap. As a more advance application of named handlers, we demonstrate an
implementation of first-class heap with dynamic references. The implementation shows that, in a
language with named handlers, we do not need built-in state; we can express it by simply using
named handlers.
In the read and file examples, we were able to distinguish between different states and files

using handler names. However, in both examples, we had to instantiate handlers upfront over the
scope that uses them. This is an unfortunate limitation if we wish to implement ML-style references,
which can be created and returned dynamically in leaf functions and be used in a parent scope. Is it
possible to model a first-class heap using algebraic effects?
It turns out that we can use a combination of a plain effect handler (for the heap) and named

handlers (for the references) to model such dynamic resources. On the left of Figure 2, we show
an implementation of such first-class heap with dynamic references. We begin by declaring two
effects. The named effect ref represents a reference cell, consisting of the get and set operations
for accessing and updating the reference value. For simplicity, we present only integer references,
but in Koka, reference cells can be polymorphic (that is, a heap can have references of different
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types). The unnamed heap effect has an operation newref for creating a new reference cell. The
function ref creates a new reference handler initialized to init, and the function heap creates a
new heap handler, which interprets newref as handling the rest of the computation resume using
the ref function.

In the main function, we first install the heap handler, and then allocate a tuple of references using
maketwo. When called, the function adds the current values of the references and prints the result.
An important observation in this example is that the references r1 and r2 are returned dynamically ś

without being created directly under a handler! To see what it means, consider how we would write
this example by using solely named handlers:

fun main()
with heap
with r1 <- ref(20)
with r2 <- ref(22)
println( r1.get() + r2.get() ) // 42

In this implementation, we statically instantiate two reference cells upfront. But in Figure 2, we
dynamically create and return two handlers. Such dynamic creation can further depend on the
values that are only available at runtime. For example, we can define a maken function that creates
n reference cells, with n provided only at runtime.
The trick used here is that we treat newref as a regular operation in the heap handler. When

newref is called, it installs a fresh reference handler just above the heap handler, and resumes back
with the result. More specifically, newref calls the ref function to insert a fresh reference handler,
and passes its own resumption resume as the action argument. The ref function uses a named
handler to implement the get and set operations with name r, and passes that name to its action
argument, effectively resuming to the original call site with a fresh reference name.
To show how this trick works, we present the evaluation steps of our program on the right of

Figure 2. Here, each evaluation frame is represented as a box, with handlers highlighted in grey. The
evaluation frames grow top-down, with the expression currently being evaluated on the bottom.
Let us focus on the key part of the program, as given in 2a. First, the maketwo function expands

to a tuple of two newrefs, and the program turns into 2b. The current control is newref(20), and its
result will be plugged into the hole □ in the evaluation frame above it.
Next, the expression newref(20) is handled by the heap handler, and the program turns into 2c.

The ref function creates a new reference cell, and applies its action argument resume (which points
to the current continuation) to a fresh name r1, as given in 2d.

Now, the continuation resume is called with r1, and the program turns into 2e. By comparing 2e
and 2b, we can see that the result of evaluating newref(20) is a new handler that is dynamically

installed above the heap handler, with a new name r1 referring to it.
With the first element of the tuple evaluated to a value, we proceed to the second element of the

tuple, as given in 2f. By repeating the process from 2b to 2e, we dynamically create another reference
above the heap handler (and above the reference handler created before), with a fresh name r2

referring to the reference, as shown in 2g. What is left is to evaluate println(r1.get() + r2.get()),
which can be done in a straightforward manner.

Observe that, in 2g, we have two reference cells available in the evaluation context, as well as
the original heap handler that can be used to create more reference cells. This is quite a feat: while
the semantics for (named) effect handlers has no concept of a heap or mutation, it can still express
a dynamic heap with polymorphic references! Moreover, as ref handlers can be installed at the
outer scope of the umbrella heap handler, the references can be created and used freely under that
encompassing scope and returned from functions.
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Let us close this section by comparing the file and heap examples. In the former, the handlers for
the two files are created statically at the top level. In the latter, the handlers for the reference cells
are created dynamically during evaluation right above the top-level heap handler. With the ability
to dynamically create handlers, the programmer does not need to know how many handlers are
required at implementation time. As such, dynamic handlers can be useful not only for implementing
references, but also for other resources such as tasks and network connections.

2.4 Locally Isolated Handler State

In both file and heap examples, we used local mutable state in the form of the var declarations.
Hence, the implementation may not seem fully functional to the reader. However, as we show in
this section, we can express local mutable state in terms of plain effect handlers. This means, all
examples we have shown so far are fully expressible with just (named) effect handlers!
There are many occasions where a handler needs a form of local state. In the algebraic effects

literature, there is an elegant solution known as parameterized handlers [Bauer and Pretnar 2015;
Leijen 2017; Pretnar 2010], which enable passing around a local parameter (i.e. state) when handling
an operation or resuming a continuation. However, the threading of such handler parameters
requires new evaluation rules for performing and handling, and increases the complexity of the
semantics.

Locally isolated handler state is a new technique that requires no extensions to the core calculus.
The idea is to use standard masking (Section 2.2) combined with a regular monadic state handler.
The definition of monadic local state using an effect handler is standard [Kammar and Pretnar 2017;
Plotkin and Pretnar 2009], and can be implemented as2:

effect state
peek() : int // read the state
poke( x : int ) : () // write the state

fun mstate(action)
with handler

return(x){ fn(s){ x } }
peek() { fn(s){ resume(s)(s) } }
poke(x) { fn(s){ resume(())(x) } }

action()

fun state(init : a, action : () → ⟨state|e⟩ b) : e b
val f = mstate(action)
f(init)

We can now use the state handler to implement programs involving local variables of the form
var s := init. Specifically, we replace all assignments and dereferences of s with poke and peek

respectively. For example, we can rewrite the ref handler as:

fun ref(init, action)
with state(init)
with r <- named handler
get() { resume(peek()) }
set(x){ poke(x); resume(()) }

action(r)

This is almost right, except that it allows action to access our local state as well! Here is where
mask comes into play: it can be used to hide the state effect in the action such that the state is truly
local to the handler and not observable from anywhere else:

2For simplicity, the example shows the encoding of the integer state, though in Koka, effects can be polymorphic and we

can define monadic polymorphic local state.
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fun ref(init, action)
with state(init)
with r <- named handler
get() { resume(peek()) }
set(x){ poke(x); resume(()) }

mask⟨state⟩{ action(r) }

This interpretation of var removes the need for parameterized handlers in the semantics and
runtime system. In Koka, we further reduce the overhead caused by the monadic encoding by
implementing the standard state handler using direct mutable state in the backend [Xie and
Leijen 2020].

3 FORMALIZING NAMED HANDLERS

Having seen the practical applications of named handlers, let us turn our attention to the formal-
ization of named handlers. As shown by previous work [Biernacki et al. 2019; Leijen 2018; Zhang
and Myers 2019], named handlers pose a challenge to type soundness: a naive type system may
accept a program that gets stuck at runtime. In the following subsections, we illustrate the known
challenge (Section 3.1) and provide an overview of our approach (Section 3.2).

3.1 Named Handlers and Scopes

The main challenge with named handlers is that names may escape their scope in the course of
evaluation. Let us consider the following program and its evaluation steps:

fun main()
with h2 <- read(2)
fun f()
with h1 <- read(1)
fun g(){ h1.ask() }
g

println( (f())() )

−→ with h2 <- read(2)
println((fun g(){h1. ask})())

−→ with h2 <- read(2)
println( h1. ask )

We see that the action being handled by the handler h1 returns a function that performs the ask

operation on h1. Since the function g is a value, it is returned as the result of the handler h1. The
returned function is then applied, causing the ask operation to be performed. However, at this
point, the h1 handler is no longer surrounding the ask operation. As a consequence, the program
fails to evaluate to a value. Thus, to build a type-sound calculus with named handlers, we must
find a way to statically detect the escaping of names.

3.2 Our Solution

We propose a simple and flexible solution to the name escaping problem. Specifically, we keep
handler names as first-class values and stay within the standard 𝜆-calculus with higher-rank types.
Then, we prevent name escaping through scoped effects: a novel concept that is orthogonal to
named handlers. As the name suggests, scoped effects have a scope associated with them, which
is maintained using rank-2 polymorphism. When combined with named handlers, the rank-2
type prevents names from escaping. In what follows, we briefly review the power of rank-2
polymorphism (Section 3.2.1), introduce the notion of scoped effects (Section 3.2.2), and present
two ways of combining named handlers and scoped effects (Sections 3.2.3 and 3.2.4).

3.2.1 AQuick Review of runST. The escaping of handler names shares similarities with the escaping
of mutable references from a state thread in Haskell. Let us consider the Haskell program below,
which is borrowed from Peyton Jones and Launchbury [1995]:

let v = runST (newVar True) in runST (readVar v)
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abstract type ix⟨s⟩
Ix(i : int)

scoped effect vec⟨s⟩
push(x : string) : ix⟨s⟩
find(i : ix⟨s⟩) : string

fun vector(action : forall⟨s⟩ () → ⟨vec⟨s⟩|e⟩ a) : e a
var vec := []
with handler

push(x)
vec := vec ++ [x]
resume(Ix(vec.length - 1))

find(Ix(i))
resume(vec[i])

action()

Fig. 3. Vectors as Scoped Effects

Here, newVar is a function that allocates a new reference with an initial value, and runST is a function
that runs a state thread. When programming with state, we must make sure that a reference from
one thread is never used in a different thread. This is necessary for making the result of a program
independent of the order of evaluation. The above program, however, involves an invalid use of
the reference v: it is created in the first thread and accessed in the second thread. In other words,
the reference v escapes from the first thread. This means the program may evaluate to different
values under different evaluation strategies.

To statically reject inappropriate use of references, Peyton Jones and Launchbury [1995] assign
the following type to runST:

runST :: forall a. (forall s. ST s a) → a

Observe that the type uses rank-2 polymorphism: it has a universal quantifier in the domain of
an arrow type. The quantified type variable s can be understood as the name of a state thread3.
Making s parametric means that the argument of runST cannot make any assumption about the
initial state. The order of the two quantifiers further means that the argument cannot return the
reference or any computation that depends on the final state.
With this rank-2 type, we can statically reject the problematic example above. The reason is

as follows. Assuming we have v : MutVar s Bool in the typing environment, we can derive
readVar v : ST s Bool. In order to pass it to runST, we must universally quantify the type variable
s. However, we cannot do this because s occurs free in the typing environment. Thus, the rank-2
type of runST combined with the ST s monad makes it impossible for a reference to escape from a
state thread.

3.2.2 From runST to Scoped Effects. The trick behind runST is useful not just for monadic encapsu-
lation; it also allows us to implement a safe resource interface as an (unnamed) effect handler. In
Figure 3, we present an instance of such interface, which is inspired by an example from Derek
Dreyer’s Milner Award lecture [Dreyer 2018]. Here, the vec effect associates an abstract index ix

with a list of strings, which is maintained by the vector function using a local state vec. The state
is initially set to an empty list, and can be extended by the push operation or looked up by the find

operation.
To safely program with the vec effect, we need to guarantee that a lookup of a state is always

performed with the index of that particular state. For instance, the program below would cause an
out-of-bound error, because the index i passed to find is obtained from the first handler, whose
state was non-empty, while the lookup is handled by the second handler, whose state is still empty.

val i = vector( fn(){ push("hello") } )
vector( fn(){ find(i) } )

3The scope variable s is a phantom type [Hinze 2003; Leijen and Meijer 1999], in that it is not inhabited by any value.
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named scoped effect read⟨s⟩
ask() : int

fun read(x : int,
action : forall⟨s⟩ read⟨s⟩ → ⟨read⟨s⟩|e⟩ a
) : e a

with h <- named handler
ask(){ resume(x) }

action(h)

fun main()
with h2 <- read(2)
fun f()

with h1 <- read(1)
fun g(){ h1.ask() }
g

println( (f())() )
// rejected

Fig. 4. Scoped read Effect

We enforce safe lookups by defining vec as a scoped effect, as given in Figure 3. A scoped effect is an
effect whose label carries a scope variable. In our example, the effect label vec has a type variable
s, representing the scope of a particular handler instance (and corresponding to the s parameter
in the type of runST). The handler of a scoped effect is assigned a rank-2 type. In our case, the
function vector takes in an action whose type is polymorphic over the scope s, meaning that the
action must work regardless of the initial state of the handler4. Lastly, observe that the type ix⟨s⟩

of indices is attached a scope variable s. This tells us that every index is associated with a specific
handler scope.

Now, since the type ix is abstract (e.g., the constructor Ix is private), we can be sure that vector
lookups never fail at runtime ś the index is always within the bounds of the local list. The reason
is that each index of type ix⟨s⟩ is uniquely associated with a handler that handles the vec⟨s⟩ effect.
This prevents us from passing to find an index obtained by pushing to some other state.

Back to the problematic example above, we can see that it is statically rejected for the same
reason as the runST example from Section 3.2.1. In particular, the index type of i includes the scope
variable of the first action, which can no longer be universally quantified now as its scope variable
occurs free in the typing environment.
Note that it is important that the effect itself (vec⟨s⟩) includes the scoped type variable. This

ensures that we cannot hide the use of an index inside a lambda. For example,

val f = vector( fn(){ val i = push("hi"); (fn(){ find(i) }) } )
f()

is statically rejected, because the returned function has type () → vec⟨s⟩ string, meaning that s
has escaped through the effect type. In Haskell, the escaping is prevented by the use of the ST s

monad instead.

3.2.3 Named Handlers with Scoped Effects. Having introduced scoped effects, we return to our
initial question: how to statically guarantee well-scopedness of handler names. Our answer is to
combine named handlers and scoped effects. In this section, we sketch one combination of these
concepts, which allows us to safely implement the read (Section 2.2) and file effects (Section 2.3.1).

In Figure 4, we present a new implementation of the read effect. We first declare read as a named

and scoped effect, and thus read has a rank-2 type, where the action type is polymorphic over the
scope. Note that the first input type read⟨s⟩ of action represents a handler name.
With these modifications, it is no longer possible for a handler name to escape its scope. In

our specific example, the type of the function g mentions the scope variable associated to the
inner handler h1. This variable cannot be universally quantified as it occurs free in the typing
environment.

4The type a → ⟨l|e⟩ b represents a function that accepts an input of type a, performs an effect l and other effects in e, and

produces an output of type b.
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scoped effect heap⟨s⟩
newref(init : int) : ref⟨s⟩

named effect ref⟨s⟩ in heap⟨s⟩
get() : int
set(value : int) : ()

fun ref(
init: int,
action:(ref⟨s⟩ → ⟨ref⟨s⟩|e⟩ a) → e a

) : e a
var s := init
with r <- named handler
get() { resume(s) }
set(x){ s := x; resume() }

action(r)

fun heap(action : forall⟨s⟩ () → ⟨heap⟨s⟩|e⟩ a
) : e a

with handler
newref(init){ ref(init, resume) }

action()

fun maketwo(x : int, y : int)
: heap⟨s⟩ (ref⟨s⟩,ref⟨s⟩)
(newref(x), newref(y))

fun main() : console ()
with heap
val (r1,r2) <- maketwo(20,22)
println( r1.get() + r2.get() )

Fig. 5. First-class Heap with Umbrella Effect

Based on the same idea, we can also maintain a safety invariant in the file example. Specifically,
we declare the file effect as a scoped effect, and thus prevent any file handle from escaping the
scope of its associated handler.

3.2.4 Named Handlers under Scoped Effects. By combining named handlers and scoped effects in a
different way, we can also implement the heap example from Section 2.3.2 in a safe manner. The
idea is to scope the dynamic named handlers (e.g., the references) under a single scoped effect (e.g.
the heap), which we call an umbrella effect.
In Figure 5, we present the implementation of a first-class scoped heap. Here, the heap effect

serves as the umbrella effect scoping over the ref handlers under it. The interplay between the
two effects is managed with care at the level of types. Observe that ref is a named effect defined in

the scoped effect heap, and thus carries the same scope s as heap. Defining ref this way gives the
get and set operations the heap effect ś for example, get : ref⟨s⟩ → heap⟨s⟩ int. Moreover, since
heap is a scoped effect, its handler is given a rank-2 type, where the action type has a universal
quantification over the scope variable s.
The use of an umbrella effect in this example helps us prevent the escaping of references. In

particular, all of the newref, get, and set operations must be under the scope of a heap handler,
which in turn guarantees the existence of all dynamic ref handlers, since ref handlers are created
right above the heap handler.

Besides dynamic creation of references under a heap scope, the umbrella effect allows us to treat
references homogeneously. Without an umbrella effect, different references would have different
scopes (e.g., ref⟨s1⟩ and ref⟨s2⟩). With an umbrella effect, all references are scoped under a single
heap⟨s⟩ handler, hence they all have the same scope variable s in their type ref⟨s⟩.

3.2.5 Design Trade-offs. In this section, we started with plain named handlers (Section 3.1), in-
troduced scoped effects (Section 3.2.2), and outlined two ways of combining named handlers and
scoped effects (Sections 3.2.3 and 3.2.4). These combinations demonstrate the trade-offs in the
design space of named handlers.

The first design trade-off is between plain and scoped named handlers. Scoped named handlers
are safer in that they avoid the name escaping problem by taking inspirations from monadic
encapsulation. On the other hand, plain named handlers are easier to use since handler names do
not carry a scope variable in their type. Therefore, language designers may choose to implement
one of them or both, depending on what they prioritize. We implement both variations in Koka.
Note that, in the unscoped setting, using a handler name outside of its scope results in an exception,
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Expression e ::= v | e e | e [𝜎]

| handle𝜖m hℓ
𝜂

e

Value v, f ::= x | 𝜆𝜖 (x :𝜎). e | Λ𝛼𝜅 . v
| handler𝜖 hℓ

| perform𝜖 op 𝜎

| perform𝜖 op 𝜎 v

| (m, hℓ
𝜂

)

Handler h ::= { opi ↦→ fi }

Type 𝜎 ::= 𝛼𝜅 | c𝜅 | 𝜎1 𝜎2 | 𝜎 → 𝜖 𝜎 | ∀𝛼𝜅 . 𝜎 | ev ℓ𝜂

Effect row 𝜖 ::= ⟨⟩ | ⟨ℓ𝜂 | 𝜖⟩

Kind 𝜅 ::= ∗ | 𝜅 → 𝜅 | lab | eff | S

Term context Γ ::= ∅ | Γ, x :𝜎

Effect context Σ ::= { ℓ i : sig
ℓ i }

Effect signature sigℓ ::= { opi : ∀𝛼
𝜅i
i . 𝜎i →

ℓ𝜂 𝜎 ′
i }

Fig. 6. Syntax of System F𝜖+sn

and the programmer is responsible for handling such exceptions. In addition to the implementation,
we give a formalization of a calculus with plain named handlers in the appendix of the technical
report [Xie et al. 2021].
The second design trade-off is between scoped effects and umbrella effects. We have seen that

umbrella effects are more expressive as they allow dynamic allocation of handlers sharing the same
scope variable. However, their expressive power also comes with the price of extra complexity in
the formalization, in particular to ensure type safety. Again, language designers may make the
decision of which to implement. In Koka, both variations are supported (Section 6).

4 SYSTEM F𝜖+sn: NAMED HANDLERS WITH SCOPED EFFECTS

In this section, we present the formalization of System F𝜖+sn, a calculus of named handlers and
scoped effects outlined in Section 3.2.3.

4.1 Syntax

Figure 6 defines the syntax of System F𝜖+sn. The system is explicitly typed, and includes internal
forms generated during evaluation (highlighted in gray). Below, we detail each syntactic category.

Expressions and Values. Expressions and values include variables, abstractions and applications
for terms and types5. Type abstractions Λ𝛼𝜅 . v require a value body. This is a common requirement
for establishing type soundness of effectful calculi [Kammar and Pretnar 2017; Leijen 2017; Sekiyama
and Igarashi 2019]. In our context, the requirement validates a type-erasure based semantics [Xie et
al. 2020]. Operation performing takes the form perform𝜖 op 𝜎 e1 e2, where op is an operation name,
𝜎 is a sequence of types (used to instantiate the type variables in the signature of op), a handler
name e1, and an operation argument e2. Among the four arguments, e1 and e2 are passed via the
application rule; the partially applied form perform𝜖 op 𝜎 v is considered as a value.
Handlers can be found in both expression and value categories. The value form handler𝜖 hℓ

represents a named handler that, when given an action f (i.e., a thunked computation), handles
the operations in effect ℓ that are performed by f . Here, we assume that hℓ has exactly one clause

5We do not include constants (e.g., integers) in the formal systems, but we assume their existence in examples.
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Γ ⊢val v : 𝜎

Γ ⊢ v : 𝜎 | 𝜖
[val]

x :𝜎 ∈ Γ

Γ ⊢val x : 𝜎
[var]

Γ ⊢val (m, hℓ
𝜂

) : ev ℓ𝜂
[ev]

Γ, x :𝜎1 ⊢ e : 𝜎2 | 𝜖

Γ ⊢val 𝜆𝜖 (x :𝜎1). e : 𝜎1 → 𝜖 𝜎2
[abs]

Γ ⊢ e1 : 𝜎1 → 𝜖 𝜎 | 𝜖 Γ ⊢ e2 : 𝜎1 | 𝜖

Γ ⊢ e1 e2 : 𝜎 | 𝜖
[app]

Γ ⊢val v : 𝜎 𝛼𝜅 ̸∈ ftv(Γ)

Γ ⊢val Λ𝛼𝜅 . v : ∀𝛼𝜅 . 𝜎
[tabs]

Γ ⊢ e : ∀𝛼𝜅 . 𝜎1 | 𝜖 ⊢wf 𝜎 : 𝜅

Γ ⊢ e [𝜎] : 𝜎1 [𝛼 :=𝜎] | 𝜖
[tapp]

opi : ∀𝛼
𝜅 . 𝜎1 → ℓ𝜂 𝜎2 ∈ Σ(ℓ) 𝜂 ∈ 𝛼𝜅

Γ ⊢val fi : ∀𝛼
𝜅 . 𝜎1 → 𝜖 ((𝜎2 → 𝜖 𝜎) → 𝜖 𝜎) 𝛼𝜅 ̸∈ ftv(𝜎)

Γ ⊢ops { op
1
↦→ f1, . . ., opn ↦→ fn } : 𝜎 | ℓ | 𝜖

[ops]

op : ∀𝛼𝜅 . 𝜎1 → ℓ𝜂 𝜎2 ∈ Σ(ℓ) 𝜂 ∈ 𝛼𝜅 ⊢wf 𝜎 : 𝜅 𝛼𝜅 ̸∈ ftv(𝜖)

Γ ⊢val perform𝜖 op 𝜎 : (ev ℓ𝜂 → ⟨ℓ𝜂 | 𝜖⟩ 𝜎1 → ⟨ℓ𝜂 | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[perform]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 𝜂 ̸∈ ftv(𝜖, 𝜎)

Γ ⊢val handler𝜖 hℓ : (∀𝜂. ev ℓ𝜂 → ⟨ℓ𝜂 | 𝜖⟩ 𝜎) → 𝜖 𝜎
[handler]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 Γ ⊢ e : 𝜎 | ⟨ℓ𝜂 | 𝜖⟩

Γ ⊢ handle𝜖m hℓ
𝜂

e : 𝜎 | 𝜖
[handle]

(a) Typing

𝜖 ≡ 𝜖

𝜖1 ≡ 𝜖2 𝜖2 ≡ 𝜖3

𝜖1 ≡ 𝜖3

𝜖1 ≡ 𝜖2

⟨ℓ
𝜂1
1

| ℓ
𝜂2
2

| 𝜖1⟩ ≡ ⟨ℓ
𝜂2
2

| ℓ
𝜂1
1

| 𝜖2⟩

𝜖1 ≡ 𝜖2

⟨ℓ𝜂 | 𝜖1⟩ ≡ ⟨ℓ𝜂 | 𝜖2⟩

(b) Equivalence of Row Types

Fig. 7. Typing Rules of System F𝜖+sn.

for each operation of effect ℓ6. The expression form handle𝜖m hℓ
𝜂

e represents a specific instance
of a handler, which is internally generated during evaluation (see Section 4.3). The role of this
construct is to associate the label ℓ with a scope 𝜂, and to pair it with a marker m, which serves as
an identifier of the handler. We regard a marker-handler pair (m, hℓ

𝜂

) as a handler name, and call
it an evidence. In principle, the marker m itself is sufficient as a handler name, but as we will show
in Section 6, this representation of a marker-handler pair establishes a close connection between
handler names and the concept of evidence [Xie et al. 2020; Xie and Leijen 2021] already supported
in the implementation of Koka.

6For simplicity, we do not include a return clause in handlers, which is often found in an effect handler calculus [Bauer and

Pretnar 2014 2015]. This does not cause loss of expressiveness, as one can always integrate the computation of the return

clause into the action.
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Types and Kinds. Types include type variables 𝛼𝜅 , type constructors c𝜅 of kind 𝜅 (e.g., int∗,
list∗ → ∗), type applications 𝜎1 𝜎2, function types 𝜎 → 𝜖 𝜎 , quantified types ∀𝛼𝜅 . 𝜎 , and the evidence
type ev ℓ𝜂 , which is inhabited by evidence of the form (m, hℓ

𝜂

). Function types 𝜎1 → 𝜖 𝜎2 has three
components: an input type 𝜎1, an output type 𝜎2, and an effect type 𝜖 representing the effects of
the function’s body. An effect row is either empty ⟨⟩ (representing the total effect) or an extension
⟨l | 𝜖⟩ (meaning that 𝜖 is extended with effect label l). As a convention, we use 𝜇 and 𝜂 to denote
effect and scope type variables, respectively.
To distinguish among value types (of kind ∗ or 𝜅 → 𝜅), effect labels (ℓ𝜂 : lab), effect rows

(𝜇, 𝜖 : eff), and scopes (𝜂 : S), we use a standard kind system (included in the appendix of [Xie et
al. 2021]). For clarity of presentation we do not maintain an explicit kind environment for type
variables; instead, as a well-formedness condition, we assume that all occurrences of a type variable
𝛼 always have the same kind 𝜅 (subject to alpha-renaming).

4.2 Typing Rules

Figure 7a gives the typing rules of expressions, values, and handlers. The typing judgment for
expressions takes the form Γ ⊢ e : 𝜎 | 𝜖 . This reads: expression e has type 𝜎 under context Γ,
and may perform operations associated with effect labels in 𝜖 . The judgment for values has a
different form Γ ⊢val v : 𝜎 . It does not have an effect component because values are effect-free. In
the judgment Γ ⊢ops h : 𝜎 | ℓ | 𝜖 for handlers, 𝜎 is the return type of handler h, ℓ is the effect label
handled by h, and 𝜖 is the effects to be handled by outer handlers.
We briefly go through the rules for expressions and values. Rule val allows us to view a pure

value as an effectful expression. Rule abs concludes with a pure value while keeping the body’s
effects in the arrow type. Rule app requires that the function, the argument, and the function’s
body have the same effect. Rule ev assigns evidence a type that carries an effect label ℓ and a scope
variable 𝜂. Rule var, tabs and tapp are completely standard.

Rule ops imposes two requirements on the body of a handler. First, the types of the operation
argument and the continuation of every handling function fi are consistent with the type of the
corresponding operation opi. Second, the output types of those functions are all equal.
Rule perform serves as the introduction rule for effects. It extends the original effect 𝜖 with an

additional label ℓ𝜂 , which comes from the signature of the operation being performed. The partially
applied form perform𝜖 op 𝜎 v is type checked via the applicition rule app.
Rule handler serves as the elimination rule for effects. It removes the label ℓ𝜂 from the effect

of the action, as that effect is handled by the handler. In addition to eliminating effects, the rule
plays a key role in ensuring the well-scopedness of handler names. Here, the handler name has an
evidence type ev ℓ𝜂 , where 𝜂 is a scope variable introduced in the action type. Since 𝜂 ̸∈ ftv(𝜖, 𝜎),
it is guaranteed that 𝜂 cannot escape through the return type and effect, which in turn means the
handler name cannot escape. In the conclusion, we have a rank-2 type, reflecting the similarity
between scoped effects and runST.

Lastly, rule handle takes care of an internal expression obtained by reducing handler. Compared
to handler, handle is closer to the handler rule in other effect calculi: it simply eliminates the effect
ℓ𝜂 handled by h.
By observing the two rules for handlers, we can see that our approach to the name escaping

problem relies on the existence and the careful design of the handler construct. If we only had
handle, or if we represented actions as a computation, we would not be able to use a rank-2 type to
ensure well-scopedness of handler names.
In addition to the typing rules, we define a set of rules for deciding whether two row types are

equivalent or not (Figure 7b). Row equivalence is defined by reflexivity, transitivity, commutativity,
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Evaluation context E ::= □ | E e | v E | E [𝜎] | handle𝜖m hℓ
𝜂

E

(app) (𝜆𝜖 (x :𝜎). e) v −→ e[x :=v]

(tapp) (Λ𝛼𝜅 . v) [𝜎] −→ v [𝛼 :=𝜎]

(handler) (handler𝜖 hℓ ) v −→ handle𝜖m hℓ
𝜂

(v [𝜂] (m, hℓ
𝜂

))

where 𝜂, m fresh

(return) handle𝜖m hℓ
𝜂

v −→ v

(perform) handle𝜖m hℓ
𝜂

E[perform op 𝜎 (m, hℓ
𝜂

) v]

−→ f [𝜎] v k iff (op ↦→ f ) ∈ h

where op : ∀𝛼𝜅 . 𝜎1 → ℓ𝜂 𝜎2 ∈ Σ(ℓ)

k = 𝜆𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖m hℓ
𝜂

E[x]

e −→ e′

E[e] ↦−→ E[e′]
[step]

Fig. 8. Operational Semantics of System F𝜖+sn

and head equivalence. The commutativity rule differs from the corresponding rule found in row-
based calculi with unnamed handlers [Hillerström and Lindley 2016; Leijen 2017; Xie et al. 2020]. In
those calculi, commutativity only applies to distinct labels. For instance, the labels exn and nondet

can be swapped, but st int and st bool cannot. This is because operations in those calculi are always
handled by the innermost handler, which means the order of labels is relevant to typing. In our
calculus, commutativity applies to any labels. This is because operations are handled by an arbitrary
handler specified by the user, which makes the order of labels irrelevant.

4.3 Operational Semantics

System F𝜖+sn is equipped with a call-by-value, typed semantics defined in Figure 8. An evaluation
context E is an expression template with a single hole □ in it. The notation E[e] stands for an
expression obtained by filling in the hole of Ewith expression e. Rule step defines one-step evaluation
( ↦−→) in terms of small-step reduction (−→).

Among the small-step rules, rules app and tapp are standard. Rule handler is unique to our system:
it generates a fresh scope variable 𝜂 and a unique marker m. The scope variable is computationally
irrelevant: it is only used to make the semantics fully typed. The marker plays an important role:
it is used to identify a target handler in an evaluation context. After the reduction, the handler
becomes a handle, whose action v is passed the scope 𝜂 and name (m, hℓ

𝜂

).
Handling an action either results in a value via rule return, or triggers evaluation of an operation

clause via rule perform. In the latter case, we search for the matching handler handlem in the
evaluation context, extract the implementation f of the performed operation op, and apply f to the
type instantiations 𝜎 , the operation argument v, and the resumption k. Note that for a well-typed
program, the type of the operation always matches during reduction (due to the perform rule).

4.4 Type Soundness

The combination of naming and scoping leads to a sound type system. Following Wright and
Felleisen [1994], we prove soundness through the preservation and progress theorems. Below is
the statement of preservation, which can be shown in a relatively straightforward manner:

Theorem 4.1. (Preservation of System F𝜖+sn)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.
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The progress theorem is trickier. For a well-typed expression, we know from its type that all effects
are handled properly. However, the type information is not used at runtime; it is the marker that
determines the handler associated with each operation. Then, how can we be sure that a particular
marker exists in the evaluation context?
It turns out that the progress property does not hold for System F𝜖+sn in general. For instance,

the following expression is well-typed but does not take a step:

handlem1
hℓ

𝜂

(perform op 𝜂 (m2, h
ℓ𝜂 ) ()) ̸−→

We find that the handler has marker m1 for effect ℓ
𝜂 , but the operation requires marker m2 for

effect ℓ𝜂 . The whole expression is judged well-typed by our type system, but it is stuck as there is
no handler marked m2 in the context.
On the other hand, the above program is not something that a user can write: it explicitly uses

handle and evidence, which are not accessible to the user. Then, the reader may wonder: is it
possible for a user to create an expression that causes failure of handler search? In particular, we
are interested in user-written expressions without handle, and any expressions reduced from them
during evaluation. For ease of reference, let us call such expressions handle-safe [Xie et al. 2020]:

Definition 4.2. (Handle-safe Expressions)
(1) The set of handle-safe expressions includes any well-typed, closed expression if it contains no
handle term; (2) Moreover, if e1 is handle-safe, and e1 ↦−→ e2, then e2 is handle-safe.

Notably, (2) implies that handle-safe expressions still allow occurrences of handle, but only ones
that are reduced from handler.
It turns out that the progress theorem holds for handle-safe expressions. That is, if we start

evaluation from a handle-safe expression (or equivalently, a user-written program), we will never
get stuck.

Theorem 4.3. (Progress of Handle-safe System F𝜖+sn)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is a handle-safe expression, then either e1 is a value, or e1 ↦−→ e2 for
some e2.

Uniqueness of names. It might appear that rule (perform) renders the operational semantics non-
deterministic, as there can potentially be multiple occurrences of m. For the operational semantics
to be deterministic, all handlers must be unique in the evaluation context. This is not generally
true, as we can easily construct two handle with the same m:

handlem hℓ
𝜂

(handlem hℓ
𝜂

(perform op 𝜂 (m, hℓ
𝜂

) ()))

However, the above example is again not a proper user program, as it uses handle and evidence
directly. This makes us wonder whether we can avoid duplication of markers by considering only
handle-safe expressions. The answer is łyesž: a handle construct produced from handler always
has a freshly generated marker, and a marker can never be duplicated during evaluation:

Theorem 4.4. (Uniqueness of Names for Handle-safe F𝜖+sn)

For any handle-safe expression E1 [handlem1
hℓ

𝜂1

1 (E2 [handlem2
hℓ

𝜂2

2 e])] in System F𝜖+sn, we have
m1 ≠ m2.

5 SYSTEM F𝜖+u: NAMED HANDLERS UNDER SCOPED EFFECTS

We now formalize System F𝜖+u, which combines named handlers and scoped effects through
umbrella effects introduced in Section 3.2.4. Here we focus on the formalization of effect-related
constructs, which is different from System F𝜖+sn.
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op : ∀𝛼𝜅 . 𝜎1 → l𝜂 𝜎2 ∈ Σ(l) 𝜂 ∈ 𝛼𝜅 ⊢wf 𝜎 : 𝜅

Γ ⊢val perform𝜖 op 𝜎 : (𝜎1 → ⟨l𝜂 | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[u-perform]

Γ ⊢ops h : 𝜎 | l | 𝜖

Γ ⊢val handler𝜖 hl : (∀𝜂. () → ⟨l𝜂 | 𝜖⟩ 𝜎) → 𝜖 𝜎
[u-handler]

Γ ⊢ops h : 𝜎 | l | 𝜖 Γ ⊢ e : 𝜎 | ⟨l𝜂 | 𝜖⟩

Γ ⊢ handle𝜖 hl
𝜂

e : 𝜎 | 𝜖
[u-handle]

(a) Scoped Effects (l) with Unnamed Handlers

op : ∀𝛼𝜅 . 𝜎1 → l𝜂 𝜎2 ∈ Σ(ℓ) 𝜂 ∈ 𝛼𝜅 ⊢wf 𝜎 : 𝜅

Γ ⊢val perform𝜖 op 𝜎 : (ev ℓ𝜂 → 𝜎1 → ⟨l𝜂 | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[n-perform]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖

Γ ⊢val handler𝜖 hℓ : (ev ℓ𝜂 → 𝜖 𝜎) → 𝜖 𝜎
[n-handler]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 Γ ⊢ e : 𝜎 | 𝜖

Γ ⊢ handle𝜖m hℓ
𝜂

e : 𝜎 | 𝜖
[n-handle]

(b) Named Handlers (ℓ) under Scoped Effects (l)

Fig. 9. Typing Rules of System F𝜖+u

5.1 Syntax

The syntax of System F𝜖+u is basically the same as System F𝜖+sn. The only difference is that we
classify effect labels into two categories: those handled by a named handler (ℓ) and those declared
as scoped effects (l). For example, in the case of the heap example in Figure 5, the ref and heap

labels are represented as ref and heap, respectively (remember that heap is scoped but ref is not).
We make this distinction because the typing of effect-related constructs depends on which category
an effect label belongs to, as we will see shortly.

5.2 Typing

In Figure 9a, we define the typing rules for scoped (umbrella) effects and their handlers. To highlight
the idea of umbrella effects, here we restrict their handlers to be unnamed; extending them with
named handlers can be done easily. Since handlers are unnamed, operations are performed without
an evidence, and are always handled by the innermost handler of effect l𝜂 (rule u-perform). Actions
are polymorphic over the scope 𝜂 (rule u-handler) as in System F𝜖+sn, but they now take a unit
value instead of an evidence due to the absence of names. A handle construct simply eliminates
the effect l𝜂 to be handled (rule u-handle).
In Figure 9b, we give the typing rules for named handlers under scoped effects. Observe that,

when we perform an operation with an evidence for label ℓ (rule n-perform), we produce its
umbrella effect l that comes from the effect signature of ℓ . This corresponds to the design of the
ref effect from the heap example: the get and set operations produce a heap effect, which serves
as the umbrella of ref. Since there is no ℓ effect, handlers do not discharge the effect of their action
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(u-handler) (handler𝜖 hl) v −→ handle𝜖 hl
𝜂

(v [𝜂] ()) where 𝜂 fresh

(u-return) handle𝜖 hl
𝜂

v −→ v

(u-perform) handle𝜖 hl
𝜂

E[perform op 𝜎 v]

−→ (f [𝜎] v k) iff op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ hl
𝜂

where op : ∀𝛼. 𝜎1 → l𝜂 𝜎2 ∈ Σ(l)

k = 𝜆𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖 hl
𝜂

E[x]

(a) Scoped Effects (l) with Unnamed Handlers

(n-handler) (handler𝜖 hℓ ) v −→ handle𝜖m hℓ
𝜂

(v (m, hℓ
𝜂

)) where m fresh

(n-return) handle𝜖m hℓ
𝜂

v −→ v

(n-perform) handle𝜖m hℓ
𝜂

E[perform op 𝜎 (m, hℓ
𝜂

) v]

−→ (f [𝜎] v k) iff (op ↦→ f ) ∈ hℓ
𝜂

where op : ∀𝛼. 𝜎1 → l𝜂 𝜎2 ∈ Σ(ℓ)

k = 𝜆𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖m hℓ
𝜂

E[x]

(b) Named Handlers (ℓ) under Scoped Effects (l)

Fig. 10. Operational Semantics of System F𝜖+u

(rules n-handler and n-handle), but they keep the effect l𝜂 scoped under 𝜂, which is the scope of
its umbrella, e.g., the scope of heap.

5.3 Operational Semantics

As with the typing rules, we have two sets of rules defining the operational semantics (Figure 10).
The first three rules take care of unnamed handlers for scoped effects. Rule (u-handler) reduces a
handler into a handle, while applying the action to a fresh scope variable and the unit value. Rule
(u-return) simply returns a value. Rule (u-perform) searches for the handle frame that handles the
performed operation op. The condition op ̸∈ bop(E) means that E has no handler for the operation
op, i.e., the handler surrounding E is the innermost one.
The rest of the rules deal with named handlers under scoped effects. Like (u-perform), rule

(n-perform) reduces a handler into a handle, but unlike (u-perform), it applies the action to an
evidence with a fresh marker m, representing the name of the handler. Rules (n-return) and
(n-perform) remain the same as the corresponding rules in System F𝜖+sn.

5.4 Type Soundness

Having walked through all the rules, we prove the metatheory of System F𝜖+u. We first prove
preservation:

Theorem 5.1. (Preservation of System F𝜖+u)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

As in System F𝜖+sn, proving progress is much more challenging. In particular, the system is unaware
of any ℓ effect performed. On the other hand, scoping named handlers under an umbrella effect
provides a form of safety guarantee. In fact, the heap example in Section 2.3.2 is type-safe.

To see why this is the case, recall that the reference effect ref⟨s⟩ carries a scope variable s. This
means the effect must be in the scope of the umbrella effect heap⟨s⟩. Assuming the reference handler
ref is private, the heap handler heap is the only place where a new reference handler may be
generated. When an operation in ref⟨s⟩ is performed, it produces the heap⟨s⟩ effect, hence in a
well-typed program, the operation performing must be surrounded by a handler for heap⟨s⟩. Having
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opi : ∀𝛼 i . 𝜎1 → l𝜂 𝜎2 ∈ Σ(l)

Γ ⊢val fi : ∀𝛼 i . umb 𝜂 ⟨r𝜂 | 𝜖⟩ 𝜎 → 𝜎1 → ⟨r𝜂 | 𝜖⟩ (𝜎2 → ⟨r𝜂 | 𝜖⟩ 𝜎) → ⟨r𝜂 | 𝜖⟩ 𝜎

Γ ⊢lops { op
1
→ f1, . . ., opn → fn } : 𝜎 | l | 𝜖

[u-ops]

Γ ⊢ℓops h : 𝜎 | ℓ | 𝜖

Γ ⊢val handler𝜖 hℓ : umb 𝜂 𝜖 𝜎 → (ev ℓ𝜂 → 𝜖 𝜎) → 𝜖 𝜎
[n-handler]

Fig. 11. Selected Rules for F𝜖+u with the Umbrella Witness and the Resume Effect

a heap⟨s⟩ handler further implies the existence of a ref⟨s⟩ handler, because the latter is pushed right
above the former when the reference is created.
Unfortunately, general umbrella effects may result in accidental name escaping. To see how

this could happen, suppose the reference handler ref in the heap example is accessible to the
programmer. In that case, it is possible to write the following program:

fun main()
with r <- ref(1, id)
r.get() // error

Here, the ref function is called without being surrounded by a heap handler (which we disallowed
before by making ref private). As the function is passed the identity function id as the action, it
returns the generated handler name. The name is then used to perform the get operation, which
naturally fails as there is no matching ref handler. Nevertheless, the program would be judged
well-typed by System F𝜖+u, because named handlers are not scoped in this system, and performing
an operation on a named handler does not produce any effects.
As a different example, let us assume that heap has another operation bad. Now, consider the

following program:

fun heap-bad(action)
with handler
newref(init){ ref(init, resume) }
bad(){ resume }

action()

fun main()
fun b()

with heap-bad
with r <- newref(1)
bad()
r.get()
(fn(){ () })

(b())() // stuck

When the bad operation is performed during evaluation of b(), it is handled by the heap-bad handler.
The handler returns the resumption resume, which is essentially fun(){ with heap-bad; r.get() }.
This function is then returned through the ref handler for r, and invoked in (b())(), yielding
with heap-bad; r.get(). As we can see, the get operation is performed under a heap handler, but
no longer under the ref handler for r. This means the program is stuck at this point.
Given the above examples, the reader might wonder: is there any way to make System F𝜖+u

type-sound? The answer is łyesž: we can restore the progress property by equipping the calculus
with two restrictions. The restrictions are:

• A named handler for effect ℓ can only be used inside a handler for its umbrella effect l.

• A handler of an umbrella effect cannot return the resumption.
It is not hard to see that the original heap example (without bad) satisfies both restrictions. Specif-
ically, the named handler ref is only used under the heap handler, and the handler heap of the
umbrella effect does not return resume. We can also easily see that the modified heap example (with
bad) is rejected by the second restriction.
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To implement the above restrictions, we can either syntactically constrain the use of handlers
and resumptions, or augment the typing rules with additional requirements. Here, we take the
latter approach. In Figure 11, we present two rules selected from the carefully crafted variant of
System F𝜖+u. The system relies on two concepts that are not presented in the original System F𝜖+u:
the umbrella witness and the resume effect. These are both internal constructs, and are highlighted
in gray in the figure.

Among the new concepts, the umbrella witness is used to implement the first restriction. As can
be seen from rule n-handler, whenever we create a named handler for an ℓ𝜂 effect, we need an
umbrella witness of type umb 𝜂 𝜖 𝜎 . As stated in rule u-ops, such a witness is (and can only be)
issued by the operation clauses of an umbrella effect handler. These ensure only umbrella effect
handlers can create new named handlers. With the additional components 𝜖 and 𝜎 carried by the
umbrella witness, we can also be sure that 𝜂 ̸∈ ftv(𝜖, 𝜎).

The other concept, namely the resume effect, is used to implement the second restriction. From
rule u-ops, we can see that every operation clause of an umbrella effect handler must have a
resumption effect r𝜂 in its return effect. Also from rule u-ops, we can deduce that this effect can
only be produced by calling the resumption. These make it impossible to return the resumption
from an umbrella effect handler.

By combing the umbrella witness and the resume effect, we can prove progress for handle-safe
expressions with general umbrella effects. We invite the interested reader to visit the appendix of
the technical report [Xie et al. 2021] for the complete specification of the restricted System F𝜖+u

and its soundness proof.

Theorem 5.2. (Progress of Handle-safe System F𝜖+u)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is a handle-safe expression in restricted System F𝜖+u, then either e1 is a
value, or e1 ↦−→ e2 for some e2.

As in System F𝜖+sn, we can further prove the uniqueness of names for handle-safe expressions.

Theorem 5.3. (Uniqueness of Names for Handle-safe F𝜖+u)

For any handle-safe expression E1 [handlem1
hℓ

𝜂1

1 (E2 [handlem2
hℓ

𝜂2

2 e])] in System F𝜖+u, we have
m1 ≠ m2.

6 IMPLEMENTATION

We have implemented named handlers and scoped effects in the Koka programming language,
supporting the two combinations discussed in Sections 4 and 5. In this section, we give an overview
of the Koka compiler, and provide details on how Koka compiles unnamed and named handlers.

Overview of the Koka Compiler. Koka is a programming language with full support for algebraic
effects and handlers. Its compiler compiles via standard C code using Perceus-style reference
counting for memory management [Reinking et al. 2021]. To support (plain) effect handlers and
first-class resumptions in C, the compiler uses two transformations. The first one targets a calculus
bsed on the evidence passing semantics [Xie et al. 2020; Xie and Leijen 2021]. Here, every function
receives the current evidence vector, which is a sequence of marker-handler pairs. This eliminates
runtime search for matching handlers, leading to better performance. The second transformation
targets a polymorphic lambda calculus à la System F. Here, control transfer and context capture
are realized by a standard multi-prompt delimited control monad [Dyvbig et al. 2007; Gunter et
al. 1995; Xie and Leijen 2021]. This allows us to implement the non-local behavior of effect handlers
without needing any special runtime support (and can thus compile to portable C99 code).

Finally, Koka supports impredicative higher-rank polymorphism and performs type inference
using the HMF system [Leijen 2008]. As such, it can directly express rank-2 types used in scoped
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effects (Section 3.2.2). The system also reduces the programmers’ burden to write down explicit
scope variable annotations when type inference is possible.

Compiling Unnamed Handlers. Let us first look at how regular (unnamed) handlers and operations
are evaluated under the multi-prompt evidence passing semantics. Below are the evaluation rules
from [Xie and Leijen 2021, Figure 1]:

(app) (𝜆x . e) v −→ e[x :=v]

(handler) handler h v −→ prompt m h (v ()) with unique m
(return) prompt m h v −→ v

(yield) prompt m h [yield m f ] −→ f (𝜆x . prompt m h E[x])

(perform) w ⊢ perform opl v −→ yield m (𝜆k. f v k) (m, h) = w.l ∧ (op ↦→ f ) ∈ h

Rule (handler) generates a fresh markerm and installs a new prompt. Rule (yield) uses a marker to
directly yield to a prompt, while capturing the evaluation context E in a resumption. All operations
are evaluated under an implicit evidence vector w, containing the current marker-handler pairs
(m, h) for each prompt in the context. Rule (perform) finds an evidence (m, h) in the evidence
vector, extracts the operation implementation f for op, and continues with a yield to the prompt m.

Due to the explicit markers and evidence vectors, there is no implicit search to the innermost
handler anymore as in the standard operational semantics for effect handlers. In particular, each
handler has a unique marker and is found from the evidence vector and yielded to directly.
As a final remark, we elaborate on the benefit of representing evidence as a marker-handler

pair. As rule (perform) shows, we can use such a pair to construct the continuation (𝜆k. f v k) that
waits for the resumption to be built up. But this is not the only thing we can do: we can further
perform tail-resumptive optimization [Xie and Leijen 2021], a technique for avoiding expensive
yielding by evaluating a tail-resumptive operation in place. A tail-resumptive operation is of form
𝜆x . 𝜆k. k e where k ̸∈ fv(e). As an example, the reader handler from Section 2.1 is tail-resumptive.

For tail-resumptive operations, the rule (perform) does not need to generate any yield7:

w ⊢ perform opl v −→ (𝜆x . e) v (m, h) = w.l ∧ (op ↦→ 𝜆x . 𝜆k. k e) ∈ h ∧ k ̸∈ fv(e)

It has been shown that tail resumptive optimization can improve performance. We refer interested
readers to Xie and Leijen [2021] for details.

Compiling Named Handlers. Since all handlers are identified with their marker, it turns out to be
quite easy to support named handlers in this framework. Recall from Section 4.1 that we represent
handler names as a pair of a marker and a handler ś this is exactly the evidence in the evidence
vectors w. The named handler extension thus requires no new mechanisms; we can translate named
handlers to the existing evidence calculus in a straightforward way. Specifically, we simply do
not insert evidence for named handler in the evidence vector w, and pass it instead explicitly as a
first-class value to perform. The transition rules for named handlers and operations are:

(nhandler) handler hℓ v −→ prompt m ∅ (v (m, hℓ )) with unique m
(nperform) perform op (m, hℓ ) v −→ yield m (𝜆k. f v k) (op ↦→ f ) ∈ hℓ

There are two differences from the unnamed counterparts. First, in the (nhandler) case, we directly
pass the evidence to the action v, and use an empty handler (∅) to prevent it from being inserted
in the evidence vector. Thus, the action of a named handler receives a name (m, hℓ ), while an
action of an unnamed handler receives unit. Second, in the (nperform) case, we obtain the evidence
directly as an explicit argument, without needing the evidence vector. This change comes from the
fact that an operation handled by a named handler explicitly receives a name, while an operation

7To ensure that the operations in e are handled by the correct handlers, the actual (performt) rule [Xie and Leijen 2021] is

slightly more complex and evaluates to (𝜆x . under l e) v, where under adjusts the evidence vector for operations performed

in e. It has been showed that tail-resumptive optimization is semantics preserving.
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handled by an unnamed handler does not. This is also the point where things could go wrong: if
a named handler escaped its scope, yield m would find no matching prompt m in the evaluation
context. Notably, representing handler names as evidence also allows us to enjoy tail-resumptive
optimization for named handlers: in rule (nperform), if f is tail-resumptive, then we can evaluate f
in place without explicit yielding.
As a result, there were very few changes that needed to be made to the Koka runtime system

and compiler ś all internal translations already use łnamesž as evidence. The implementation is
also consistent with the formalization presented in this paper, except for the following differences:

• In addition to named handlers with scoping, the Koka implementation supports named but
unscoped handlers. To ensure type safety, Koka inserts an exception effect that is raised if a
specific handler is not found at runtime.

• The Koka implementation does not impose the two restrictions for umbrella effects discussed
in Section 5.4. Therefore, any umbrella operations also induce an exception effect, which
is raised if an umbrella handler escapes its scope. We feel adding the exception effect is a
reasonable implementation trade-off, but we may in the future add static checks to umbrella
handler definitions to avoid this, and we see no fundamental challenges in adding those
checks. Note however that the current treatment is already quite strict; for example, even in
a pure language like Haskell, any demanded value may raise an exception or not terminate.

7 FURTHER EXAMPLES

In this section, we present larger examples of named handlers. We use the examples to demonstrate
how first-class handler names are useful in realistic applications.

7.1 Neural Networks

As the first example, we show how to implement a neural network based on gradient descent
using named handlers. Broadly speaking, a neural network is a statistical model that approximates
functions based on training data (Figure 12a). It consists of multiple layers of artificial neurons,
where the first layer carries inputs and the last layer carries outputs. To propagate values from
one layer to the next, the network computes the weighted sum of values and adjusts the result
by adding a bias value. After obtaining the output values, the network compares them with the
expected values (i.e., the ground truth), and updates the weights and biases using gradient descent.
In Figure 13a, we present our implementation of neural layers. The key idea is to represent the

matrix of weights and biases for each neural layer using named handlers, and then build a neural
network as a list of handler names. The effect layer is similar to the ref effect from Section 2.3.2,
in that it has operations for accessing, setting, and updating weights and biases. Each weight and
bias is a variable data structure, consisting of a vector of values and a vector of the gradients of
the error function at specific values.
In Figure 13b, we implement a program that approximates the sine function using the layer

effect. First, we create a neural network net that has two hidden layers (layers other than the
input and output layers). This is done by installing three named handlers of the layer effect and
putting the names into a list. We then start iterating the learning process. At each iteration, we
compute the gradient of the error function based on backpropagation (in the style of [Sigal 2021;
Wang et al. 2019]) and updates the weights and biases. Here, the backprop function is an unnamed
handler that serves as an interpreter of arithmetic operations designed specifically for automatic
differentiation. As the result of learning, we obtain the red curve shown in Figure 12b.

Implementing a neural network this way has several advantages. First, the use of effect handlers
allows us to seamlessly combine the layer effect with other useful effects. In the full implementation,
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(a) (b)

Fig. 12. Neural Network and Result of Learning (green line: actual sine function, blue dots: training data, red

line: learned sine function)

named effect layer⟨a⟩
fun get-weight(): a
fun set-weight(w: a): ()
fun get-bias(): a
fun set-bias(b: a): ()
fun sgd(lr: double): ()

fun layer(i, o, action)
var w := init-w(i, o)
var b := init-b(o)
with h <- named handler

fun get-weight() { w }
fun get-bias() { b }
fun set-weight(ws) { w := ws }
fun set-bias(bs) { b := bs }
fun sgd(lr)

val t1 = w.data - lr * !w.grad
val t2 = b.data - lr * !b.grad
w := variable(t1)
b := variable(t2)

action(h)

(a) Layers of Neural Networks

fun main()
// num of neurons in input layer
val i = 1
// num of neurons in hidden layers
val h = 3
// num of neurons in output layer
val o = 1
val lr = 0.2 // learning rate
val iters = 5000 // num of iterations

with l1 <- layer(i, h)
with l2 <- layer(h, h)
with l3 <- layer(h, o)

val net = [l1,l2,l3]
var errs := []

for(1,iters) fn(cnt:int)
val loss = backprop { ... }
errs := Cons(loss.data.at(0,0), errs)
net.foreach( fn(l) l.sgd(lr) )

(b) Learning the Sine Function (excerpt)

Fig. 13. Example of Neural Networks

we use several built-in effects including exceptions and divergence, and we can easily extend the
implementation with other effects such as tracing and backtracking. Second, effect handlers make
it easy to change the behavior of learning. For instance, if we wish to add momentum to gradient
descent, all we need is to define a new handler; there is no need to change the network itself. Third,
named handlers provide a convenient and reliable way of distinguishing between the weights
and biases of different layers. As a comparison, the implementation by Wang et al. [2019] uses
object-oriented features to simulate names, leading to a discrepancy between the formalization and
implementation. Lastly, the first-class status of handler names enables us to treat a neural network
simply as a list.
There is also a non-trivial design decision behind the implementation. We chose to use plain

named handlers to make the implementation as simple as possible. The absence of scopes results
in loss of static safety guarantee, but it allows us to put handler names inside a homogeneous list
(as in [l1,l2,l3]), and we can still make a safety argument as handler names are obviously used
within their scope.
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type utype⟨s⟩ // types with (scoped) unification variables
UVar( v : variable⟨s⟩ ) // unification variables
UCon( tag : string ) // type constructors
UApp( t1 : utype⟨s⟩, t2 : utype⟨s⟩ ) // type applications

type ntype // complete types
Con( tag : string ) // type constructors
App( t1 : ntype, t2 : ntype ) // type applications

scoped effect subst⟨s⟩ // an umbrella effect subst
fresh() : variable⟨s⟩ // generate a fresh unification variable

named effect variable⟨s⟩ in subst⟨s⟩ // a named variable effect under subst
fun get() : maybe⟨utype⟨s⟩⟩ // get the variable’s current type
fun resolve( tp : utype⟨s⟩ ) : () // resolve the unification variable

fun subst(action:forall⟨s⟩ ()→ ⟨subst⟨s⟩,pure|e⟩ a) : ⟨pure|e⟩ a // a handler for subst
with fresh() with-var(resume)
action()

fun with-var(action) // dynamically install a named handler for variable
var mtp := Nothing
with v <- named handler

fun get() mtp
fun resolve(tp)

match mtp
Nothing → mtp := Just(tp)
Just → throw("already resolved")

action(v)

// unify two types under a substitution
fun unify( tp1 : utype⟨s⟩, tp2 : utype⟨s⟩ ) : ⟨subst⟨s⟩,pure⟩ utype⟨s⟩

match (tp1,tp2)
(UCon(tag1), UCon(tag2)) | tag1 == tag2 → tp1
(UVar(v1),_) → match v1.get()

Nothing →
if occur(v1,tp2) then throw("occurs check")
v1.resolve(tp2)
tp2

...
...
_ → throw("cannot unify types")

// resolve all unification variables to make a complete type
fun resolve-all( tp : utype⟨s⟩ ) : ⟨subst⟨s⟩,pure⟩ ntype

match tp
UCon(tag) → Con(tag)
...

pub fun example() : pure ntype
with subst
val a = fresh()
val b = fresh()
val tp1 = mkfun(UVar(a),UVar(a))
val tp2 = mkfun(UVar(b),mklist(mkint()))
unify(tp1,tp2).resolve-all

Fig. 14. A unification algorithm (excerpt)

7.2 Unification

As another example of named handlers, we look at defining a unification algorithm using named
handlers. The key idea here is to use an umbrella effect to dynamically generate named handlers to
represent fresh unification variables, where a unification variable can be resolved with a type. The
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scope variable associated with the umbrella effect delimits the scope of such unification variables,
making sure that all unification variables are resolved after unification, and isolating the stateful
substitution behind a pure functional interface.

We present the program in Figure 14. We distinguish between unifiable types utype and complete
types ntype. In unifiable types, a type variable is a handler name which can be used under a
umbrella subst handler, and is created using the fresh operation. Here we rely on the first-class
nature of named handlers, as a handler name variable occurs in the UVar constructor. Each variable
has two operations: we can get the current value as a maybe⟨utype⟨s⟩⟩ which is Nothing if it is not
yet resolved, and we can use resolve once to resolve a variable to its type.

The function unify unifies two types under a subst effect, and resolves a variablewhen necessary.
Once unification is finished, the resolve-all function resolves all unification variables and returns
a complete type ntype. We give a pure example function showing how to perform unification. Notice
how the umbrella handler subst ensures statically that all unification variables must be resolved,
since the scope s cannot escape. If the system contains polymorphic types, we can also define a
generalization function that generalize all unsolved unification variables to universal quantifiers.

Let us turn to the advantages and design decisions of our implementation. Similar to the neural
network example, our unification algorithm benefits from the composability of different effects: an
umbrella effect subst, a named effect variable, and a built-in effect pure corresponding to Haskell’s
notion of purity (i.e., exceptions and divergence). The algorithm also shows the usefulness of
first-class handler names: observe how names are passed as constructor arguments and extracted
via pattern matching. Furthermore, the algorithm relies on dynamic generation of named handlers
for the unifiable variable’s, which requires an umbrella effect.

8 RELATED WORK

Algebraic Effects and Handlers. The algebraic account of effects was first given by Plotkin and
Power [2003], and later extended by Plotkin and Pretnar [2009] with handlers. In the subsequent
years, we have seen a number of programming languages dedicated to effect handlers, including
Eff [Pretnar 2015], Koka [Leijen 2017], Frank [Lindley et al. 2017], Links [Hillerström and Lind-
ley 2016], Multicore OCaml [Dolan et al. 2017], and Effekt [Brachthäuser et al. 2020]. Recent work
by Wu et al. [2014] introduces scoped syntax to control the interaction between effects, but it
is fundamentally different from the scoped effects in our systems. Our systems are syntactically
similar to the effect system of Xie et al. [2020], which is based on System F𝜔 . The difference is that
we have named handlers and scoped effects as additional features. The concept of umbrella effects
comes from the work by Leijen [2018]. The novelty of our work is that we formalize umbrella
effects as a combination of named handlers and scoped effects, and thus maintain safety guarantees.

Named Handlers. The name escaping challenge described above has previously been addressed
by two studies [Biernacki et al. 2019; Zhang and Myers 2019]. Among them, Biernacki et al. [2019]
constrain the use of handler names in the following way. At the level of syntax, they introduce a
new binder for names, as well as a corresponding application form (Figure 15). They then enforce
second-class use of handler names by restricting the position where names can appear. At the level
of typing, they use a typing judgment that carries an additional environment, containing names
that are currently in scope. They also lift handler names to the type level and make them explicit in
effect types. By designing the calculus in this way, they obtain the desired property: if a program is
judged well-typed and effect-free, then the program does not get stuck at runtime.
The other related study, which is due to Zhang and Myers [2019], treats handler names as a

capability to access a stack region. Their approach to well-scopedness is similar to that of Biernacki
et al. [2019]. First, they impose a syntactic restriction on the use of handler names. Second, they
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v ::= x | 𝜆x . e | Λ𝛼. e | 𝜆𝜆a. e
e ::= v | e e | e a | performa op v | handlera h e

Fig. 15. Syntax of Biernacki et al.

use a simple form of region typing [Tofte and Talpin 1997] to keep track of handler names. The
resulting calculus has proven sound with respect to contextual refinement via a logical relation.
While the existing approaches solve the name escaping problem, there are some limitations as

well. First, the non-standard binding and typing mechanisms make it harder to incorporate named
handlers into an existing type checker. In particular, one has to carefully consider the interaction
with other type system features (such as higher-rank types). Second, the syntactic restrictions make
it impossible to use handler names as first-class values. That is, one cannot return a handler name
from a function (e.g., 𝜆h. h), pass a name to a datatype constructor (e.g., Just h), or create a tuple of
names (e.g., (h1, h2)). This limits the expressiveness of the calculus and they cannot encode the
examples shown in Section 7 for example.

Effect Instances. In an old version of the Eff language [Bauer and Pretnar 2014 2015], there was the
concept of effect instances, which essentially play the same role as named handlers. Effect instances
in Eff are first-class, and can be created dynamically during evaluation. However, the dynamic
creation feature is omitted in the formalization, because it lead to łsignificant complications, both in
the effect system and in semanticsž. Also, as with [Biernacki et al. 2019] and [Zhang andMyers 2019],
the type system is not fully stratified as instance names can appear in effect types.

Multi-prompt Control Operators. The notion of named handlers is also closely related to multi-
prompt delimited control operators [Gunter et al. 1995; Kiselyov 2012; Shan 2007; Sitaram 1993].
When programming with these operators, one can specify the intended association between the
control operator and the delimiter through prompt tags. An implication of this connection is that
prompt tags suffer from the same problem with handler names: without special care, prompt tags
may escape their scope during evaluation. However, none of the existing type systems for multi-
prompt control operators statically ensures well-scopedness of prompt tags [Gunter et al. 1995;
Kiselyov 2012; Takikawa et al. 2013].

Rank-2 Polymorphism and Encapsulation. As we discussed in Section 3.2.2, our approach to well-
scopedness of handler names draws inspiration from Haskell’s runST. Semmelroth and Sabry [1999]
incorporate a direct-style counterpart of runST into a subset of ML, and establish a relationship
between monadic encapsulation and effect masking. Timany et al. [2017] design a logical relations
model of a higher-order functional programming language featuring a Haskell-style ST monad
type with runST, and prove the encapsulation ability obtained by rank-2 types.

Dynamic References as Algebraic Effects. An algebraic-effect-based implementation of dynami-
cally created reference cells has previously given by Kiselyov and Sivaramakrishnan [2017]. Their
implementation is in OCaml, and uses a library for multi-prompt delimited control operators [Kise-
lyov 2012]. Like us, they treat creation of a new reference cell as an effect. Unlike us, they do not
prevent the escaping of references, since OCaml does not have effect typing.

9 CONCLUSION

In this paper, we explored the design space of named effect handlers, where handler names are
first-class and well-scoped. The first-class status is obtained by using regular lambdas to bind names,
while the well-scoped guarantee is gained by assigning handlers a rank-2 type. We implemented
named handlers in the Koka language, and demonstrated their usefulness through examples. We
look forward to investigating new programming techniques enabled by named effect handlers and
first-class handler names.
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