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Abstract. Bi-directional type checking has proved to be an extremely
useful and versatile tool for type checking and type inference. The con-
ventional presentation of bi-directional type checking consists of two
modes: inference mode and checked mode. In traditional bi-directional
type-checking, type annotations are used to guide (via the checked mode)
the type inference/checking procedure to determine the type of an ex-
pression, and type information flows from functions to arguments.

This paper presents a variant of bi-directional type checking where the
type information flows from arguments to functions. This variant retains
the inference mode, but adds a so-called application mode. Such design
can remove annotations that basic bi-directional type checking cannot,
and is useful when type information from arguments is required to type-
check the functions being applied. We present two applications and de-
velop the meta-theory (mostly verified in Coq) of the application mode.

1 Introduction

Bi-directional type checking has been known in the folklore of type systems
for a long time. It was popularized by Pierce and Turner’s work on local type
inference [29]. Local type inference was introduced as an alternative to Hindley-
Milner (henceforth HM system) type systems [11, 17], which could easily deal
with polymorphic languages with subtyping. Bi-directional type checking is one
component of local type inference that, aided by some type annotations, en-
ables type inference in an expressive language with polymorphism and subtyp-
ing. Since Pierce and Turner’s work, various other authors have proved the ef-
fectiveness of bi-directional type checking in several other settings, including
many different systems with subtyping [12, 15, 14], systems with dependent
types [38, 10, 2, 21, 3], and various other works [1, 13, 28, 7, 22]. Furthermore,
bi-directional type checking has also been combined with HM-style techniques
for providing type inference in the presence of higher-ranked types [27, 14].
The key idea in bi-directional type checking is simple. In its basic form typing
is split into inference and checked modes. The most salient feature of a bi-
directional type-checker is when information deduced from inference mode is
used to guide checking of an expression in checked mode. One of such interactions



between modes happens in the typing rule for function applications:

F}—€1:>A—>B I'Feo A
I'tFeies = B

APP

In the above rule, which is a standard bi-directional rule for checking applica-
tions, the two modes are used. First we synthesize (=) the type A — B from e,
and then check (<) es against A, returning B as the type for the application.

This paper presents a variant of bi-directional type checking that employs a
so-called application mode. With the application mode the design of the appli-
cation rule (for a simply typed calculus) is as follows:

I'kFey = A I'Mv,Ate; = A— B
INvtre es = B

APP

In this rule, there are two kinds of judgments. The first judgment is just the
usual inference mode, which is used to infer the type of the argument e;. The
second judgment, the application mode, is similar to the inference mode, but it
has an additional context ¥. The context ¥ is a stack that tracks the types of
the arguments of outer applications. In the rule for application, the type of the
argument e, is inferred first, and then pushed into ¥ for inferring the type of e;.
Applications are themselves in the application mode, since they can be in the
context of an outer application. With the application mode it is possible to infer
the type for expressions such as (A\x. x) 1 without additional annotations.

Bi-directional type checking with an application mode may still require type
annotations and it gives different trade-offs with respect to the checked mode
in terms of type annotations. However the different trade-offs open paths to
different designs of type checking/inference algorithms. To illustrate the utility
of the application mode, we present two different calculi as applications. The
first calculus is a higher ranked implicit polymorphic type system, which infers
higher-ranked types, generalizes the HM type system, and has polymorphic let
as syntactic sugar. As far as we are aware, no previous work enables an HM-style
let construct to be expressed as syntactic sugar. For this calculus many results
are proved using the Coq proof assistant [9], including type-safety. Moreover a
sound and complete algorithmic system, inspired by Peyton Jones et al. [27],
is also developed. A second calculus with explicit polymorphism illustrates how
the application mode is compatible with type applications, and how it adds
expressiveness by enabling an encoding of type declarations in a System-F-like
calculus. For this calculus, all proofs (including type soundness), are mechanized
in Coq.

We believe that, similarly to standard bi-directional type checking, bi-directional
type checking with an application mode can be applied to a wide range of type
systems. Our work shows two particular and non-trivial applications. Other po-
tential areas of applications are other type systems with subtyping, static over-
loading, implicit parameters or dependent types.



In summary the contributions of this paper are':

— A variant of bi-directional type checking where the inference mode is
combined with a new, so-called, application mode. The application mode
naturally propagates type information from arguments to the functions.

— A new design for type inference of higher-ranked types which gen-
eralizes the HM type system, supports a polymorphic let as syntactic sugar,
and infers higher rank types. We present a syntax-directed specification, an
elaboration semantics to System F, some meta-theory in Coq, and an algo-
rithmic type system with completeness and soundness proofs.

— A System-F-like calculus as a theoretical response to the challenge noted
by Pierce and Turner [29]. It shows that the application mode is compatible
with type applications, which also enables encoding type declarations. We
present a type system and meta-theory, including proofs of type safety and
uniqueness of typing in Coq.

2 Overview

2.1 Background: Bi-Directional Type Checking

Traditional type checking rules can be heavyweight on annotations, in the sense
that lambda-bound variables always need explicit annotations. Bi-directional
type checking [29] provides an alternative, which allows types to propagate down-
ward the syntax tree. For example, in the expression (Af:Int — Int. £) (\y.
y), the type of y is provided by the type annotation on f£. This is supported by
the bi-directional typing rule for applications:

FF(il:}A*)B I'k ey A
I'teies = B

APP

Specifically, if we know that the type of e; is a function from A — B, we can check
that es has type A. Notice that here the type information flows from functions
to arguments.

One guideline for designing bi-directional type checking rules [15] is to dis-
tinguish introduction rules from elimination rules. Constructs which correspond
to introduction forms are checked against a given type, while constructs cor-
responding to elimination forms infer (or synthesize) their types. For instance,
under this design principle, the introduction rule for pairs is supposed to be in
checked mode, as in the rule PAIR-C.

I'Fe A I'F ey B I'te = A I'tey, = B
PAIR-C PAIR-1
'+ (61,82) (A,B) I+ (61,62) = (A,B)

Unfortunately, this means that the trivial program (1, 2) cannot type-check,
which in this case has to be rewritten to (1, 2) : (Int , Int).

1 All supplementary materials are available in https://bitbucket.org/ningningxie/
let-arguments-go-first
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In this particular case, bi-directional type checking goes against its original
intention of removing burden from programmers, since a seemingly unnecessary
annotation is needed. Therefore, in practice, bi-directional type systems do not
strictly follow the guideline, and usually have additional inference rules for the
introduction form of constructs. For pairs, the corresponding rule is PAIR-I.

Now we can type check (1, 2), but the price to pay is that two typing rules
for pairs are needed. Worse still, the same criticism applies to other constructs.
This shows one drawback of bi-directional type checking: often to minimize anno-
tations, many rules are duplicated for having both inference and checked mode,
which scales up with the typing rules in a type system.

2.2 Bi-Directional Type Checking with the Application Mode

We propose a variant of bi-directional type checking with a new application mode.
The application mode preserves the advantage of bi-directional type checking,
namely many redundant annotations are removed, while certain programs can
type check with even fewer annotations. Also, with our proposal, the inference
mode is a special case of the application mode, so it does not produce duplications
of rules in the type system. Additionally, the checked mode can still be easily
combined into the system (see Section 5.1 for details). The essential idea of
the application mode is to enable the type information flow in applications to
propagate from arguments to functions (instead of from functions to arguments
as in traditional bi-directional type checking).

To motivate the design of bi-directional type checking with an application
mode, consider the simple expression

(Ax. x) 1

This expression cannot type check in traditional bi-directional type checking
because unannotated abstractions only have a checked mode, so annotations are
required. For example, ((Ax. x) : Int — Int) 1.

In this example we can observe that if the type of the argument is accounted
for in inferring the type of Ax. x, then it is actually possible to deduce that the
lambda expression has type Int — Int , from the argument 1.

The Application Mode. If types flow from the arguments to the function, an
alternative idea is to push the type of the arguments into the typing of the
function, as the rule that is briefly introduced in Section 1:

FF€2:>A FIW,AF€1:>A*>B
INvkre e, = B

APP

Here the argument e, synthesizes its type A, which then is pushed into the
application context ¥. Lambda expressions can now make use of the application
context, leading to the following rule:

Ir:AWtke = B
Ny, AkXz.e = A— B

LAM



The type A that appears last in the application context serves as the type for x,
and type checking continues with a smaller application context and x:A in the
typing context. Therefore, using the rule App and LAM, the expression (\x.
x) 1 can type-check without annotations, since the type Int of the argument 1
is used as the type of the binding x.

Note that, since the examples so far are based on simple types, obviously
they can be solved by integrating type inference and relying on techniques like
unification or constraint solving. However, here the point is that the application
mode helps to reduce the number of annotations without requiring such sophis-
ticated techniques. Also, the application mode helps with situations where those
techniques cannot be easily applied, such as type systems with subtyping.

Interpretation of the Application Mode. As we have seen, the guideline for de-
signing bi-directional type checking [15], based on introduction and elimination
rules, is often not enough in practice. This leads to extra introduction rules in
the inference mode. The application mode does not distinguish between intro-
duction rules and elimination rules. Instead, to decide whether a rule should be
in inference or application mode, we need to think whether the expression can be
applied or not. Variables, lambda expressions and applications are all examples
of expressions that can be applied, and they should have application mode rules.
However pairs or literals cannot be applied and should have inference rules. For
example, type checking pairs would simply lead to the rule PAIR-I. Nevertheless
elimination rules of pairs could have non-empty application contexts (see Sec-
tion 5.2 for details). In the application mode, arguments are always inferred first
in applications and propagated through application contexts. An empty appli-
cation context means that an expression is not being applied to anything, which

allows us to model the inference mode as a particular case?.

Partial Type Checking. The inference mode synthesizes the type of an expression,
and the checked mode checks an expression against some type. A natural question
is how do these modes compare to application mode. An answer is that, in some
sense: the application mode is stronger than inference mode, but weaker than
checked mode. Specifically, the inference mode means that we know nothing
about the type an expression before hand. The checked mode means that the
whole type of the expression is already known before hand. With the application
mode we know some partial type information about the type of an expression:
we know some of its argument types (since it must be a function type when the
application context is non-empty), but not the return type.

Instead of nothing or all, this partialness gives us a finer grain notion on
how much we know about the type of an expression. For example, assume
e: A — B — C. In the inference mode, we only have e. In the checked mode, we
have both e and A — B — C. In the application mode, we have e, and maybe

2 Although the application mode generalizes the inference mode, we refer to them as
two different modes. Thus the variant of bi-directional type checking in this paper
is interpreted as a type system with both inference and application modes.



an empty context (which degenerates into inference mode), or an application
context A (we know the type of first argument), or an application context B, A
(we know the types of both arguments).

Trade-offs. Note that the application mode is not conservative over traditional
bidirectional type checking due to the different information flow. However, it
provides a new design choice for type inference/checking algorithms, especially
for those where the information about arguments is useful. Therefore we next
discuss some benefits of the application mode for two interesting cases where
functions are either variables; or lambda (or type) abstractions.

2.3 Benefits of Information Flowing from Arguments to Functions

Local Constraint Solver for Function Variables. Many type systems, including
type systems with implicit polymorphism and/or static overloading, need infor-
mation about the types of the arguments when type checking function variables.
For example, in conventional functional languages with implicit polymorphism,
function calls such as (id 3) where id: Va. (a — a), are pervasive. In such a
function call the type system must instantiate a to Int. Dealing with such im-
plicit instantiation gets trickier in systems with higher-ranked types. For example,
Peyton Jones et al. [27] require additional syntactic forms and relations, whereas
Dunfield and Krishnaswami [14] add a special purpose application judgment.
With the application mode, all the type information about the arguments be-
ing applied is available in application contexts and can be used to solve instanti-
ation constraints. To exploit such information, the type system employs a special
subtyping judgment called application subtyping, with the form ¥ - A < B. Un-
like conventional subtyping, computationally ¥ and A are interpreted as inputs
and B as output. In above example, we have that Int - Va.a — a < B and we
can determine that a = Int and B = Int — Int. In this way, type system is able
to solve the constraints locally according to the application contexts since we no
longer need to propagate the instantiation constraints to the typing process.

Declaration Desugaring for Lambda Abstractions. An interesting consequence of
the usage of an application mode is that it enables the following let sugar:

let x = e; in es ~ (A\x. e3) e

Such syntactic sugar for let is, of course, standard. However, in the context of
implementations of typed languages it normally requires extra type annotations
or a more sophisticated type-directed translation. Type checking (Az. e2) ey
would normally require annotations (for example an annotation for x), or other-
wise such annotation should be inferred first. Nevertheless, with the application
mode no extra annotations/inference is required, since from the type of the ar-
gument ej it is possible to deduce the type of x. Generally speaking, with the
application mode annotations are never needed for applied lambdas. Thus let
can be the usual sugar from the untyped lambda calculus, including HM-style
let expression and even type declarations.



2.4 Application 1: Type Inference of Higher-Ranked Types

As a first illustration of the utility of the application mode, we present a calculus
with implicit predicative higher-ranked polymorphism.

Higher-ranked Types. Type systems with higher-ranked types generalize the tra-
ditional HM type system, and are useful in practice in languages like Haskell or
other ML-like languages. Essentially higher-ranked types enable much of the ex-
pressive power of System F, with the advantage of implicit polymorphism. Com-
plete type inference for System F is known to be undecidable [37]. Therefore,
several partial type inference algorithms, exploiting additional type annotations,
have been proposed in the past instead [25, 15, 31, 27].

Higher-ranked Types and Bi-directional Type Checking. Bi-directional type check-
ing is also used to help with the inference of higher-ranked types [27, 14]. Con-
sider the following program:

\f. (£ 1, £ °c’)) (Ax. x)

which is not typeable under those type systems because they fail to infer the type
of f, since it is supposed to be polymorphic. Using bi-directional type checking,
we can rewrite this program as

((Af. (£ 1, £ °¢c’)) : (WVa. a — a) — (Int, Char)) (Ax . x)

Here the type of f can be easily derived from the type signature using checked
mode in bi-directional type checking. However, although some redundant an-
notations are removed by bi-directional type checking, the burden of inferring
higher-ranked types is still carried by programmers: they are forced to add poly-
morphic annotations to help with the type derivation of higher-ranked types.
For the above example, the type annotation is still provided by programmers,
even though the necessary type information can be derived intuitively without
any annotations: f is applied to Ax. x, which is of type Va. a — a.

Generalization. Generalization is famous for its application in let polymorphism
in the HM system, where generalization is adopted at let bindings. Let polymor-
phism is a useful component to introduce top-level quantifiers (rank 1 types)
into a polymorphic type system. The previous example becomes typeable in the
HM system if we rewrite it to: let £ = Ax. x in (f 1, f ’c’).

Type Inference for Higher-ranked Types with the Application Mode. Using our
bi-directional type system with an application mode, the original expression can
type check without annotations or rewrites: (Af. (£ 1, £ ’c’)) (Ax. x).

This result comes naturally if we allow type information flow from arguments
to functions. For inferring polymorphic types for arguments, we use generaliza-
tion. In the above example, we first infer the type Va. a — a for the argument,
then pass the type to the function. A nice consequence of such an approach
is that HM-style polymorphic let expressions are simply regarded as syntactic
sugar to a combination of lambda/application:



let x = e1 in e3 ~ (Ax. e3) e

With this approach, nested lets can lead to types which are more general than
HM. For example, let s = Ax. x in let t = \y. s in e. The type of s is Va.
a — a after generalization. Because t returns s as a result, we might expect
t: Vb. b — (Va. a — a), which is what our system will return. However, HM
will return type t: Vb. Va. b — (a — a), as it can only return rank 1 types,
which is less general than the previous one according to Odersky and Laufer’s
subtyping relation for polymorphic types [24].

Conservativity over the Hindley-Milner Type System. Our type system is a con-
servative extension over the Hindley-Milner type system, in the sense that every
program that can type-check in HM is accepted in our type system, which is
explained in detail in Section 3.2. This result is not surprising: after desugaring
let into a lambda and an application, programs remain typeable.

Comparing Predicative Higher-ranked Type Inference Systems. We will give a
full discussion and comparison of related work in Section 6. Among those works,
we believe the work by Dunfield and Krishnaswami [14], and the work by Pey-
ton Jones et al. [27] are the most closely related work to our system. Both their
systems and ours are based on a predicative type system: universal quantifiers
can only be instantiated by monotypes. So we would like to emphasize our sys-
tem’s properties in relation to those works. In particular, here we discuss two
interesting differences, and also briefly (and informally) discuss how the works
compare in terms of expressiveness.

1) Inference of higher-ranked types. In both works, every polymorphic type
inferred by the system must correspond to one annotation provided by the pro-
grammer. However, in our system, some higher-ranked types can be inferred
from the expression itself without any annotation. The motivating expression
above provides an example of this.

2) Where are annotations needed? Since type annotations are useful for in-
ferring higher rank types, a clear answer to the question where annotations are
needed is necessary so that programmers know when they are required to write
annotations. To this question, previous systems give a concrete answer: only on
the binding of polymorphic types. Our answer is slightly different: only on the
bindings of polymorphic types in abstractions that are not applied to arguments.
Roughly speaking this means that our system ends up with fewer or smaller
annotations.

3) Expressiveness. Based on these two answers, it may seem that our system
should accept all expressions that are typeable in their system. However, this
is not true because the application mode is mot conservative over traditional
bi-directional type checking. Consider the expression (AMf : (Va. a — a) —
(Int, Char). £) (\g. (g 1, g ’a’)), which is typeable in their system. In this
case, even if g is a polymorphic binding without a type annotation the expression
can still type-check. This is because the original application rule propagates the
information from the outer binding into the inner expressions. Note that the fact



that such expression type-checks does not contradict their guideline of providing
type annotations for every polymorphic binder. Programmers that strictly follow
their guideline can still add a polymorphic type annotation for g. However it does
mean that it is a little harder to understand where annotations for polymorphic
binders can be omitted in their system. This requires understanding how the
applications in checked mode operate.

In our system the above expression is not typeable, as a consequence of
the information flow in the application mode. However, following our guideline
for annotations leads to a program that can be type-checked with a smaller
annotation: (Af. £) (\g : (Va. a — a). (g 1, g ’a’)). This means that our
work is not conservative over their work, which is due to the design choice of the
application typing rule. Nevertheless, we can always rewrite programs using our
guideline, which often leads to fewer/smaller annotations.

2.5 Application 2: More Expressive Type Applications

The design choice of propagating arguments to functions was subject to consid-
eration in the original work on local type inference [29], but was rejected due to
possible non-determinism introduced by explicit type applications:

“It is possible, of course, to come up with examples where it would be
beneficial to synthesize the argument types first and then use the result-
ing information to avoid type annotations in the function part of an
application expression.... Unfortunately this refinement does not help in-
fer the type of polymorphic functions. For example, we cannot uniquely
determine the type of x in the expression (fun[X](x) e) [Int] 3.7 [29]

Therefore, as a response to this challenge, our second application is a variant
of System F. Our development of the calculus shows that the application mode
can actually work well with calculi with explicit type applications. To explain
the new design, consider the expression:

(Aa. Xx : a. x + 1) Int

which is not typeable in the traditional type system for System F. In System
F the lambda abstractions do not account for the context of possible function
applications. Therefore when type checking the inner body of the lambda ab-
straction, the expression x + 1 is ill-typed, because all that is known is that x
has the (abstract) type a.

If we are allowed to propagate type information from arguments to functions,
then we can verify that a = Int and x + 1 is well-typed. The key insight in the
new type system is to use application contexts to track type equalities induced
by type applications. This enables us to type check expressions such as the body
of the lambda above (x + 1). Therefore, back to the problematic expression
(fun[X](x) e) [Int] 3, the type of x can be inferred as either X or Int since they
are actually equivalent.
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Sugar for Type Synonyms. In the same way that we can regard let expressions
as syntactic sugar, in the new type system we further gain built-in type synonyms
for free. A type synonym is a new name for an existing type. Type synonyms
are common in languages such as Haskell. In our calculus a simple form of type
synonyms can be desugared as follows:

type a = Aine ~ (Aa. e) A

One practical benefit of such syntactic sugar is that it enables a direct en-
coding of a System F-like language with declarations (including type-synonyms).
Although declarations are often viewed as a routine extension to a calculus, and
are not formally studied, they are highly relevant in practice. Therefore, a more
realistic formalization of a programming language should directly account for
declarations. By providing a way to encode declarations, our new calculus en-
ables a simple way to formalize declarations.

Type Abstraction. The type equalities introduced by type applications may seem
like we are breaking System F type abstraction. However, we argue that type
abstraction is still supported by our System F variant. For example:

let inc = Aa. Ax : a. x + 1 in inc Int e

(after desugaring) does not type-check, as in a System-F like language. In our
type system lambda abstractions that are immediatelly applied to an argument,
and unapplied lambda abstractions behave differently. Unapplied lambda ab-
stractions are just like System F abstractions and retain type abstraction. The
example above illustrates this. In contrast the typeable example (Aa. Ax : a.

x + 1) Int, which uses a lambda abstraction directly applied to an argument,
can be regarded as the desugared expression for type a = Int in Ax : a . x + 1.

3 A Polymorphic Language with Higher-Ranked Types

This section first presents a declarative, syntax-directed type system for a lambda
calculus with implicit higher-ranked polymorphism. The interesting aspects about
the new type system are: 1) the typing rules, which employ a combination of
inference and application modes; 2) the novel subtyping relation under an appli-
cation context. Later, we prove our type system is type-safe by a type directed
translation to System F[16, 27] in Section 3.4. Finally an algorithmic type system
is discussed in Section 3.5.

3.1 Syntax
The syntax of the language is:

Expr ex=z|n|iz:A e|dz.eler e
Type A,B :=a|A— B|Va.A|lnt
Monotype Tu=alTm = 72|Int

Typing Context I =go|Lz: A

Application Context ¥ == @ |V, A
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Expressions. Expressions e include variables (), integers (n), annotated lambda
abstractions (Az : A. e), lambda abstractions (Az. e), and applications (e; ez).
Letters z,y, 2z are used to denote term variables. Notably, the syntax does not
include a let expression (letz = ejines). Let expressions can be regarded as
the standard syntax sugar (Az. e2) eq, as illustrated in more detail later.

Types. Types include type variables (a), functions (A — B), polymorphic types
(Va.A) and integers (Int). We use capital letters (A, B) for types, and small letters
(a,b) for type variables. Monotypes are types without universal quantifiers.

Contexts. Typing contexts I are standard: they map a term variable z to its
type A. We implicitly assume that all the variables in I" are distinct. The main
novelty lies in the application conterts ¥, which are the main data structure
needed to allow types to flow from arguments to functions. Application contexts
are modeled as a stack. The stack collects the types of arguments in applications.
The context is a stack because if a type is pushed last then it will be popped first.
For example, inferring expression e under application context (a,Int), means e
is now being applied to two arguments ey, es, with ey : Int, e5 : a, so e should be
of type Int — a — A for some A.

3.2 Type System

The top part of Figure 1 gives the typing rules for our language. The judgment
I' ¥ Fe = Bisread as: under typing context I, and application context ¥,
e has type B. The standard inference mode I' - e = B can be regarded as a
special case when the application context is empty. Note that the variable names
are assumed to be fresh enough when new variables are added into the typing
context, or when generating new type variables.

Rule T-VAR says that if = : A is in the typing context, and A is a subtype of
B under application context ¥, then x has type B. It depends on the subtyping
rules that are explained in Section 3.3. Rule T-INT shows that integer literals
are only inferred to have type Int under an empty application context. This is
obvious since an integer cannot accept any arguments.

T-LAM shows the strength of application contexts. It states that, without
annotations, if the application context is non-empty, a type can be popped from
the application context to serve as the type for x. Inference of the body then
continues with the rest of the application context. This is possible, because the
expression A\z. e is being applied to an argument of type A, which is the type at
the top of the application context stack. Rule T-LAM2 deals with the case when
the application context is empty. In this situation, a monotype 7 is guessed for
the argument, just like the Hindley-Milner system.

Rule T-LAMANNI works as expected with an empty application context: a
new variable x is put with its type A into the typing context, and inference
continues on the abstraction body. If the application context is non-empty, then
the rule T-LAMANN2 applies. It checks that C' is a subtype of A before putting
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I' vke = B

rz:Ael A <: B
T-VAR —  T-INT
INvrz = B I'Fn = Int

Iz:A¥tke = B Ix:7-e = B
T-LAM T-LAam2
Nv,A-Xx.e = A— B I'Xx.e = 71— B

I'c:Ate = B
I'FM:A.e = A—>B

T-LAMANN1

C < A Iz:A\Wkte = B a = ftv(A) — ftv(I")
T-LAMANN2 T-GEN
Nwv,Ckxx:Ae = C— B Tyen(A) = Va.A

ke = A I'yen(A) =B ' v.Bktey, = B—C
INvtke e = C

A <: B

——  S-INT S-VAR — S-ForaLLR
Int <: Int a <: a A <: Va.B

T-App

Ala— 7] <: B C < A B <: D
————————— S-FORALLL S-FuN
Va.A <: B A—-B < C—=D

YHFA < B

U,C+ Afla— 1] <: B
S-EMPTY S-FORALLL2

OFA < A v.C+FVYa.A <: B

C < A VB <: D
v.CFA—-B <: C—D

S-Fun2

Fig. 1. Syntax-directed typing and subtyping.

x : A in the typing context. However, note that it is always possible to remove
annotations in an abstraction if it has been applied to some arguments.

Rule T-APP pushes types into the application context. The application rule
first infers the type of the argument e, with type A. Then the type A is gener-
alized in the same way that types in let expressions are generalized in the HM
type system. The resulting generalized type is B. The generalization is shown
in rule T-GEN, where all free type variables are extracted to quantifiers. Thus
the type of ey is now inferred under an application context extended with type
B. The generalization step is important to infer higher ranked types: since B
is a possibly polymorphic type, which is the argument type of e, then e; is of
possibly a higher rank type.
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Let Expressions. The language does not have built-in let expressions, but in-
stead supports let as syntactic sugar. The typing rule for let expressions in the
HM system is (without the gray-shaded part):

F}_€1:>A1 Fgen(Al)ZAQ F,J,‘IAQIW "62:>B
I'¥ Fletz=e¢1ine; = B

T-LET

where we do generalization on the type of e;, which is then assigned as the
type of x while inferring es. Adapting this rule to our system with application
contexts would result in the gray-shaded part, where the application context is
only used for e, because es is the expression being applied. If we desugar the let
expression (let z = ey ines) to ((Az. e2) e1), we have the following derivation:

x:A 1 Wtey = B
I'Fe = A1 Fgen(Al):A2 FI!F,AQ}—)\CE. €y = A2—>B
vk (Az.ex)ey = B

T-Lam

T-App

The type A is now pushed into application context in rule T-APP, and then
assigned to x in T-LAM. Comparing this with the typing derivations with rule
T-LET, we now have same preconditions. Thus we can see that the rules in
Figure 1 are sufficient to express an HM-style polymorphic let construct.

Meta-theory. The type system enjoys several interesting properties, especially
lemmas about application contexts. Before we present those lemmas, we need a
helper definition of what it means to use arrows on application contexts.

Definition 1 (¥ — B). If ¥ = Ay, As, ..., Ay, then ¥ — B means the function
type A, — ... > Ay > A1 — B.

Such definition is useful to reason about the typing result with application
contexts. One specific property is that the application context determines the
form of the typing result.

Lemma 1 (¥ Coincides with Typing Results). If I' 1 ¥ F e = A, then
for some A’, we have A=W — A'.

Having this lemma, we can always use the judgment ' 1 W Fe = ¥ — A’
instead of I' 1 W e = A.

In traditional bi-directional type checking, we often have one subsumption
rule that transfers between inference and checked mode, which states that if an
expression can be inferred to some type, then it can be checked with this type. In
our system, we regard the normal inference mode I' e = A as a special case,
when the application context is empty. We can also turn from normal inference
mode into application mode with an application context.

Lemma 2 (Subsumption). If 'te = ¥ — A, then ' W ke = ¥ — A.
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The relationship between our system and standard Hindley Milner type sys-
tem can be established through the desugaring of let expressions. Namely, if e is
typeable in Hindley Milner system, then the desugared expression |e| is typeable
in our system, with a more general typing result.

Lemma 3 (Conservative over HM). If I' M ¢ = A then for some B,
we have I' = le| = B, and B <: A.

3.3 Subtyping

We present our subtyping rules at the bottom of Figure 1. Interestingly, our
subtyping has two different forms.

Subtyping. The first judgment follows Odersky and Laufer [24]. A <: B means
that A is more polymorphic than B and, equivalently, A is a subtype of B. Rules
S-INT and S-VAR are trivial. Rule S-FORALLR states A is subtype of Va.B only
if Ais a subtype of B, with the assumption a is a fresh variable. Rule S-FORALLL
says Va.A is a subtype of B if we can instantiate it with some 7 and show the
result is a subtype of B. In rule S-FUN, we see that subtyping is contra-variant
on the argument type, and covariant on the return type.

Application Subtyping. The typing rule T-VAR uses the second subtyping judg-
ment ¥ F A <: B. To motivate this new kind of judgment, consider the ex-
pression id 1 for example, whose derivation is stuck at T-VAR (here we assume
id:Va.a »a€cl):

id:Va.a >acl 77
I'+1 = Int Tgen(Int) = Int ITilntkid =
I'+idl =

T-VAr

T-App

Here we know that id : Va.a — a and also, from the application context, that
id is applied to an argument of type Int. Thus we need a mechanism for solving
the instantiation a = Int and return a supertype Int — Int as the type of id. This
is precisely what the application subtyping achieves: resolve instantiation con-
straints according to the application context. Notice that unlike existing works
[27, 14], application subtyping provides a way to solve instantiation more locally,
since it does not mutually depend on typing.

Back to the rules in Figure 1, one way to understand the judgment ¥ F
A <: B from a computational point-of-view is that the type B is a computed
output, rather than an input. In other words B is determined from ¥ and A. This
is unlike the judgment A <: B, where both A and B would be computationally
interpreted as inputs. Therefore it is not possible to view A <: B as a special
case of W F A <: B where ¥ is empty.

There are three rules dealing with application contexts. Rule S-EMPTY is
for case when the application context is empty. Because it is empty, we have no
constraints on the type, so we return it back unchanged. Note that this is where
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HM systems (also Peyton Jones et al. [27]) would normally use a rule INST to
remove top-level quantifiers:

Va.A <: Alaw— 7] e

Our system does not need INST, because in applications, type information flows
from arguments to the function, instead of function to arguments. In the latter
case, INST is needed because a function type is wanted instead of a polymorphic
type. In our approach, instantiation of type variables is avoided unless necessary.

The two remaining rules apply when the application context is non-empty,
for polymorphic and function types respectively. Note that we only need to
deal with these two cases because Int or type variables a cannot have a non-
empty application context. In rule S-FORALL2, we instantiate the polymorphic
type with some 7, and continue. This instantiation is forced by the application
context. In rule S-FUN2, one function of type A — B is now being applied to an
argument of type C. So we check C <: A. Then we continue with B and the
rest application context, and return C' — D as the result type of the function.

Meta-theory. Application subtyping is novel in our system, and it enjoys some
interesting properties. For example, similarly to typing, the application context
decides the form of the supertype.

Lemma 4 (¥ Coincides with Subtyping Results). If ¥ - A <: B, then
for some B', B=W¥ — B'.

Therefore we can always use the judgment ¥ = A <: ¥ — B’ instead of ¥ I
A <: B. Application subtyping is also reflexive and transitive. Interestingly,
in those lemmas, if we remove all applications contexts, they are exactly the
reflexivity and transitivity of traditional subtyping.

Lemma 5 (Reflexivity). V¥ - A <: ¥ — A.

Lemma 6 (Transitivity). If o1 F A <: ¥ - B, and ¥, - B <: ¥y — C,
then J/Q,’;pl FA < U, = Uy — C.

Finally, we can convert between subtyping and application subtyping. We
can remove the application context and still get a subtyping relation:

Lemma 7 (¥ F <:to <:). If ¥+ A <: B, then A <: B.

Transferring from subtyping to application subtyping will result in a more
general type.

Lemma 8 (<: to ¥ + <:). If A <. ¥ — By, then for some By, we have
A < ¥ — By, and By <: Bj.

This lemma may not seem intuitive at first glance. Consider a concrete ex-
ample Int — Va.a <: Int — Int, and Int - Int = Va.a <: Int — Va.a. The
former one, holds because we have Va.a <: Int in the return type. But in the
latter one, after Int is consumed from application context, we eventually reach
S-EMPTY, which always returns the original type back.



16

3.4 Translation to System F, Coherence and Type-Safety

We translate the source language into a variant of System F that is also used in
Peyton Jones et al. [27]. The translation is shown to be coherent and type safe.
Due to space limitations, we only summarize the key aspects of the translation.
Full details can be found in the supplementary materials of the paper.

The syntax of our target language is as follows:

Expressions s, f = x| n|Ax: A s| Aa.s|s1 s2]s1 A

In the translation, we use f to refer to the coercion function produced by
the subtyping translation, and s to refer to the translated term in System F. We
write I' ' s : A to mean the term s has type A in System F.

The type-directed translation follows the rules in Figure 1, with a translation
output in the forms of judgments. We summarize all judgments as:

Judgment Translation Output Soundness
A < B~ f coercion function f o f:A—> B
UEFA <: B~ f coercion function f o f:A— B
N'vkre = A~s target expression s I'Hfs: A

For example, A <: B ~» f means that if A <: B holds in the source lan-
guage, we can translate it into a System F term f, which is a coercion function
and has type A — B. We prove that our system is type safe by proving that the
translation produces well-typed terms.

Lemma 9 (Typing Soundness). If ' 1 W ke = A~ s, then [Fs: A,

However, there could be multiple targets corresponding to one expression due
to the multiple choices for 7. To prove that the translation is coherent, we prove
that all the translations for one expression have the same operational semantics.
We write |e| for the expressions after type erasure since types are useless after
type checking. Because multiple targets could have different number of coercion
functions, we use 7-id equality [5] instead of syntactic equality, where two ex-
pressions are regarded as equivalent if they can turn into the same expression
through n-reduction or removal of redundant identity functions. We then prove
that our translation actually generates a unique target:

Lemma 10 (Coherence). IfI'1 1W1Fe = A~ s, andly 1P be = B~
then |si| ~>yid |52

3.5 Algorithmic System

Even though our specification is syntax-directed, it does not directly lead to an
algorithm, because there are still many guesses in the system, such as in rule
T-LAM2. This subsection presents a brief introduction of the algorithm, which

52,
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essentially follows the approach by Peyton Jones et al. [27]. Full details can be
found in the supplementary materials.

Instead of guessing, the algorithm creates meta type variables &, B\ which are
waiting to be solved. The judgment for the algorithmic type system is (Sp, Np) |
I' ke = A< (5),N;). Here we use N as name supply, from which we
can always extract new names. We use S as a notation for the substitution that
maps meta type variables to their solutions. For example, rule T-LLAM2 becomes

(So,No) 1 Iz : BFe = A< (S1,Ny)
(So,NoB) I TFAz. e = B— A< (S1,Ny)

AT-Lam1l

Comparing it to rule T-LAM2, 7 is replaced by a new meta type variable B
from name supply Nof. But despite of the name supply and substitution, the
rule retains the structure of T-LAM2.

Having the name supply and substitutions, the algorithmic system is a direct
extension of the specification in Figure 1, with a process to do unifications that
solve meta type variables. Such unification process is quite standard and similar
to the one used in the Hindley-Milner system. We proved our algorithm is sound
and complete with respect to the specification.

Theorem 1 (Soundness). If ([|, No) 1 I'Fe = A < (S1,N1), then for any
substitution V' with dom(V') = fmwv (811, S1A), we have VSiI'+e = VSiA.

Theorem 2 (Completeness). If I' - e = A, then for a fresh Ny, we have
(I, No) 1 I' e = B < (S1,N1), and for some Sz, we have I'(S251B) <: I'(A).

4 More Expressive Type Applications

This section presents a System-F-like calculus, which shows that the application
mode not only does work well for calculi with explicit type applications, but it
also adds interesting expressive power, while at the same time retaining unique-
ness of types for explicitly polymorphic functions. One additional novelty in this
section is to present another possible variant of typing and subtyping rules for
the application mode, by exploiting the lemmas presented in Sections 3.2 and 3.3.

4.1 Syntax

We focus on a new variant of the standard System F. The syntax is as follows:

Expr ex=z|n|Az:A e|x.eler ex]| Aa.e|e [A]
Type Au=allnt|A— B|Va.A

Typing Context I' =g |Lz:A|Tla|la=A

| W, AP, [A]

Application Context ¥ ::
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M)A = A (Iw:BYA = (I')A
(Ia)A = (I'A (I'a = B)A = (I')(Afa — BI)

Fig. 2. Apply contexts as substitutions on types.
acl Ir'+A I'+B I'ak A

WF-TVAr WF-INT ——————— WF-ARROW ———— WF-ALL
I'Fa I'FInt I'-A—B I'Va.A

Fig. 3. Well-formedness.

The syntax is mostly standard. Expressions include variables x, integers n,
annotated abstractions Az : A. s, unannotated abstractions Az. e, applications
e1 e, type abstractions Aa.s, and type applications e; [A]. Types includes type
variable a, integers Int, function types A — B, and polymorphic types Va.A.

The main novelties are in the typing and application contexts. Typing con-
texts contain the usual term variable typing x : A, type variables a, and type
equations a = A, which track equalities and are not available in System F. Ap-
plication contexts use A for the argument type for term-level applications, and
use [A] for the type argument itself for type applications.

Applying Contexts. The typing contexts contain type equations, which can be
used as substitutions. For example, a = Int,z : Int,b = Bool can be applied to
a — b to get the function type Int — Bool. We write (I")A for I" applied as a
substitution to type A. The formal definition is given in Figure 2.

Well-formedness. The type well-formedness under typing contexts is given in
Figure 3, which is quite straightforward. Notice that there is no rule correspond-
ing to type variables in type equations. For example, a is not a well-formed type
under typing context a = Int, instead, (a = Int)a is. In other words, we keep the
invariant: types are always fully substituted under the typing context.

The well-formedness of typing contexts I' ctr, and the well-formedness of
application contexts I' - ¥ can be defined naturally based on the well-formedness
of types. The specific definitions can be found in the supplementary materials.

4.2 Type System

Typing Judgments. From Lemma 1 and Lemma 4, we know that the application
context always coincides with typing/subtyping results. This means that the
types of the arguments can be recovered from the application context. So instead
of the whole type, we can use only the return type as the output type. For
example, we review the rule T-LAM in Figure 1:

Iz:AVYke = B Ie:AVke = C
T-LaM T-LAM-ALT
Nv,AFXz.e = A— B I'v,AbXz.e = C
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I' vke = B

I ctz r~v rz:Ael VA <: B I ctz
SF-VAR ——— SF-INT
' vrxz = B I'Fn = Int
I'z:(I"YA+e = B
SF-LAMANN1
I'tXx:A e = (IH"A—B
z:(INA/¥te = B I''e:A\Wke = B
SF-LAMANN2 SF-LAM
rw(rArXxx:A. e = B ' v,A-Xx.e = B
I'Fe = A ' v, Ate = B Iake = B
SF-App SF-TLAaM1
' Ykte e = B I'+ Aa.e = Va.B
INa=A ¥te = B v [(I'Alke = B
SF-TLAM2 SF-TApp
I' v, [AlF Aae = B I'vrel[A = B
UHA <: B
A < AT
Ut Blla— A] <: C B <: C
SF-STAprP SF-SAprp
U, [AlFVa.B <: C UV, ArA—- B <: C

Fig. 4. Type system for the new System F variant.

We have B =¥ — (C for some C by Lemma 1. Instead of B, we can directly
return C as the output type, since we can derive from the application context
that e is of type ¥ — C, and Az. e is of type (¥, A) — C. Thus we obtain the
T-LAM-ALT rule.

Note that the choice of the style of the rules is only a matter of taste in the
language in Section 3. However, it turns out to be very useful for our variant of
System F, since it helps avoiding introducing types like Ya = Int.a. Therefore,
we adopt the new form of judgment. Now the judgment I' | ¥ F e = A is
interpreted as: under the typing context I', and the application context ¥, the
return type of e applied to the arguments whose types are in ¥ is A.

Typing Rules. Using the new interpretation of the typing judgment, we give the
typing rules in the top of Figure 4. SF-VAR depends on the subtyping rules.
Rule SF-INT always infers integer types. Rule SF-LAMANNI first applies cur-
rent context on A, then puts x : (I')A into the typing context to infer e. The
return type is a function type because the application context is empty. Rule
SF-LAMANN2 has a non-empty application context, so it requests that the type
at the top of the application context is equivalent to (I")A. The output type
is B instead of a function type. Notice how the invariant that types are fully
substituted under the typing context is preserved in these two rules.
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Rule SF-LAM pops the type A from the application context, puts x : A into
the typing context, and returns only the return type B. In rule SF-APP, the
argument type A is pushed into the application context for inferring e, so the
output type B is the type of e; under application context (¥, A), which is exactly
the return type of e; e under V.

Rule SF-TLaM1 is for type abstractions. The type variable a is pushed
into the typing context, and the return type is a polymorphic type. In rule SF-
TLAM2, the application context has the type argument A at its top, which means
the type abstraction is applied to A. We then put the type equation a = A into
the typing context to infer e. Like term-level applications, here we only return
the type B instead of a polymorphic type. In rule SF-TAPP, we first apply the
typing context on the type argument A, then we put the applied type argument
(I'YA into the application context to infer e, and return B as the output type.

Subtyping. The definition of subtyping is given at the bottom of Figure 4. As with
the typing rules, the part of argument types corresponding to the application
context is omitted in the output. We interpret the rule form ¥ - A <: B as,
under the application context ¥, A is a subtype of the type whose type arguments
are ¥ and the return type is B.

Rule SF-SEMPTY returns the input type under the empty application con-
text. Rule SF-STAPP instantiates a with the type argument A, and returns C.
Note how application subtyping can be extended naturally to deal with type
applications. Rule SF-SAPP requests that the argument type is the same as the
top type in the application context, and returns C.

4.3 Meta Theory

Applying the idea of the application mode to System F results in a well-behaved
type system. For example, subtyping transitivity becomes more concise:

Lemma 11 (Subtyping Transitivity). If¥1 + A <: B, and %2+ B <: C,
then Wy, Wy + A < C.

Also, we still have the interesting subsumption lemma that transfers from the
inference mode to the application mode:

Lemma 12 (Subsumption). If I'te = A, and 'V, and P+ A <: B,
then ' ¥ +e = B.

Furthermore, we prove the type safety by proving the progress lemma and
the preservation lemma. The detailed definitions of operational semantics and
values can be found in the supplementary materials.

Lemma 13 (Progress). If @+ e = T, then either e is a value, or there exists

e’, such that e — ¢’.

Lemma 14 (Preservation). If ' 1 W +e = A, ande — €/, then I' 1 ¥ |
e = A.
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Moreover, introducing type equality preserves unique types:

Lemma 15 (Uniqueness of typing). If ' 1 W F e = A, and ' 1 ¥ F
e = B, then A= B.

5 Discussion

This section discusses possible design choices regarding bi-directional type check-
ing with the application mode, and talks about possible future work.

5.1 Combining Application and Checked Modes

Although the application mode provides us with alternative design choices in
a bi-directional type system, a checked mode can still be easily added. One
motivation for the checked mode would be annotated expressions e : A, where
the type of expressions is known and is therefore used to check expressions.
Consider adding e : A for introducing the third checked mode for the lan-
guage in Section 3. Notice that, since the checked mode is stronger than appli-
cation mode, when entering checked mode the application context is no longer
useful. Instead we use application subtyping to satisfy the application context
requirements. A possible typing rule for annotation expressions is:

vHFA < B I'k-e A
InNvk(e:A) = B

T-ANN

Here, e is checked using its annotation A, and then we instantiate A to B using
subtyping with application context V.

Now we can have a rule set of the checked mode for all expressions. For
example, one useful rule for abstractions in checked mode could be ABS-CHK,
where the parameter type A serves as the type of x, and typing checks the
body with B. Also, combined with the information flow, the checked rule for
application checks the function with the full type.

Ix:Ale B I'kFey; = A I'kep A— B
ABs-CHK AprpP-CHK

I'FMXx. e A— B I'Fey e B

Note that adding expression annotations might bring convenience for pro-
grammers, since annotations can be more freely placed in a program. For exam-
ple, (A\f. £ 1) : (Int — Int) — Int becomes valid. However this does not add
expressive power, since programs that are typeable under expression annotations,
would remain typeable after moving the annotations to bindings. For example
the previous program is equivalent to (Af : (Int — Int). £ 1).

This discussion is a sketch. We have not defined the corresponding declarative
system nor algorithm. However we believe that the addition of a checked mode
will not bring surprises to the meta-theory.
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5.2 Additional Constructs

In this section, we show that the application mode is compatible with other
constructs, by discussing how to add support for pairs in the language given
in Section 3. A similar methodology would apply to other constructs like sum
types, data types, if-then-else expressions and so on.

The introduction rule for pairs must be in the inference mode with an empty
application context. Also, the subtyping rule for pairs is as expected.

I'Fe = A I'tey = B A1 <. B A2 <: By
T-PAIR S-PAIR
F}—(el,eg) = (A,B) (A17A2) < (Bl,Bg)

The application mode can apply to the elimination constructs of pairs. If one
component of the pair is a function, for example, (fst (Az. z,3) 4), then it is
possible to have a judgment with a non-empty application context. Therefore,
we can use the application subtyping to account for the application contexts:

I'e = (A,B) VA < C I'e = (A,B) vi-B < C
T-Fst1 T-SND1
INvkfst e = C I'YkEsnd e = C

However, in polymorphic type systems, we need to take the subsumption rule
into consideration. For example, in the expression (Az : (Va.(a,b)). fst x), fst
is applied to a polymorphic type. Interestingly, instead of a non-deterministic
subsumption rule, having polymorphic types actually leads to a simpler solution.
According to the philosophy of the application mode, the types of the arguments
always flow into the functions. Therefore, instead of regarding (fst e) as an
expression form, where e is itself an argument, we could regard fst as a function
on its own, whose type is (Vab.(a,b) — a). Then as in the variable case, we use
the subtyping rule to deal with application contexts. Thus the typing rules for
fst and snd can be modeled as:

Uk (Vab.(a,b) »a) <: A ¥+ (Vab.(a,b) - b) <: A

T-FsT2 T-SND2
Nvkfst = A INvkEsnd = A

Note that another way to model those two rules would be to simply have an
initial typing environment I';,;4:q; = fst : (Vab.(a,b) — a),snd : (Vab.(a,b) — b).
In this case the elimination of pairs be dealt directly by the rule for variables.

An extended version of the calculus presented in Section 3, which includes
the rules for pairs (T-PAIR, S-PAIR, T-FsT2 and T-SND2), has been formally
studied. All the theorems presented in Section 3 hold with the extension of pairs.

5.3 Dependent Type Systems

One remark about the application mode is that the same idea is possibly appli-
cable to systems with advanced features, where type inference is sophisticated
or even undecidable. One promising application is, for instance, dependent type
systems [38, 10, 2, 21, 3]. Type systems with dependent types usually unify the
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syntax for terms and types, with a single lambda abstraction generalizing both
type and lambda abstractions. Unfortunately, this means that the let desugar
is not valid in those systems. As a concrete example, consider desugaring the
expression leta = Intin Ax : a. x + 1 into (Ma. Ax : a. x + 1) Int, which is ill-
typed because the type of x in the abstraction body is a and not Int.

Because let cannot be encoded, declarations cannot be encoded either. Mod-
eling declarations in dependently typed languages is a subtle matter, and nor-
mally requires some additional complexity [34].

We believe that the same technique presented in Section 4 can be adapted
into a dependently typed language to enable a let encoding. In a dependent type
system with unified syntax for terms and types, we can combine the two forms
in the typing context (z : A and ¢ = A) into a unified form x = e : A. Then
we can combine two application rules SF-App and SF-TAPP into DE-APP, and
also two abstraction rules SF-LAM and SF-TLAMI into DE-LAM.

I'tey = A I'i¥,eg:AFey = B INr=e1:A¥YkFe = B

DE-App DE-LAM
I'Ykees = B I'ive :AFXx.e = B

With such rules it would be possible to handle declarations easily in depen-
dent type systems. Note this is still a rough idea and we have not fully worked
out the typing rules for this type system yet.

6 Related Work

6.1 Bi-Directional Type Checking

Bi-directional type checking was popularized by the work of Pierce and Turner
[29]. It has since been applied to many type systems with advanced features. The
alternative application mode introduced by us enables a variant of bi-directional
type checking. There are many other efforts to refine bi-directional type checking.

Colored local type inference [25] refines local type inference for ezplicit poly-
morphism by propagating partial type information. Their work is built on dis-
tinguishing inherited types (known from the context) and synthesized types (in-
ferred from terms). A similar distinction is achieved in our algorithm by ma-
nipulating type variables [14]. Also, their information flow is from functions to
arguments, which is fundamentally different from the application mode.

The system of tridirectional type checking [15] is based on bi-directional type
checking and has a rich set of property types including intersections, unions and
quantified dependent types, but without parametric polymorphism. Tridirec-
tional type checking has a new direction for supporting type checking unions
and existential quantification. Their third mode is basically unrelated to our
application mode, which propagates information from outer applications.

Greedy bi-directional polymorphism [13] adopts a greedy idea from Cardelli
[4] on bi-directional type checking with higher ranked types, where the type
variables in instantiations are determined by the first constraint. In this way,
they support some uses of impredicative polymorphism. However, the greediness
also makes many obvious programs rejected.
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System Types Impred Let Annotations

ML flexible and rigid yes yes on polymorphically used parameters

HML flexible F-types yes yes  on polymorphic parameters

FPH boxy F-types yes yes  on polymorphic parameters and some
let bindings with higher-ranked types

Peyton Jones|F-types no yes on polymorphic parameters

et al. (2007)

Dunfield et al.|F-types no no  on polymorphic parameters

(2013)

this paper F-types no sugar on polymorphic parameters that are
not applied

Fig. 5. Comparison of higher-ranked type inference systems.

6.2 Type Inference for Higher-Ranked Types

As a reference, Figure 5 [20, 14] gives a high-level comparison between related
works and our system.

Predicative Systems. Peyton Jones et al. [27] developed an approach for type in-
ference for higher rank types using traditional bi-directional type checking based
on Odersky and Laufer [24]. However in their system, in order to do instantia-
tion on higher rank types, they are forced to have an additional type category (p
types) as a special kind of higher rank type without top-level quantifiers. This
complicates their system since they need to have additional rule sets for such
types. They also combine a variant of the containment relation from Mitchell
[23] for deep skolemisation in subsumption rules, which we believe is compatible
with our subtyping definition.

Dunfield and Krishnaswami [14] build a simple and concise algorithm for
higher ranked polymorphism based on traditional bidirectional type checking.
They deal with the same language of Peyton Jones et al. [27], except they do
not have let expressions nor generalization (though it is discussed in design
variations). They have a special application judgment which delays instantiation
until the expression is applied to some argument. As with application mode, this
avoids the additional category of types. Unlike their work, our work supports
generalization and HM-style let expressions. Moreover the use of an application
mode in our work introduces several differences as to when and where annota-
tions are needed (see Section 2.4 for related discussion).

Impredicative Systems. MLY [18, 32, 19] generalizes ML with first-class poly-
morphism. ML introduces a new type of bounded quantification (either rigid
or flexible) for polymorphic types so that instantiation of polymorphic bindings
is delayed until a principal type is found. The HML system [20] is proposed as
a simplification and restriction of MLY. HML only uses flexible types, which
simplifies the type inference algorithm, but retains many interesting properties
and features.
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The FPH system [36] introduces boxy monotypes into System F types. One
critique of boxy type inference is that the impredicativity is deeply hidden in the
algorithmic type inference rules, which makes it hard to understand the interac-
tion between its predicative constraints and impredicative instantiations [31].

6.3 Tracking Type Equalities

Tracking type equalities is useful in various situations. Here we discuss specifi-
cally two related cases where tracking equalities plays an important role.

Type Equalities in Type Checking. Tracking type equalities is one essential
part for type checking algorithms involving Generalized Algebraic Data Types
(GADTS) [6, 26, 33]. For example, Peyton Jones et al. [26] propose a type infer-
ence algorithm based on unification for GADTs, where type equalities only apply
to user-specified types. However, reasoning about type equalities in GADTs is
essentially different from the approach in Section 4: type equalities are intro-
duced by pattern matches in GADTSs, while they are introduced through type
applications in our system. Also, type equalities in GADTs are local, in the
sense different branches in pattern matches have different type equalities for the
same type variable. In our system, a type equality is introduced globally and
is never changed. However, we believe that they can be made compatible by
distinguishing different kinds of equalities.

Equalities in Declarations. In systems supporting dependent types, type equal-
ities can be introduced by declarations. In the variant of pure type systems pro-
posed by Severi and Poll [34], expressions 2 = a : A in b generate an equality
x = a : A in the typing context, which can be fetched later through J-reduction.
However, d-reduction rules require careful design, and the conversion rule of -
reduction makes the type system non-deterministic. One potential usage of the
application mode is to help reduce the complexity for introducing declarations
in those type systems, as briefly discussed in Section 5.3.

7 Conclusion

We proposed a variant of bi-directional type checking with a new application
mode, where type information flows from arguments to functions in applications.
The application mode is essentially a generalization of the inference mode, can
therefore work naturally with inference mode, and avoid the rule duplication
that is often needed in traditional bi-directional type checking. The application
mode can also be combined with the checked mode, but this often does not
add expressiveness. Compared to traditional bi-directional type checking, the
application mode opens a new path to the design of type inference/checking.
We have adopted the application mode in two type systems. Those two sys-
tems enjoy many interesting properties and features. However as bi-directional
type checking can be applied to many type systems, we believe application mode
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is applicable to various type systems. One obvious potential future work is to
investigate more systems where the application mode brings benefits. This in-
cludes systems with subtyping, intersection types [30, 8], static overloading, or
dependent types.
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A Appendix Overview

This sections gives an overview introduction of the following several appendixes.

A.1 Appendix B

This appendix is a full description of the translation process shown in Section 3.4.

A.2 Appendix C

This appendix gives more definitions about Section 4, including a full definition
of well-formedness of contexts, and operational semantics.

A.3 Appendix D

Appendix D gives two proofs that complement the Coq code, where two lemmas
about generalization are proved.

Section D.1 This section defines the notations that are used in proofs, including
arrows on application contexts, and subtyping on typing contexts and application
contexts.

Section D.2 This section gives lemmas that are used in proofs. Those lemmas
are all proved in Coq code. For the reference, here is the lists of all the lemmas:

Lemma 21 Helper Lemmas (lemma:denv_sub_binds in DEnvSub.v)
Lemma 22 Helper Lemmas (lemma:dsub_stack_typ in DeclSound.v)
Lemma 23 Helper Lemmas (lemma:dsub_weaker_stack in DeclSound.v)
Lemma 24 Helper Lemmas (lemma:dsub_stack_to_plain in DeclSound.v)
Lemma 25 Helper Lemmas (lemma:dsub_plain_to_stack in DeclSound.v)
Lemma 26 Helper Lemmas (lemma:sub_trans in DeclSound.v)

Lemma 27 Helper Lemmas (lemma:dsub_subst_stack_var in DeclSound.v)
Lemma 28 Helper Lemmas (lemma:dgen_sub in DeclSound.v)

Lemma 29 Helper Lemmas (lemma:dtyping_stack_typ in DeclSound.v)
Lemma 30 Helper Lemmas (lemma:dtyping_subst_tvar in DeclSound.v)
. Lemma 31 Helper Lemmas (lemma:dgen_subst_tvar in DeclSound.v)

— =
= O © X NoOUE WD

Section D.3 The section includes proofs for two lemmas that cannot easily be
proved through Coq code.

1. Lemma 32 Proof (lemma:dgen_exists in HMPreserve.v)
2. Lemma 33 Proof (lemma:dtyping_size_weaken_helper in HMPreserve.v)

Section D.4 This section extends the original proofs to account for pairs.
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A.4 Appendix E

Appendix E gives the algorithmic system and proves its soundness and com-
pleteness with respect to the specification.

Section E.1 This section introduces the name supply N and substitution S,
which are used as input and output in the algorithms.

Section E.2 The algorithmic system is given in this section, which extends the
specification to give deterministic results. The components of the algorithm in-
clude:

1. Section E.2 Unification

2. Section E.2 Arrow Unification
3. Section E.2 Subtyping

4. Section E.2 Typing

Section E.3 The main proofs about the algorithmic system is in this section,
which contains all the auxiliary lemmas (Section E.3  Auxiliary), and the
proof of soundness (Section E.3 Soundness) and completeness (Section E.3
Completeness).

— Theorem 3 Soundness
e Lemma 37 Soundness
e Lemma 38 Soundness
e Lemma 39 Soundness
e Lemma 40 Soundness
e Lemma 41 Soundness

— Theorem 4 Completeness
e Lemma 47 Completeness
e Lemma 48 Completeness
e Lemma 49 Completeness
e Lemma 50 Completeness

Section E.4 This section extends the algorithmic type system and all the proofs
to account for the addition of pairs.
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I'tfe: B

z:Ael INz: A+ e: B
—F  F-Var —F — — F-Int o F-LAMANN
I'="z:A I'" n:int ' MAx:A. e:A— B

I'fe:o a ¢ ftu(I) I'tfe :4-B I'tFfey: A
Vo F-BLAM Va F-Aprp
I'F" Aa.e:Va.o I'+"eiex: B

r+f e1 : Va.A

i F-TApp
I't" e1 B: AJa— B]

Fig. 6. System F Typing.

B Translation

This section discusses the type-directed translation of the source language pre-
sented in Section 3 into a variant of System F [16] that is also used in Pey-
ton Jones et al. [27]. The translation is shown to be coherent and type safe. The
later result implies the type-safety of the source language. To prove coherency,
we need to decide when two translated terms are the same using 7n-id equality,
and show that the translation is unique up to this definition.

B.1 Target Language

Our target language is one variant of System F, which is the same as in the work
by Peyton Jones et al. [27]. The syntax is as follows:

Expressions s,fu=x|n|Ax:A s|Aa.s|sy s2|s1 A
Types A,B,C,D ::=a|A— B|Va.A|lInt
Typing Contexts ' :=g|lz:A

Expressions include variables x, integers n, annotated abstractions Az : A. s,
type-level abstractions Aa.s, and s; ss for term application, and s; A for type
application. The types and the typing contexts are the same as our system,
where typing contexts does not track type variables. In translation, we use f to
refer to the coercion function produced by subtyping translation, and s to refer
to the translated term in System F.

For reference, Figure 6 gives the typing rules for System F.

B.2 Subtyping Coercions

The type-directed translation of subtyping is shown in Figure 7. The translation
follows the subtyping relations from Figure 1, but adds a new component. The
judgment A <: B ~ f is read as: if A <: B holds, it can be translated to a
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S-INT S-VAR
Int <: Int ~ Az :Int. x a <: a~Ax:a x

A < B~ f
A <: VYa.B~ Ax: A Aa.f x

S-FORALLR

Ala— 7] <@ B~ f
Va.A <: B~ Az :Va.A. [ (z 1)

S-FORALLL

C<1Awf1 B<2Dwf2

- - S-Fun
A—-B <: C—oD~Xx:A—=B. Xy:C. f2 (x (fry))

‘WD—A < Bwf‘

S-EmMPTY

gHFA <: A~ Xx: Az

U,CkHAJla—71] < B~ f

S-FORrRALLL2
U,CFVa.A <: B~ Xx:Va.A f (z71)

C <: A~ fi UEB <t D~ fo

S-Fun2
VOFA—B < CoDw xt:AsB Ay C fao(z(fry)

Fig. 7. Subtyping translation to System F.

coercion function f in System F. The coercion function produced by subtyping
is used to transform values from one type to another. So, in theory, we should
have ) FF' f: A — B.

Rules S-INT and S-VAR produce identity functions, since the source type
and target type are the same. Rule S-FORALLR uses the coercion f and, in
order to produce a polymorphic type, we add one type abstraction to turn it
into a coercion of type A — Va.B. In rule S-FORALLL, the input argument is a
polymorphic type, so we feed the type 7 to it and apply the coercion function
f from the precondition. In S-FUN, the coercion function f; of type C' — A
is applied to y to get a value of type A. Then the resulting value becomes an
argument to x, and a value of type B is obtained. Finally we apply f> to the
value of type B, so that a value of type D is computed.

The second part of the subtyping translation deals with coercions generated
by subtyping with application contexts. The judgment W - A <: B~ f isread
as: if W = A <: B holds, it can be translated to a coercion function f in System
F. If we compare two parts, we can see application contexts play no role in the
generation of the coercion. Notice the similarity between S-VAR and S-EMPTY,
between S-FORALLR and S-FORALLR2, and between S-FUN and S-Fun2. We
therefore omit more explanations, since the translation is concise enough.
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B.3 Type-Directed Translation of Typing

The type directed translation of typing is shown in the Figure 8, which extends
the rules in Figure 1. The judgment I' 1 W Fe = A~ sisread as:if "1V
e = A holds, it can be translated to term s in System F.

In rule T-VAR, z is translated to f z, where f is the coercion function
generated from subtyping. In rule T-INT, integers remain integers. Rules T-LAM
and T-LAM2 work as expected. In rule T-LAMANN1, we use the translated body
to create a new abstraction. Rule T-LamAnn2 applies the coercion function f to
1y, then feeds y to the function generated from the abstraction body. Rule T-App
relies on rule T-GEN, the latter one will generate type-level abstractions on a
term. Notice T-GEN now takes an additional input: the coercion so resulting
from the translation of es.

B.4 Type Safety

To show type safety, we need to show that our translation produces terms that
are well typed under System F.

Lemma 16 (Soundness of Typing). if [ 1 Wt e = A~ s, then ' F s
A.

The lemma relies on the properties of translation of subtyping and general-
ization: subtyping translation produce type-correct coercions, and generalization
produce type-correct terms.

Lemma 17.

1.IfA <: B~ f, then@FF f: A— B.
2. IfUFA <: B~ f, then@+F f: A— B.
3. if THF 511 A, and Lgen(A,s51) = B ~ 59, then I' - sq: B.

B.5 Coherence

One problem with the translation is that there are multiple targets corresponding
to one expression. This is because in original system there are multiple choices
when instantiating a polymorphic type, or guessing the annotation for unan-
notated lambda abstraction (rule T-LAaM2). For each choice, the corresponding
target will be different. For example, expression Az. x can be type checked with
Int — Int, or @ — a, and the corresponding targets are Ax : Int. x, and Az : a. x.

Therefore, in order to prove the translation is coherent, we turn to prove
that all the translations have the same operational semantics. There are two
steps towards the goal: type erasure, and considering n expansion and identity
functions.
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’F|!7|—e = A~s

x:Ael VA <t B~ f

- T-VAR T-INT
nNvrkz = B~ fx I'tn = Int~n
INe: A ¥ke = B~s
T-LAM
NY,AFdx.e = A—- B~ Xx: A s
Ix:7He = B~s
T-LAamM2
I'tXx.e = 1T B~ Xx:7.5s
INz:AkFe = B~s
T-LAMANNI

I'FXx:A.e = A—- B~ Xx: A s

C <t A~ f Ie:Ai¥ke = B~s
Nv.Ckxzx:A.e = C—-B~Xy:C.(Ax:A s)(fy)

T-LAMANN2

a= ftv(A) — ftv(I)

T-G
Tyen(A,s) =Va.A — Aas

FF62:>AWSQ Fgen(A,SQ)IBW83 FIW,BF61:>B—>CWS1
F\Wl—eleg = Cwsl S3

T-App

Fig. 8. Typing translation to System F.

|z =z |Aa.s| = |s]|
In| =n Is1 s2| = [s1] [s2]
Az : A.s| = Az |s] [s1 A] = [s1]

Fig. 9. Type Erasure of System F.

Type Erasure. Since type information is useless after type-checking, we erase the
type information of the targets for comparison. The erasure process is defined in
Figure 9. The erasure process is standard, where we erase the type annotation in
abstractions, and remove type abstractions and type applications. The calculus
after erasure is the untyped lambda calculus.

n-id Fquality. However, even if we have type erasure, multiple targets for one
expression can still be syntactically different. The problem is that we can insert
more coercion functions in one translation than another, since an expression can
have a more polymorphic type in one derivation than another one. So we need
a more refined definition of equality instead of syntactic equality.

We use a similar definition of 7-id equality as in Chen [5], shown in Figure
10. In n-id equality, two expressions are regarded as equivalent if they can turn
into the same expression through n-reduction or removal of redundant identity
functions. n-id equality is reflexive, symmetrical, and transitive. As a small ex-
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ample illustrating 7-id equality we can show that Az. (Az. x) f  ~»,iq f holds
by ETA-REDUCE and ID-REDUCE.

€1 ~nid €2

z ¢ fto(e)
——————————— ETA-REDUCE ——————————— ID-REDUCE
AZ. € T ~piq € (Az. x) € ~pia €
/ / /
€1 “nid €1 €2 “nid €2 € ~nid €
7 ETa-App —— EmaA-ABs
€1 €2 ~pid €] € AZ. € ~pig AT. €
/
€ ~nid € €1 ~nid €2 €2 ~pid €3
ETA-REFL —— Era-Symm ETA-TRAN
€ ~nid € € ~nid € €1 ~nid €3

Fig. 10. nid equality in Erasure Target.

Now we first prove that the translation of subtyping is always 7-id equivalent
to identity function.

Lemma 18. if ' A <: B ~ f, then |f| ~pia (Az. x).
Moreover generalizations for one expression result in equivalent targets:
Lemma 19. if [gen (A, s1) = B ~ 59, then |s1] = |sa].

With these two lemmas, we can now prove our translation actually generates
only “one” target:

Lemma 20 (Coherence). IfI'1 1W1 ke = A~ sy, and 21 W be = B~ s,
then ‘51| Wmd ‘52|



36

I' ctx x ¢ r-A

WC-EMPTY WC-VAR
a ctx Iz : A ctx
I' ctx ag¢rl’ I' ctz ag¢l’ Ir-A
——  WC-TVar WC-TEQ
I a ctz I'a=A ctx

I'vw I'HA I'+vw I'HA
WA-EMPTY —— WA-Tvyp ———  WA-TVARr
I'+o J I'Fw,[A]

Fig. 11. Well-formedness of typing contexts and application contexts.

e]1 — €2
SF-ABsl SF-ABs2
(Az. e1) e2 —> e1z — e2] (Az: A. e1) ea —> e1]z — e2]
e — e'l e — 6/1
—  SF-App — _SF-TApp
e1 ea —> €] ez e1 [A] — e1 [4]

(Aa.e) [A] — ei1]a — A] SiiAvs

Fig. 12. Operational Semantics.

C Definitions for a Variant of System F

This section gives the definitions for the system in Section 4.

C.1 Well-formedness

The well-formedness of a typing context is given at the top of Figure 11. WC-
EMPTY states an empty context is always well-formed. WC-VAR requires the
variable is fresh and the type is well-formed under current typing context. Simi-
larly, WC-TVAR requires the type variable is fresh. WC-TEQ is for type equa-

tions and requires A is well-formed.

The well-formedness of an application context under a typing context is given
at the bottom of Figure 11. In WA-EMPTY, an empty application context is
always well-formed. Both in WA-TvYP and WA-TVAR, the type is required to

be well-formed.
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C.2 Operational Semantics

The operational semantics is given in Figure 12. SF-ABsl and SF-ABS2 do
beta-reduction. SF-APP takes one step in the application. SF-TAPP takes one
step in type application. SF-TABS does beta-reduction on types.

The operational semantics is call-by-name. The choice of evaluation strategy
is only a matter of taste.
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D Complementary Proof for Coq

Coq is proficient at list operation, but not at set. This is also because set is a
more subtle data structure than list: splitting a lists into two part is easy in Coq,
but splitting a set is not; equivalence between lists is easy to prove, but between
set is not.

Due to our definition of generalization, which heavily relies on set operations,
the definition of generalization in Coq is in a more inductive way:

ftv(A) — ftv(IN) = @ a € ftv(A) — fto(I") I'yen(Va.A, Aa.s) = B ~~ s
GEN1 T-GEN2

Tyen(A ) = A s Tyen(A ) = B — 55

With this definition, we are capable of proving lots of lemmas. However, there
are still two lemmas related to generalization we are not able to prove even under
this definition. So here we give the hand-written proofs in a mathematical style.

D.1 Notation

For simplification and clarity, we use some handy notations to help present the
proof.

For a application context ¥ contains A,,..., A, A1, and a type B, ¥ — B
means make the arrow type Ay — Ay — ... - A, — B.

We define subtyping relation on typing context and application context:

— It <: Iy: means Iy and I have the same domain, and all the types for
the same variable in I} is more general than I's.

— ¥y <: Wy means ¥; and ¥, have the same length, and all the types in the
same position in ¥ is more general than ¥,.

D.2 Helper Lemmas

During the proof, it will refers to some lemmas already proved in Coq. Here we
list the lemmas for reference. They can all be found in our Coq code.

Lemma 21 (Binds Environment Weakening). ifx : A € I'1, and [y <: I,
then 3B, that x : B € Iy, and B <: A.

Lemma 22 (Subtyping Stack Form). if ¥+ A <: B, then3C,B=¥ — C

Lemma 23 (Subtyping Stack Weakening). if 1 F A <: ¥; — B, and
Uy, <: Wy, then AC, that Wo F A <: Wy — C, and C <: B.

Lemma 24 (Subtyping Remove Stack). if - A <: B, then A <: B.

Lemma 25 (Subtyping Add Stack). if A <: ¥ — B, then 3C, that ¥
A< ¥U—-C,andC <: B
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Lemma 26 (Subtyping Transitivity).if A <: B,and B <: C,then A <: C.

Lemma 27 (Subtyping Substitution). if ¥ - A <: B, then Y[z — 7] F
Az — 1] < Bz — 7]

Lemma 28 (Generalization Subtyping). if I'ye,(A) = B, then B <: A.

Lemma 29 (Typing Stack Form). if I' 1 W + e = A, then 3B, that A =
¥ — B.

Lemma 30 (Typing Substitution). if I' 1 ¥ e = A, then L, that Vy, if
y¢ L, then I'lx =y 1Pz —y]Fe = Tlr—y].

This lemma is actually a weaker version of typing substitution, again due to
the complex of set operation related to generalization. But it is sufficient for the
proof’s purpose.

Lemma 31 (Generalization Substitution). if [;c,(A) = B, and b ¢ ftu(I, A),
then I'[a — b](AJa — b]) = Bla — b]

D.3 Proof

Lemma 32 (Generalization Existence). VE, ¢, we can generalize t under E
to Va.t, where @ = fto(t) — ftuv(E).

This lemma holds trivially from the principle of generalization. a

Lemma 33 (Generalization Weaken). if I 1 ¥ - e = ¥ — A, and
I, < I, and Wy <: Wy, and I'(A;) = As, and fto(¥1) C ftu(l1), and
fto(Wy) C ftv(Iy), then 3By, Bo, that I3 1 Ws Fe = Wy — By, and I3(By) =
BQ, and By <: A2.

We induction on the size of derivation, and then case analysis on the last
rule used in the derivation.

— Case VAR. According to the typing rule of variable and hypothesis, we have

e=zx (1)

z:Aely (2)

T A < W A (3)
As = Va.A; (4)

Where a = ftv(A;)— ftv(I1). Because we have fto(¥;) C ftv(I1),soa ¢ ¥.
Also, because A is the type for bound variable z in I, so a ¢ ftv(A).

By substituting @ to some b, where b ¢ ftv(E, F), with lemma subtyping
substitution(27), we get

U A < W — Ajfas b] (5)
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where ¥; and A stays the same because they do not have a.
Because we have Iy, <: I, from equation 2 and lemma 21, we have a B,
that
x:BeF (6)
B < A (7)
Because we have W, <: ¥y, from equation 5 and lemma 23, we get a Cf,
that

U b A < Uy — Oy (8)
Cy, <: Aifaws 0] (9)
Apply lemma 24 to equation 8, we get
A < U= Cy (10)
From subtyping transitivity (lemma 26) and equation 7 and 10, we get
B < ¥, = (11)
Continue by applying lemma 25, we get a Cs that
U B <: Wy — Cy (12)
Cy <: Cy (13)

According to lemma 32, we have Fyc,(C2). So feed Cy and F(Cs) to the
conclusion, what we want is

I 1Ube = Uy — (Cy (14)
F2gen(c2) = FQgen(CQ) (15)
Fggen(og) <: Va.As (16)

Equation 14 holds because we could apply typing rule with equation 6 and
12. Equation 15 holds trivially. So we deal with equation 16 now.
Because generalized result is more polymorphic than itself (lemma 28), so
we have
Fggen(CQ) <: CQ (17)
According to subtyping transitivity (lemma 26), from equationl7, 13 and 9,
we get
e, (Ca) < Arfa— b] (18)
Because from the principle of generalization, ftv(I3ge,(C2)) C ftv(I2), and
we have b ¢ ftv(I3), so
B ¢ ftv(F2gen(02)) (19)
I2gen(Ca) <: Vb.Asla — b] (20)
Equation 20 holds because b are themselves fresh to I, (C2), so we could
repeatedly apply rule S-FORALLR and use equation 18 to get the subtyping

relationship. B
Then by a renaming of b to a, equation 16 holds and we are done.
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— Case INT. According to the typing rule of integers and hypothesis, we have

e=1 (21)

U =W =1 (22)

A; =Int (23)

Ay = I gep(Int) = Int (24)

Directly follows by using typing rule of integers.
— Case LAMANN. According to the typing rule and hypothesis, we have, for
some C4, Csy,

e=Xx:C1. e (25)

U =Wy =10 (26)

A1 =C1 — Cy (27)

Iz:Ci ke = Oy (28)

Ay = T yon (Cy — Cy) = ¥a.Cy — C, (29)

where a = ftv(C1 — C3) — ftv(l1). Because C is a user defined type and
has no free variables, so @ = ftv(Csy) — ftv(I) = ftv(Cs) — ftu(I1,Ch). So

(Fl, x: Cl) (Cg) =Va.Cs. (30)

gen
Apply induction hypothesis to equation 28, with (I, : C1) <: (In,z :
C4), empty application contexts, equation 30, § C fitv(Iy,z : Cp), § C
fto(Ie,z : Cs), we get for some Dy,

Fg,x:Cll—el = Dy (31)
(FQ, xZ Cl)gen(Dl) = V6D1 (32)
vb.Dy <: Va.Co (33)

where b = ftv(Dy) — ftv(Ih,z : C1). Again because C is a used defined
type, so it contains no free type variables. So b = ftv(D1) — ftv(l2) =
ftv(Cy — Dy) — fto(I3) = b. So according to lemma 32, we have

I34en(C1 — Dy) =Vb.Cy — Dy (34)
What we want is
Iyyen(C1 = Dy) <i Igen(Cr— Co) (35)
Namely,
Vb.Cy — Dy <: VYa.Cy — Cy (36)

According to equation 33 and the covariant of function return type, equation
36 holds.
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Finally, feed C; — D; and vb.C1 — D7 to the conclusion, we could get what
we want is

IbvFXx:Ci.eq = C1— Dy (37)

This holds by applying the typing rule for annotated lambda with equation
31. And the rests are already proved (equation 36). So we are done.

Case LAMANN2. Similar to LAMANN case, with differences to deal with
application context. According to the typing rule and hypothesis, we have

e=Xx:Ci. e (38
Uy = (¥, Cy) 39
Cy < C} 40

)

)

)

Wy < (7],Ch) A1)
)
)

)

A~ N N~/

F1,$101|W{|—61:>!p{—>141 42
A2 = Flgen(Al) = Va.Al 43
fto(Py,Cs) C fto(I) 44

where @ = ftv(A;) — ftv(l1). Because Cy is a user defined type and has no
free variables, we get a = ftv(A4;) — ftv(I1,C1). So

(I, z: Cl)gen(Al) =Va.A;. (45)
Do inversion on equation 41, we get for some D; and ¥},
Wy =Wy, D (46)
D, < Cs (47)
v, < W (48)
From equation 44, it is easy to derive that
fto(¥y)) C fto(Iy,z: Cy) (49)
We have ftv(¥s) C ftv(Il:), combining equation 46, we can derive
fto(#3) C fto(Iz,z: C1) (50)

Applying hypothesis on equation 42, (Is,z : C; <: I,z :Cy)from (In <: Iy),

equation 45, equation 48, equation 49, equation 50, we get for some Ds,

I,z :CL 1 Wy ker = Wy — Do (51)
(FQ,I’ : Cl)gen(DQ) ZVBDQ (52)
VBDQ <: Vd.Al (53)

where b = ftv(Dy) — fto(Iy,z : C1). Again because Cy is a used defined
type, so it contains no free type variables. So b = ftv(Ds) — ftv(I3). So
according to lemma 32, we have

FQgen(D2) = vz3D2 (54)
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What we want is
Iogen(D2) < Igen(Ar) (55)
Namely,
Vb.Dy <: Va.A; (56)

which is exactly equation 53.
Finally, feed Dy and Vb.D5 to the conclusion, we could get what we want is

I 1O XAr:Ci.eqr = Yy — Dy (57)
Namely,
FQIWQ,DlF}\.’L‘ZC].el = Dl—)W£—>D2 (58)

This holds by applying the typing rule T-LAMANNZ2, with equation 51, and
use subtyping transitivity (lemma 26) on equation 47, 40 to get D; <: Ci.
The rest part of the conclusion is already proved (equation 56). So we are
done.

Case LAM. Similar to LAMANN2. According to the typing rule and hypoth-
esis, we have, for some Cy and ¥,

e=M\x. e (59)

o =W, C, (60)

N,z:CL ¥ ke = ¥ — A (61)
Ay = T yon(Ar) = Va. Ay (62)

Uy < ¥y, C4 (63)

fto(¥y,C1) C fto(I) (64)

where a = ftv(A4;) — ftv(I1). Because from equation 64 we know ftv(Cy) C
ft’U(Fl), we get a = ftU(Al) — ft’U(Fl, Cl) So

(F17.'1? : Cl>(A1> = V@.Al. (65)

Do inversion on equation 63, we get for some D; and W3,

Uy =W} Dy (66)
D1 <: 01 (67)
vy < W (68)

From equation 64, it is easy to derive that

fto(¥y)) C fto(Ih,z : Cy) (69)
We have ftv(¥;) C ftv([2), combining equation 66, we can derive

fto(3) C fto(Iy,x: Dy) (70)
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From ¥, <: ¥; and equation 67,
Ib,z: D1 < F17,’E201 (71)

Applying hypothesis on equation 61, equation 71, equation 65, equation 68,
equation 69, equation 70, we get for some Do,

FQ,ZL’ID1IWQ/F€1 = Wé‘)DQ (72)
(FQ, X . Dl)ge’n(D2) = VBDQ (73)
Vb.Dy <: Va.A; (74)

where b = ftu(Dy) — fto(I3,2 : Dy). From equation 66 and fto(¥s) C
fto(I2), we know ftv(D1) C ftv(I2). Sob = ftu(D3)—ftu(I3). So according
to lemma 32, we have

I yen(D2) = Vb.Ds (75)
What we want is
Iygen(D2) < Igen(Ar) (76)
Namely,
Vb.Dy <: Va.A; (77)

This is exactly equation 74.
Finally, feed Dy and Vb.D5 to the conclusion, we could get what we want is

I 1 Uo b Ax. ey = Wy — Doy (78)
Namely,
F2|W2/7D1|_)\$. e] = D1—>W2/—>D2 (79)

This holds by applying the typing rule T-LAM, with equation 72. The rest
part of the conclusion is already proved (equation 77). So we are done.
Case LAM2. According to the typing rule and hypothesis, we have, for some
7 and Cf,

e=M\x. e (80)

U =y =10 (81)

A =717—>Ch (82)

IN,z:7ke = 4 (83)

Ay = Tyen (1 — C1) =Var — Cy (84)

where @ = ftv(r — Cy) — ftu(I"). We could split @ into two part @ = a1 as,
where a; = ftv(r) — ftu(I") represents the free type variables in 7, and
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as = ftv(Cy) — ftu(I") — ftu(r) represents the free type variables in C and
gets rid of the repeated free variables appearing in both C; and 7.
According to lemma 30, we have a L we can use for substitution.

Consider fresh variables by ¢ (L U ftv(I'1,I»,7,C1)). Substitute a@; to by in
equation 83, where we already know that @, ¢ I,

Fl,xlT[[alHi)l]]l—el = Clﬂanglﬂ (85)
Because we have I, <: I7, so,
Do,z :7lay = by <: Iy,z:7la; — by (86)

Because ag = ftv(C1)— fto(I'y)— ftv(r), from the definition of generalization
(lemma 32), we get

Fl,(E :Tgen(cl) :an.Cl (87)

According to generalization substitution (lemma 31), we could substitute @,
to by in equation 87, because we already know by ¢ ftu(I,7,C1). And I
stays the same because a; ¢ ftv(I1)

(F,I : T[[Ell — Blﬂ) Cl[[fll — 61]]) = V&Q.Cl[[dl — 61]] (88)

gen(

Applying hypothesis to equation 85, 86, 88, with empty application contexts,
we get for some Cy

F27x:7[[&1»—>51]]}—61 = (4 (89)
I, x: T[[Ell — Blﬂgen(CQ) =Ve.Cy (90)
VE.CQ <: Vag.C’l[[dl — 61]] (91)

where & = ftv(Cy) — fto(I) — ftu(r]ay — bi]). )
Because 7 is a monotype, it is easy to derive 7[a; — b1] is a monotype.
From equation 89, applying the lam rule, we could get

I5F A r.ey = T[[(il — 61]] — Oy (92)

Feed (t[a; — b1] = Cs) and Iy, (7@ — b1] — C2) to the conclusion,
then what we want to prove is

Fggen(T[[ELl — Z)lﬂ — 02) <: Flgen(T — Ol) (93)
with Flgen(T — Cl) =Va.r — Cl = Valdg.’r — Cl, namely,
Fggen(T[[Eh — 61]] — 02) <: Vajas.m — Cy (94)

In order to get I g, (T[a1 — b1] — Cs), we need to know ftu(r[a, — bi] —
Cy) — ftu(Is), which can be split into (ftv(r[ar — b)) — ftv(I2)) +
(ftv(Cs) — fto(Iy) — ftu(r[ar — b1])) = (fto(r]ar — bi]) — fto(I2)) + ¢
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We know a; € ftv(r), so by € ftp(r[[&l > b1]). From equation 90, byne = 0.
And we know by ¢ ftv(I%). So by C (ftu(r]a — b1]) — ftv(I2)). Consider

by = (ftu(r[ay — b1]) — fto(Iy)) — by, then we get
Do gen(T[ar — b1] — Ca) = Vbobie.Co (95)
Substitute equation 95 into equation 94, now what we want to prove is
Vbobie.Cy <: Yaqas.Cq (96)
Surely,
Vbobie.Cy <: Vbye.Cy (97)
by repeatedly apply S-FORALLL. So we can turn to prove
Vbie.Cy <: Yaias.Cy (98)

and use subtyping transitivity (lemma 26) with equation 97, 98 to finish the
proof of equation 96.

In order to prove equation 98, notice we could « renaming @, to by, then it
becomes

Vi)lé.CQ <: V51&2.01ﬂ61 — 131]] (99)

By repeatedly use S-FORALLR and S-FORALLL, we could remove the b; and
get

Ve.Cy <: Vdg.C’l[[dl — i)lﬂ (100)

This is exactly equation 91 so we are done.
Case APP. According to the typing rule and hypothesis, we have, for some
€1, €2 and 017027

e=eg € (101)

ke = ) (102)

I gen(Cr) = Cy (103)

I, Cokbey = Cy— ¥ — Ay (104)
Ay = I gepn (A1) = Va. Ay (105)

Uy, < ¥ (106)

where a = ftv(A41) — fto(I1).
Applying hypothesis on equation 102 with empty application contexts, and
, Iy <. I7, we gets for some Dq and Da,

F2 [ e1 = D1 (107)

FQgen(Dl) = Ds (108)
Dy < (s (109)
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From ¥, <: ¥ and Dy <: (s, we get
Wy, Dy <: Wy, Ch (110)
Equation 104 can also be regarded as
I v, Cober = (U,03) = A (111)

From equation 103, because Cs is generalized type under I, so ftv(Cy) C
fto(I1). We know fto(¥1) C ftu(l1), so fto(¥y,Cy) C fto(Iy). Similarly,
ft’l)(@g, Dg) - ftv(F2>.

Apply hypothesis on equation 111, with I, <: I7, equation 110, we get for
some D3 and Dy

Iy |¢2,D2 Fel = (LDQ,DQ)*)Dg (112)
Dy = Ix(Ds) (113)
Dy <: Ya.A (114)

Feed D3 and D4 to the conclusion, we get what we want is

I5 1 Uy keleg = WQ‘)Dg (115)
D4 = FQgen(D3) (116)
Dy <: Va.A; (117)

Equation 116 and 117 are exactly equation 113 and 114. Equation 115 holds
because we can apply typing rule for application with equation 107, 108 and
112. So we are done.

O
D.4 Extension of Pairs
We have three more cases for the typing derivation.
— Case Pair. According to the typing rule of pair, we have
e=(e1,e2) (118)
U =90 (119)
Ay = (Cy,Cy) (120)
Ay =Va. Ay (121)
Where a = ftv(A;) — fto(I1). By Lemma 32, we have for some Cs, Cs,
Cy =11 (Cl) =Va;.Cq (122)
Cy,=11 (02) = Vas.Co (123)

Where a7 = ftv(Cy) — fto(I1), and a3 = ftv(Cy) — fto(I}), and a; Uas = a.
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Iykes = Dy (124)
Iy(Dy) = Dy = Vby.Dy (125)
IyFey = Dy (126)
I'y(Dy) = Dy = Vby.Dy (127)
It D3y <: Cy (128)
Dy <: Cy (129)

Where b, = ftv(D1) — fto(I%), and by = ftv(Dy) — fto(Iy).
So we have by ¢ ftv(I). By Lemma 30, there exists L. Choose fresh ¢ ¢ L,

we have
Iyie; = Difby — ] (130)
Iy(Dy[by — ¢]) = Ve.Dy (131)
So by typing rules for pair, combining with equation 130 and 126, we have
Iy - (e1,e2) = (Di]by v €], D2) (132)
Iy ((Dy[by = €], D2)) = Vebe.(Dy, Do) (133)

By alpha-equality on equation 128, we have
Iy Ve Dy <: Cs (134)
By equation 129 and equation 134, it is easy to verify that
Iy = Veby.(Dy, Dy) <: Va.(Cy,Co) (135)

What we want is equation 132 and 135 so we are done.
Case Fst. According to the typing rule of fst, we have

e =fst (136)
Uy FVab.(a,b) > a < U — A (137)
Ay = Ve Ay (138)

Where ¢ = ftv(A;)— ftv(I7). Because we have ftv(¥;) C ftu(I1),so ¢ ¢ ;.
By subtyping substitution (Lemma 27), for some fresh d, we have

¥y FVab.(a,b) = a <: ¥ — Ajé s d] (139)
By Lemma 23, and ¥, <: ¥, we have for some C,

Uy FVab.(a,b) »a <: ¥y — C (140)
C <: Ajfe—d] (141)
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Because generalized result is more polymorphic than itself (lemma 28), so
we have

FQgen(C) <. C (142)

According to subtyping transitivity (lemma 26), from equationl41, 142, we
get B
I, (C) < Are— d] (143)

Because from the principle of generalization, ftv(I%24.,(C)) C ftv(l3), and
we have d ¢ ftv(I3), so

d ¢ ftv(Lgen(C)) (144)

Doyen(C) <: Vd.Aqe— d] (145)

Equation 145 holds because d are themselves fresh to I, (C), so we could

repeatedly apply rule S-FORALLR and use equation 143 to get the subtyping

relationship. -
Then by a renaming of d to ¢, we have

FQQBn(C) < Vé.Al (146)

So by the typing rule of fst, equation 140 and 146 we are done.
— Case snd. Similar as fst.
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E Formalized Type Inference Algorithm

The specification given in the paper does not directly lead to an algorithm. So
here we give a formalized algorithm corresponding to our declarative system.
And we also prove it is sound and complete with respect to the declarative
system.

Our algorithm is based on the work by [27, 35], which is extended to deal with
application contexts in typing and subtyping. We have many components that
are similar to theirs. Specifically, the unification algorithm, the arrow unification
algorithm, and half of the subtyping algorithm are almost the same as theirs.
Since those components are very standard we only give a brief overview of our
formalization, while highlighting some of the differences. Actually the proofs
involving application contexts bring additional complexities.

E.1 Notation

In the declarative system, we are enjoying guessing too much. For example,
in rule S-FORALLL, we are instantiating the polymorphic type with a guessed
monotype 7. However, in an algorithm, we need to specify what we are going to
provide. Therefore, we use the notation meta type variable @, 3, which stands
for a unknown type that needs to be solved later. Now in our S-FORALLL, we
instantiate the polymorphic type with the meta type variable a. Later on, we
may meet some constraints on @ which help us solve it. Therefore, each time we
generate a new meta variable, we need to guarantee it is fresh. Also, each time
we make a type variable when we open a polymorphic type, we need to make
sure it is fresh.

So, we will use a source for name generating during all the processes, which is
represented as N. We use the same name generator for both meta type variable
and typing variable for clarity. In each process, there will be a name generator
given, and the process uses as many fresh names as it needs, then returns back
the name generator. It will make clearer when we see the concrete rules.

Also, we need substitutions to record the solution for meta type variables,
represent as S. The substitution works as a finite map, which maps meta type
variable to its solution. The substitution will keep growing as meta type variables
are solved. The solution can be changed if the solution involves some other meta
type variables that are newly solved, then the newly solved meta type variables
in this solution will be substituted by their respective solutions. Again, each
process will take current substitution as input, and pass it around while calling
other process, than return the grown one back.

We use fov to mean the free ordinary variables and ftv to mean free type
variables and ordinary variables.

With those notations, now we can dive into the algorithm.

E.2 Algorithm
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So I T1 = T2 “—~ Sl
T1, T2 inputs

T=aorT=aorT=Int

AU-REFL
SoFT=7—>35
a € dom(So) Sok Sod =7 S a € dom(So) So - Soa =7 — S
— AU-BVAR1 — AU-BVAR2
S()'_Oz:’f‘—>51 So}_T:Oz%Sl

a ¢ dom(S a a a
o ¢ (im( 0) ,\a ¢ ft’u(SoT) AU-VAR1 “ ¢ dom(s,'?) ,\a ¢ ftv(SOT) AU-VAR2
Soka=71<[a— Sot] - So So 1 =a<= [a— Sot] - So

S0|—’7’1:T{‘—)Sl Sl|—T2:Té‘—>SQ

7 7 AU-FuN
SoFTl—>T2=T1—>T2‘—>52

Fig. 13. Unification

Unification Unification process is given in Figure 13. The form Sy F 7 = 79 —
S1 means, given current substitution Sy, try to unify 71 and 75, which has the
result S7. This process is very standard, as it is in Hindley-Milner algorithm. Rule
AU-REFL is when two sides are the same, so we return the input substitution
back. Both in rule AU-BVAR]1 and AU-VARI, the left hand side is a meta type
variable @. But in AU-BVARI, & is already solved in the input substitution, so
all we need to do is to unify its solution with the right hand side. In AU-VARI,
we don’t have the solution for & yet, which means now we can solve & with right
hand side, under the condition that & ¢ ftv(Sp7), which is to ensure there is
no recursive solution such as @ = @ — Int. Notice the notation for substitution
composition - means we extend the substitution with the new item @ with its
solution Sy7, meanwhile, we will substitution all & appearing in other solutions
with Sy7. Rule AU-BVAR and AU-VAR2 works similarly. In rule AU-FUN, we
will unify the argument type first, and use the return substitution as input
substitution when we unify the return type.

[(S0, No) ™ A= A1 > Az — (S1, N1) |
A input, A; — As outputs

S()Fa:alﬁag‘%SH
(So,N0a1a2) F7a= Qa1 — Gy < (Sl,NO)

AF-Mono

AF-A .
(So,No) -7 A— B=A— B < (Sy, No) RROW

Fig. 14. Arrow Unification
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Arrow Unification There are cases we want a certain type be the form of a
function type, for example, if in the subtyping relation, the left hand side is a
function type, we expect the right hand side to be also a function type.

Therefore, we have another form of unification, which is arrow unification,
where given a input type, we will return a function type back, as shown in Figure
14. Rule AF-MoNO is when the type is a meta type variable, then we will call
unification to split the type into a function type and return the function type
back. Rule AF-ARROW is when the type is already a function type, then we
only return it back.

We will see its usage later.

‘ (SQ,N()) FA <: B— (517]\71) ‘
A, B inputs

(S(),N()) FA < B[[a — b]] — (Sl,Nl) b ¢ ft’U(S1A) b ¢ ftv(Sl(Va.B))
(So,Nob) FA <: Va.B — (Sl,Nl)

AS-FOrRALLR

(SQ,N())FA[[G’—)B]] <: B‘—)(Sl,Nl)
= AS-FORALLL
(So,N()ﬂ) FVa.A <: B— (Sl,Nl)

(So,No) F7 A= A1 — Ay — (51, N1)

(S, N1)F B <: Aj <5 (So,Na)  (So,Na) bk Ay <: C <> (S35, N3)
(S(),N()) FA <: B—>(C< (Sg,Ng)
(So,No) F~ A= Ay — Ay < (S1,N1)

(Sl,Nl) = A1 <: B« (SQ,NQ) (SQ,NQ) FC <: AQ — (Sg,Ng)
(So,No)FB—)C <: A‘—>(S37N3)

AS-FunR

AS-FunL

So =151
(So,No) Fr < o (Sl,No)

AS-Mono

‘(SO,NO)HIFA <: B (sl,Nl)\
¥, A input, B output

s (S0, No) 1 ¥ + Afa s B] <: B < (51, N1)
S-EMPTY =
(So,No) PFA < A (SO,N()) (507]\70,8) 1 EVYa.A <: B (Sl,Nl)

AS-FOrRALLL2

(So,No) - C <+ A<s (S1,N1)  (S1,N1) 1 W F B <: D <3 (Sa, Na)
(So,No) 1#,C+A— B <: C— D < (S2,N2)
(So, No) F~ 7 =171 — 72 = (S1, N1) (S1,N1) 1 PF7 =71 <: B (S2,Na)
(So, No) 1 W E 7 <: B<(S2,N2)

AS-Fun2

AS-MoONO2

Fig. 15. Subtyping
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Subtyping Subtyping algorithm corresponds to the declarative subtyping shown
in Figure 15, the main difference is we stop guessing. Rule AS-FORALLR uses
a fresh name from name generator as the type variable in the right hand side.
But since b is generated only in the scope of the polymorphic type, if any of the
types after substituted by S7 contains b, it means the left hand side is actually
not more polymorphic than the right hand side and the unification will fail. In
rule AS-FORALLL, we use a fresh name but this time as a meta type variable
waiting to be solved. Comparing to the declarative system, where we guess a
T, we use the meta type variable to represent the unknown type and continue
the algorithm. Rule AS-FUNR and AS-FUNL works similarly, which depend on
arrow unification. Rule AS-MONO deals with all the rest cases, where these two
types must be unified.

The second part of the subtyping works similarly. And most cases correspond
to the one in declarative system. Rule AS-MONO deals with the case when
the left hand side is a meta type variable. In this case, we need to use arrow
unification to split the meta type variable into the function form and continue
the subtyping.

Typing Figure 16 shows the algorithm for typing, along with the generaliza-
tion process. Most cases are straightforward. Rule AT-VAR relies on subtyping.
AT-INT is trivial. Rule AT-LAMANN] and AT-LAMANN2 follows directly from
declarative system. In rule AT-LAMI1, again, we use a fresh meta type variable
to represent the unknown type. Rule AT-LAM2 and AT-APP are also easy-to-
follow cases.

E.3 Properties and proofs

In this section, we state the import lemmas and theories about the algorithm sys-
tem, and give the proofs. First, we need some auxiliary definitions and notations
to help with the proofs.

Auxiliary

Definition 2 (Well-defined of Substitution). S is well-defined iff VA.SA =
S(SA), and there is no item [@ — @] in S.

For example, Sy = (a = Int,g = Int) is well-defined, meanwhile S; = (a =
Int,B = @) is not, since 513 = @, and 51513 = Int. Also, according to the
definition, surely for any well-defined S, dom(S) is disjoint with range(S).

Through the proofs, we will assume all substitutions are well-defined. Since
we require all the input substitutions are well-defined, and also it is not com-
plicated to show that in all the relationships, if the input substitution is well-
defined, then the output substitution is also well-defined. So we omit related
proofs.

Similarly, we will assume all variables in name supply N are fresh enough to
all existing variables.
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\ (S0, No)  Tagen(A) = B < (So, N1) \
I, A inputs, B output

5 = ft’U(SoA) — ft'l}(SoF)

= = — = AT-GEN
(Sg,Nob) = Fagen(A) = Vb.(SoA)[[a — b]] — (SQ,NQ)
\(so,No)lr‘we = Ao (sl,Nl)\
I ¥, e inputs, A output
r:Ael (So,Ng)lW"A < B‘—)(Sl,Nl)
AT-VAR
(So,No) ' ''"Wkrx = B<— (Sl,Nl)
AT-INT
(SQ,N()) ' I'Fn = Int— (So,No)
(So,No) 1 Iz : A e = B < (51,N1)
AT-LAMANN1

(So,No)\FF)\JJZA.e = A—>B‘—>(51,N1)
(S(),N())'_C < A‘—)(Sl,Nl) (Sl,N1)|F,x:A|&I7I—e = B‘—)(SQ,NQ)

AT-LAMANN2
(So,No) 1 I ’I’,Cl— M:A. e = C—B<— (SQ,NQ)
(So,No) i Iz : BFe = A< (Si,Ni)
= = AT-Lam1
(So,Noﬁ) 1 I'EAz.e = ﬁ - A— (Sth)
(So,No)\F,.’EZAIWFe = B%(Sl,Nl)
AT-LaM2
(So,No)IF\W,A}—AQJ. e = A—- B« (Sl,Nl)
(So,No) 1 I'Fey = A (S1,N1) (Sl,Nl) = Fagen(A) =B <« (SQ,NQ)
(SQ,NQ)lFIW,B"61 = B*)C‘—)(S3,N3) AT-A
-App

(So,No)\FIWF(ﬁ €y = C‘—)(S37N3)

Fig. 16. Typing

Since substitutions are maps, we regard the permutation of domain produces
the same substitution, namely (@ = Int, 8 = Int) = (8 = Int,a@ = Int). And we
have a weaker equivalence definition:

Definition 3 (Excluded-y Equivalence of Substitution). S; = S5\, means
substitutions S1 and Sy are equal except for variable set x. Namely, Va ¢ x, then
Sia = Ssa.

During the proofs, we need the substitution lemmas.

Lemma 34 (Subtyping Substitution).

1. If A <: B, then S1A <: §1B.
2. IfU-A <. B, then S$1¥ + S1A <: S51B.

Proof. This lemma has two parts, and only the second part relies on the first
one. So we can prove them separately.
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Part 1 By induction on the subtyping relationship and do case analysis.

— Case S-INT. Holds trivially.

— Case S-VAR. Holds trivially if both sides are just ordinary variables.

— Case S-FORALLR. By induction hypothesis, we have S1A <: S;B. And
S1A <: SiVa.B can be rewritten as S1A <: Va.S1B as we assume a is
fresh enough, otherwise we can use o renaming to choose a fresh variable.
Then by rule S-FORALLR the case is finished.

— Case S-FUN. By induction hypothesis, we have S1C <: S;Aand S1B <: S1D.
Follows directly by using rule S-FUN.

— Case S-FORALLL. By induction hypothesis, we have S1(AJa — 7]) <: S1B.
Namely, (S14)[a — (S17)] <: S1B, since S only contains meta type
variables in domain. So we can derive S7(Va.A) <: S1B,orVa.S14 <: S1B
by using rule S-FORALLL with type Sy7.

Part 2 By induction on the subtyping relationship and do case analysis.

— Case S-EMPTY. Holds trivially by applying S-EMPTY.

— Case S-FORALLL2. Similar as the one in part 1. By induction hypoth-
esis, we have S1¥ + S1(Afa — 7]) <: S1B. Namely, S1¥ + (S14)[a —
(S17)] <: SiB, since S only contains meta type variables in domain.
So we can derive S1¥ + S;(Va.A) <: S1B, or $1¥ F Va.S1A <: S$1B
by using rule S-FORALLL2 with type Sy7.

— Case S-FUN2. By induction hypothesis and the lemma of first part, we
have S;C <: S1A4, and S1¥ F S1B <: S1D. So S$1(¥,C) - S1(A —
B) <: Sl(C — D), namely SW, S1C+HSA— SB <. SiC —» 51D
holds by rule S-FUN2.

O

Lemma 35 (Typing Substitution).

1. If ' ' YFe = t, then ST 1 S1¥ Fe = Sit.
2.If I' e = t, and Lgen(t) = t1, then 3o, that S1I' F e = to, and
Slpgen(tg) = Sltl.

Proof. This lemmas has two parts and they depends on each other. So we prove
them simultaneously.

Part 1 By induction on the height of derivation, and case analyze the last rule
used in the derivation.

— Case T-VAR. Since we have z : A € I', so x : S1A € S1I'. And by
subtyping substitution S1¥ F S1A <: S1B. So using T-VAR finishes
the case.

— Case T-INT. Holds trivially.

— Case T-LAMANN. By induction hypothesis, we have Si(I,z : A) F
e = S51B. Since A is a well defined type and contains no free variables,
rewrite the equation we get S1I,xz : A+ e = S1B. So by using T-
LAMANN, SiI'Xz:A. e = A — S1B holds.
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— Case T-LAMANN2. By induction hypothesis, we have Si(I,x : A) |
S1¥ F e = 51B. Since A is a well defined type and contains no free
variables, rewrite the equation we get S,z : A1 S1¥ F e = S51B.
Given C' <: A, by subtyping substitution, we have S;C <: S1A. So
the goal S1I" 1 S1(¥,C) F Az : A. e = S1(C — B), namely S1I" |
S1¥,51CHXx: A. e = S;C — S1B holds by rule T-LAMANN2.

— Case T-LAM. By induction hypothesis, we have S;(I',z : A) 1 S$1¥ +
e = S51B, namely SiINx : S1A 1 S1¥ F e = S1B. So by using T-
LAM, S$iI"'1 S1(P,A) - \x.e = S1A — S1B holds.

— Case T-LAM2. By induction hypothesis, we have S1(I,z : 7) Fe = S B,
namely S11, 2z : Si7Fe = S1B. So the goal S1I"'F \x. e = Si(7 —
B) holds by rule T-LAM2 with type Si7.

— Case T-App. By preconditions and induction hypothesis, we have

I'kFe = A (147)

I'yen(A) =B (148)

Slf I Slw, SlB Fe = SlB — SlC (149)

Here we use part 2 of this lemma on equation 147 and 148, get for some
t

Slp = epr = t (150)

S11gen(t) = S1B (151)

Then, by using typing rule for application on equation 150, 151 and 149,
we get S1171S1¥ Fep es = S1C and we are done.
Notice here we are using part 2 of the lemma with a smaller height,
since height of equation 147 is smaller than original one (the application
e1 ea).
Part 2 Suppose @ = ftv(t) — ftv(I"), then t; = Va.t. For some b which are fresh
enough (with I", Sy, and t), applying part 1 of the lemma with S; - [@ +— b],
we get (we know a ¢ ftu(I))

SiI'te = S;-[a~ bt (152)
Namely,
SiI'-e = Si(tar b)) (153)

Now b = ftv(t[a — b]) — ftv(I"). And b is fresh to Sy, so b = ftv(S (t[a —
b])) — ftv(SiT). Therefore, (S11)gen(S1(t[a — b])) = Vb.(S1(t[a — b])) =
S1(Vb.(t[a — b])). By a renaming, (Vb.(t[a — b])) = (Va.t). So choose
to = Sl(t[[d — B]]), we get (SlF)gen(tQ) = Sl(th) = Sltl.

Notice here we are applying the part 1 of this lemma with the same height.
Namely, part 1 calls part 2 with smaller height, and part 2 calls part 1 with
the same height. So this mutual proofs hold because the height is decreasing
and it will terminate.
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O
We use I'(A) = Va.A, where a = ftv(A) — fto(I"), including both meta type
variables and typing variables.

Lemma 36. SI'(A) <: SI'(SA).

Proof. Assume I'(A) = Va.A, where a = ftv(A) — fto(I"). Consider a fresh
variable set ¢, then by a renaming we have Va.A = Vé.Afa — ¢]. Since ¢ are
fresh so they not in S. So SI'(A) = S(Ve.Ala — ¢]) = Ve.S(Afa — ¢]).

Assume ST'(SA) = Vb.SA, where b = ftv(SA) — ftv(SI"). Now our goal is
ve.S(Ala s ¢]) <: Vb.SA.

We first prove b ¢ ftv(Ve.S(A[a — ¢])), or equivalently b ¢ ftu(ST(A)),
since then we can use b as fresh enough variables and turn to prove Ve.S(Afa —
¢]) <: SA. The proof is done by contradiction. Assume exists a b € b, that
b e ftv(SI'(A)), then there must be a d, that d € ftv(I'(A)), and b € ftv(Sd).
Because d € ftv(I'(A)), it must be the case d € ftv(I") and d € ftv(A). So
already know b € ftv(Sd), and d € ftv(I), then b € ftv(ST'). However, b comes
from ftv(SA) — fto(ST). So, a contradiction.

Then we move to prove Ve.S(A[a +— ¢]) <: SA. By choose 7 = Sa, it is easy
to deduce (S(A[a ~ e]))[¢~ Sa] <: SA holds by reflexivity of subtyping. O

Soundness

Lemma 37 (Soundness of Unification). if Sy F 7 = 75 — Sy, then Sim =
Sate, and 3R, that Sy = R - Sy. And also vars(R) C ftv(Sot1, SoT2).

Proof. By induction on the derivation of unification.

— Case AU-REFL. Let R = () and the goal follows trivially.
— Case AU-BVARI. Given

So F Soa =75 (154)
By induction hypothesis
Slsoa = SlT (155)
S1=R-S (156)
vars(R) C ftv(SpSod, SoT) (157)

Because Sy is well defined, so S;1Sga = RSpSpa = RSpa = Sia. namely
Sia = Sy7. Similarly, we could derive from equation 157 that vars(R) C
ft’U(Soa, S()T).
Feed R to the goals and we already proved all the subgoals.

— Case AU-BVAR2. Similar to case AU-BVARI.
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— Case AU-VARL. Pick R = [a@ — So7], with

a ¢ dom(So) (158)
a ¢ ftu(Ser) (159)

Because of equation 158, Spa = a. So [a — So7]Soa = [a@ — Spr]a = SoT,
namely S1a = Sy7. Also because of equation 159, we get [& — So7]SoT =
So7, namely S;7 = Sy7. So combine this two derivation, we get S1a = Si7.
Moreover, vars(R) = ftv(a, SoT) = ftu(Spa, So7).

— Case AU-VAR2. Similar to case AU-VAR2.

— Case AU-FUN. Given

So [ T = 7'{ — Sl (160)
Sll—TQZTé‘—)SQ (161)

Applying induction hypothesis, we could get S171 = Si7{ and S; = R1.5p
and vars(Ry) C ftv(Sori,So7y). Also, Soto = Sotj and Sy = RyS; and
vars(Rg) C ftu(S172,5175). So RyS171 = RSi7{, namely Samy = So7f.
Therefore it can be derived that Sa(m3 — 72) = Sa(7f — 74). And choose
R=R>-R;.
Moreover, from vars(Rs) C ftv(S172, S175), we can get vars(Rs) C ftu(R1So72, R1S073).
Sovars(R2) C ftv(Ry)Uftv(SoTa, So7s). And because ftv(Ry) C ftv(So1, SoTy),
we have vars(Rg) C ftv(Sot1, So7i)U ftv(SoTe, So7s). This finishes the case.
O

Lemma 38 (Soundness of Arrow Unification). if (So, No) -7 A= 4; —
As < (S1,N1), then S1A = S1A1 — S1A,, and 3R, that S;1 = R-Sy. Moreover,
ftv(A1 — Ag), and vars(Sy) are all subsets of vars(Sp) U ftv(A) U (Ng — Ni);
vars(R) C ftv(SpA) U (Ng — Ny).

Proof. By induction on arrow unification relation. We analyze each case.

— Case AF-MONO. S;a; = Sia; — Sias comes directly by the soundness
of unification (lemma 37), with the same R. ftv(ay — a2) = {a1,02} =
(Noalaz) — No. So ftv(@l — &2) - (Noalag) — No. And from soundness of
unification, we get vars(R) C ftv(Spa, So(@1 — a2)). Therefore vars(R) C
ft’U(Soa) @] ft’l}(al — ag) - ftU(SOa) U ft’U(NoalaQ - No)

Finally, from the soundness of unification, we know S; = R-Sp. So vars(S1) C
vars(R) Uwvars(Sy) C vars(Sp) U ftu(a) U fto(No@1da — Np). The case is
finished.

— Case AF-ARROW. Choose R to be empty, each goal holds trivially.

O

Lemma 39 (Soundness of Subtyping).

1. Zf (So,NU) FA <: B (Sl,Nl), then S1A <: S1B. And dR, that S =
R - Sy. Moreover, vars(S1) C vars(Sp) U ftv(A4, B) U (Ng — N1); vars(R) C
ftU(SoA, S()B) U (NO — Nl).



59

2. Zf (SO,NO) IVFHA <. B— (Sl,Nl), then S1¥ + SlA <: S1B. And HR,
that S1 = R-Sy. Moreover, vars(Sy) and ftv(B) are all subsets of vars(Sy)U
fto(P) U fto(A) U (Ng — N1), vars(R) C ftv(SoA) U fto(So¥) U (Ng — N1).

Proof. This lemma has two parts, with only the second one depends on the first
one. So we can prove them separately.

Part 1 We do induction on the subtyping relationship, and analyze each case.
— Case AS-FORALLR. By induction hypothesis we have

S1A < SlB[[a»—> bﬂ (162)
S =R-Sy (163)

where vars(Sy) C vars(So) U ftv(A, Bla — b]) U (No — Ny), vars(R) C
ftU(SQA, SQ(B[[CL — bﬂ)) U (No - Nl).
Note vars(Sy) U ftv(A, Blla — b]) U (No — N1) C vars(Sy) U ftu(A, B)U
(Ngb— N1). So both vars(Sy) C vars(Sp)U ftv(A, B)U(Nob— Ny). Also,
ftU(SQA, SQ(B[[CL — bﬂ)) @] (No — Nl) - ft’U(S()A, S()B) U (Nob — N1), SO
vars(R) C ftv(SoA, SoB) U (Nob — Ny).
Because substitution only contains meta variables, so S1a = a and S1b =
b. Therefore, S1A <: Si(Va.B) holds by renaming Va.B to Vb.B[a — b],
and making substitution go inside forall since b is fresh enough, finally
applying rule S-FORALLR with equation 162.

— Case AS-FORALLL. By induction hypothesis we have

Si(Afa— B]) <: S1B (164)
S1=R-S (165)

where vars(Sy) C vars(So)Uftv(A, Bla — B])Uftv(No—Ny), vars(R) C
ft’U(SoA, So(BHa — ﬂﬂ)) U ft’U(NO — Nl)

We will assume a are fresh to S7, then we can make substitution go
inside one step in equation 164 to get

($14)[a — $18]) <: SiB (166)

Our goal S;1(Va.A) <: S1B holds by making substitution go inside one
step to get Va.51A <: S51B, and applying rule S-FORALLL with 513.
Moreover, vars(Sp) U ftv(A, Bla — p]) U (No — N1) C wvars(Sy) U
ftv(A,B) U B U (No — Ny) C wvars(So) U fto(A, B) U (NoB — N1). So
we get both vars(Sy) C vars(Sy) U ftv(A, B) U (NOE— Ny).
And ftv(SoA, So(Bla — B]))Uftv(No—Ny) C ftu(SeA, SoB)Uftv(NoB—
N7) since B is fresh to So. So vars(R) C ftv(SpA, SOB)Uftv(NOB—Nl).
— Case AS-FUNR. By preconditions we have

(SO7N0) F7 A= Al — A2 — (Sl,Nl) (167)
(Sl,Nl) B < A1 — (SQ,NQ) (168)
(SQ,NQ) FAy, < C— (Sg,Ng,) (169)
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By soundness of arrow unification (lemma 38), from equation 167 we get

SlA = SlAl — SlAQ (170)
Si =Ry -So (171)

and ftv(A; — Asg), vars(Sy1) are all subset of vars(Sy) U ftv(A) U (Ng —
Nl), and ftU(Rl) g ft’U(SoA) U (NO - Nl)
Apply induction hypothesis on equation 168 and 169,

SoB < SyA; (172)
Sy = RoSy (173)
S3d45 <: S5C (174)
S5 = R3S, (175)

with vars(Sz) C vars(S1)Uftv(Ay, B)U(N1—N3), vars(Rz) C ftv(S141,51B)U
(N1 — N3). vars(Ss) C vars(Sz) U ftv(Az, C) U (N2 — N3), vars(Rs) C
ft’U(SQAQ, SQC) @] (NQ — Ng).
Choose R = R3RoR;. Combining all the information about free vari-
ables, we get that vars(R) = vars(R3RaR1) C ftv(S3Az,5:C) U (Ny —
Ng) U ft’l)(SlAl,SlB) U (Nl — NQ) U ft”U(SQA) U (No — Nl) Slmph—
fied, we get that vars(R) C ftv(SpA, SoB, SoC)UU(Ng — N3). Namely,
vars(R) C ftv(SpA, SoB, SoC) U (Ng — N3). Similarly we can derive the
requirement for vars(Ss).
Applying subtyping substitution on equation 172 we could get R3SoB <: R3S2A;,
namely S3B <: S3A;. Combining with equation 174 and by using sub-
typing rule for function type, we could get S3(A; — As) <: S3(B —
C). In other word, R3R2S51(41 — A2) <: S3(B — C),namely RgR251A <: S3(B —
(). So finally S3A <: S3(B — C).

— Case AS-FUNL. Similar as case AS-FUNR.

— Case AS-MONO. Holds directly by using soundness of unification and
reflexivity of subtyping.

Part 2 We do induction on the subtyping relationship, and analyze each case.

— Case AS-EMPTY. Choose R to be empty, each goal holds trivially.
— Case AS-FORALLL2. Similar to case AS-FORALLL. By induction hy-
pothesis we have

S+ Sy (Afa s B]) <: SiB (176)
Sy =R-S, (177)

where vars(S1) and ftv(B) are subsets of vars(Sy)U ftv(¥)U ftv(Afa —
B]) U(Nog — N1), vars(R) C fto(So(Afa — 5])) U fto(Se¥) U (Ng — Ny).
We can make substitution go inside one step in equation 176 to get

S0 H (S A)[a s $18]) <: SiB (178)
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Our goal S1¥ + S;1(Va.A) <: S1B holds by making substitution go
inside one step to get S1¥ F Va.51A <: S1B, and applying rule S-
ForALLL with S18. R

Moreover, vars(So) U fto(¥) U ftv(Afa — B]) U (No — N1) C vars(Sp) U
Fto(P)Ufto(A)UBU(Nog—N1) € vars(So)U fto(@)U fto(A)U(NoB—Ny).
So we get vars(Sy) and ftv(B) are all subsets of vars(Sy) U ftu(¥) U
ftv(A) U (NoB — Ny). Similarly, we can prove vars(R) C ftv(SoA) U
ft’l)(S()W) U (Noﬁ - Nl)

Case AS-FUN2. Given

(So,No) FC < A— (Sl,Nl) (179)
(Sl,Nl) IWEB <: D« (SQ,NQ) (180)

Applying the first part of soundness of subtyping on equation 179 we get

Sy = RS (181)
5,C <: S1A (182)

with vars(S1) C vars(So)Uftv(A, C)J(No—N1), vars(R1) C ftv(SpA, SoC)U
(Ng — Ny).
And from the induction hypothesis on equation 180 we get

Sy = RySy (183)
SQW - SQB < SQD (184)

with vars(Sy) and ftv(D) subsets of vars(Sy) U ftv(¥) U ftv(B) U

(N1 - NQ), U(I’I"S(RQ) Q ftU(SlB) U ftv(51W) U (Nl — NQ) Choose

R = RyR;. Combining all the information about free variables, we get

that vars(R) = vars(ReR1) C ftv(S1B) U ftv(S1¥) U (N7 — Na) U
ftv(SpA, SoC)U(No—Ny). Simplified, we get that vars(R) C vars(SyA, SoB)U
fto(So (¥, C)) U (Ng — Na). Also, ftu(D) and vars(Sz) holds similarly.

By subtyping substitution on equation 182 we get RpS1C <: RoS1 A,
namely SoC <: SyA. So we can directly derive So(¥,C) F Sy(4A —

B) <: S3(C — D) by using rule S-FUN2.

Case AS-MONO2. By premises we have

(So, No) F7 7 =11 — 12 = (S1, V1) (185)
(S1,N1) |WF7'1—)7'2 <: B‘—)(SQ,NQ) (186)

By soundness of arrow unification (lemma 38) on equation 185 we get

S17 = S1(n1 — ) (187)
Si=R:-So (188)

Moreover, ftv(ty — T2), and vars(Sy) are both subsets of vars(Sp) U
fto(T) U (Ng — Ny), vars(Ry) C ftv(So7) U (Ng — Ny).
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By induction hypothesis on equation 186 we get

Sov SQ(Tl — TQ) <: SB (189)
Sy =Ry S (190)
Moreover, vars(Ss) and ftv(B) are both subsets of vars(Sy) U ftv(¥) U

fto(mr — 1) U (N1 — Na), vars(Rs) C vars(Sim,S1m2) U ftu(S1¥) U
(N7 — No).
So we get Sov = R251(71 — Tg) < SQB7 namely, SoW - RoSim < SQB,
or SoW = St <: Sy B.
From equation 188 and 190, we get So = RoR1.50.
Also, vars(RaR1) C ftu(S171, S172) U ftu(S1%) U (N1 — Na) U ftu(Ser)U
(Ng — N1) C fto(So7) U (So¥) U (Nog — N3). Similarly, we can prove the
request about vars(Sy) and ftv(B).

O

Lemma 40 (Soundness of Generalization). If (So, No) b [gen(A) = B —
(Sl,Nl), then (Slf)gen(SlA) = SlB, and Sl = S(), ftU(B) Q S()F

Proof. Do inversion on the generalization relationship, we get that

(So, N1b) I Tagen(A) = Vb.(SpA)[a + b] = (So, N1) (191)
B =Vb.(SpA)[a ~ 0] (192)

No = Nib (193)

a = ftv(SpA) — ftv(SeT") (194)

Sy =S (195)

So our goal is to prove (SoI")gen(SoA) = So(¥h.(SpA)[@ + b])). The right
hand side equals to Vb.Sy((SpA)[@ + b]). Because (SoA)[a ~ 0] is already
substituted under Sy, with Sy well defined and b fresh variables, so So((SpA)[a
b)) = ((SoA)[@ + b]). Then we can prove (SoI)gen(SoA) = (Vb.(SpA)[a + b))
by a renaming right hand side to Ya.SyA and by equation 194.

Moreover, ftv(Vb.(SoA)[a + b]) = fto((SoA)[a + b])—{b} = ftv(SpA)—a.
Because of equation 194, ftv(SopA) —a C ftv(SeI"). So ftu(B) C ftv(SeI’). O

Lemma 41 (Soundness of Typing). If (So,No) 1 [ 1 W F e = A <
(S1,N1), then 11 S1¥ e = S1A. And 3R, that S; = R-Sy. Moreover, both
vars(Sy) and vars(A) are subsets of vars(Sp) U fto(I") U fto(¥) U (Ng — Ny),
vars(R) C ftv(Sol") U ftu(So¥) U (Ng — Ny).

Proof. By induction on typing relationship, and case analysis.

— Case AT-VAR. By z : A € I' we have x : S1A € S1I". And by soundness
of subtyping we get S1¥ F S1A <: S1B with S; = R - Sy, and vars(S1),
vars(B) all subsets of ftv(¥)U ftv(A) U (Ng — N1), vars(R) C ftv(So¥) U
(SpA). Follows directly by using typing rule T-VAR.
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— Case AT-INT. Trivially holds by rule T-INT.
— Case AT-LAMANNI1. Given

(So,No) 1 [z : A e = B < (S1,Ny) (196)
By induction hypothesis, we have

Si(lx:A)Fe = 5B (197)
Si=R-S (198)

with vars(S1), ftv(B) both subsets of vars(Sy) U ftv(I,z : A)U(Ng — Ny),
vars(R) C fto(So(Iz : A)) U (No — Ny).

Since A is an annotation and S1A = A, from equation 197, we can derive
Silx: AF e = S1B. So we can apply typing rule for annotated lambda
and get S1I" F Ax : A. e = A — S1B. Again because A is closed and
contains no free type variable, so vars(Sp) U ftv(I,x : A) U (Ng — N1) C
vars(So) U fto(I') U (No — N1), which is superset of vars(S;), and ftv(A —
B). And ftv(So(I'yz : A)) U (Ng — N1) = fto(Sol") U (No — Nyp), which is
superset of vars(R).

— Case AT-LAMANN2. Given

(So,No) FC <: A< (Sth) (199)
(Sl,Nl)\F,ZL'ZAIQ—/FG = B‘—)(SQ,NQ) (200)

Applying soundness of subtyping on equation 199, and from induction hy-
pothesis,

S1C < 1A (201)

S1 = R150 (202)

So(lx:A)1S¥ e = S3B (203)
Sa = R2S1 (204)

with vars(S1) subset of vars(Sp) U ftv(A,C) U (Ng — Ny), vars(Ry) C
ftv(SoA, SoC) U (Ng — N1), vars(Ss) and ftv(B) subsets of vars(Sy) U
vars(I'yz @ A) Uwvars(@) U (Ny — Na). vars(Re) C vars(S1(Iz : A)) U
vars(S1¥) U (N1 — Ny). Choose R = RaR;. Since A is an annotation and is
closed , so equation 203 can be rewritten as Sol,x : A1 S9¥ Fe = S;B.
Also by subtyping substitution, from equation 201 we get - R S1C° <: R251 4,
namely - SoC' <: S3A. Since S2A = A, so - SoC <: A. Then by typing
rule for annotated lambda with application context, we get SoI"1 S3(¥,C) F
A e = SC — SyB.

Moreover, vars(R) = vars(RaR1) C vars(SgA, SoC)JU(No—N1)Uvars(Sy (L« :
A))Uvars(S1¥)J(N1—Nz). Simplified, vars(R) C ftv(Sol")Uftv(Se(¥, C))U
(No — N3), since we can replace S; by Ry and Sp. Similarly, we can prove
vars(So) U fto(I") U ftv(¥,C) U (Ng — Na) is the superset of vars(C — B)
and vars(Sp).
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— Case AT-LAM]1. Given

(So,No) Iz :BFe = A< (S1,Ny) (205)
By induction hypothesis, we have

Si(Mz:B) ke = SA (206)
Sy = RS, (207)

-~

where vars(Sy) and vars(A) subsets of vars(Sg)U fto(I,x : 8) U (No — Ny),
vars(R) C ftv(So(l\z : B\)) U (No — N1p). Rewrite equation 206 to Si1I,x :
513 Fe = S1A. By typing rule for lambda we get S11"F Ax. e = 513 —
S1A.

Moreover, vars(Sy) C vars(Sp) U fto(I,x : E) U (No — N1) C vars(Sy) U
fto(IM U (NOE — Nj). Similarly, we can prove it is also the superset of and
vars(g — A).

Since 3 is fresh to So, so vars(R) C ftv(Sel") U (NOB\— Ny).

Case AT-LAM2. Given

(SQ,N())\F7ZL'ZAIW|_€ = B‘—>(51,N1) (208)
By induction hypothesis, we have

S (Ia:A) 180 te = SiB (209)
Sy = RSy (210)

where vars(Sy) and vars(B) subsets of vars(Syp) U fto(I,z : A) U fto(¥) U
(No — N1), vars(R) C ftv(So(L,x : A)) U fto(Se®) U (Ng — Ny).

Rewrite equation 209 to S,z : S1A151¥ Fe = S1B. By typing rule for
lambda we get S11"151(W,A) - Ax.e = S1A— S1B.

Moreover, vars(S1) C wvars(Sp) U ftv(I,z : A) Uvars(¥) U (Ng — N1) C
vars(So) U fto(I) U ftu(¥, A) U (Ng — Ny). Similarly, we can prove it is also
the superset of vars(A — B).

Also, vars(R) C ftv(Sol") U (So(¥, A)) U (Ng — Ny).

Case AT-APP. Given

(SQ,N()) I €y = A — (Sl,Nl) (211)
(Sl,Nl) [ Fagen(A) =B < (SQ,NQ) (212)
(SQ,NQ) A LD,B Fee, = B—>C<— (Sg,Ng) (213)

By soundness of generalization on equation 212, we get

Sy = S (214)
(SQF)gen(SQA) = S2B (215)
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with ftv(B) C S1I'. So we substitute S; for Se. By induction hypothesis of
equation 211 and 213,

SiTFey = SiA (216)

Sy = RyS, (217)

S3I1 S3(W,B) F ey = S3B — S3C (218)
S5 = RyS; (219)

And vars(Sy) and ftv(A) are subsets of vars(Sg) U ftu(I") U (Ny — Ny),
vars(Ry) C fto(Sol)U(No—N1), and vars(Ss) and ftv(B — C) are subsets
of vars(S1) U fto(I') U fto(¥, B) U (N3 — N3), and vars(Rz) C ftv(S1I) U
f?f’U(Sl(lp, B)) U (NQ — N3)

Choose R = RoRq, so S3 = RaR1Sy. Apply the part 2 of typing substitution
lemma on equation 216 and 215, we get for some ¢,

RQSlF - e = t (220)
(R2511) gen(t) = R2S1B (221)
Substitute equation 219,
S3F Feo = ¢ (222)
(831 ) gen(t) = S3B (223)

Use typing rule for application with equation 222, 223 and 218, we can derive
S3F | Sgyv/ Feiey = 530
Since ftv(B) C ftv(S1I7) C vars(S1)U ftv(I"), so vars(Ss)U ftv(B — C) C
vars(S)U fto(IM)U fto(¥, B)U (N2 — N3) C vars(So)U fto(I)U(Ng— Ny)U
fto(I) U fto(¥) U (Ng — N3) Cvars(Sy) U fto(I") U fto(¥) U (Ng — Ns).
AISO, vars(RgRl) Q ftv(Slf') @] (Sl(w, B)) @] (N2 - Nd) U ftU(S()F) U (N() -
Ny). Since vars(Sy) = vars(R1Sy), so we can simplify it to vars(ReR;) C
ft’l)(S()F) U ftU(Soyv/) U (N2 - N3) U ft’l)(SoF) U (No — Nl) g ft’l)(SoF) U
ft’U(So![/) U (NO - Ng).
|
We can then apply a ground substitution V' that substitute all the unsolved
meta variables to any monotype (like Int) to get the statement of soundness,
where the initial application context is also empty.

Theorem 3 (Soundness). If ([|, No) 1 I'Fe = A < (S1,N1), then for any
substitution V', that dom (V') = fmv(S1T,S51A), we have VSiI'Fe = VS1A.

Proof. Follows directly by typing substitution (lemma 35) and typing soundness
(lemma 41). O

Completeness

Lemma 42. if Sy -1 = 75 — 51, then we have:
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1. vars(Sy1) Cwvars(So) U ftu(r, )
2. dom(Sy) C dom(S7)
3. range(S1) C range(So) U ftv(m, 2)

Proof. By induction on the unification relation, and it is easy to prove each
subgoal. a

Lemma 43. Zf So Fr=m<— Sl, then fOU(SlTl, Sng) - fO’U(S()Tl,SoTQ).

Proof. By induction on the unification relation, and it is easy to prove each
subgoal. a

Lemma 44. if (So, No) F—7 A= A1 — As — (51, N1), then fouv(S1A4,S1A1,5142) C
fov(SpA).

Proof. By induction on the arrow unification relation, using lemma 43, it is easy
to prove each subgoal. a

Lemma 45.
— Zf(SmN(]) FA <: B— (Sl,Nl), and fO’U(S()A,S(]B) - X, then fO’U(SlA,SlB) -

X.
—if (So,No) 1 & F A <: B < (51,N1), and fouv(SpA,So¥) C ¥, then
fOU(SlA, SlB,Sllp) Q X-

Proof. This lemma has two parts, with only the second one depending on the
first one, so we prove them separately.

Part 1 Do induction on the subtyping relation and case analysis.
— Case AS-FORALLR. We have fou(SpA, So(Va.B)) € x, given

(So,No) FA <: Bﬂa — b]] — (Sl,Nl) (224)
b fto(SiA) (225)
b¢ ftu(S1(Va.B)) (226)

we can derive fou(SpA, So(BJa — b])) € xb. So by induction hypoth-
esis, we have fouv(S14,S1(BJa — b])) € xb. Then because of equa-
tion 225 and 226 we have fou(S14,S1(BJa — b])) € x. Therefore,
fov(S14, S1(Va.B)) € x.

— Case AS-FORALLL. We have fouv(Syp(Va.A), SoB) € x, given

(S0, No) - AJa s B] <: B < (S1,Ny) (227)
Since B\ comes from a fresh name supply, so B\ ¢ vars(Sp). So we have

fou(So(Afa — B]]), SoB) € x. Then by induction hypothesis, we have
fov(S1(Afa — B]), S1B) € x. Therefore, fov(Si(Va.A),S1B) € x.
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— Case AS-FUNR. We have (So, No) F A <: B — C < (S3,N3), given

(S(),No) F7 A= A1 — AQ — (Sl,Nl) (228)
(Sl,Nl) B < Al — (SQ,NQ) (229)
(SQ,NQ) FAy, <: C— (Sg,N;g) (230)

Also, fou(SpA, SoB,S,C) € x.

By lemma 44 we have fov(S14,S141,S5142) € x.

Claim 1: fov(S1B,51C) C x. From soundness of arrow unification
(lemma 38), we have

Sy =Ry - S (231)

dom(S1) € vars(Sp) U ftv(A) U (Ng — Ny) (232)
vars(Ry) € ftv(SpA) U (Ng — Ny) (233)
S1A=5141 — S14 (234)

From ftv(SpB, SoC) € x, we know that all the ordinary variables in B
and C are already in x. So we consider the meta type variables. If B,C
have no meta type variables then it is finished; otherwise, consider a €
fto(B,C). If @ ¢ dom(Sy) then it is finished. Otherwise, @ € dom(S).
Consider two cases:

e a € dom(Sp). Then consider 7 = Spa. If 7 contains no meta type
variables, then it is finished because fov(Sia) = fov(Spa) € x.
Otherwise, consider 3 € ftv(7). Then it must be 3 ¢ dom(S,). If B ¢
dom(S1) then it is finished. Otherwise, Be dom(S1). Then it must
be B € vars(Ry). By equation 233, we have B € ftv(SpA) U (Ng —
N7). Obviously 3 cannot come from Ny — Ny, since 3 € ftv(Spa),
a € fto(B,C), and Ny is fresh to Sy and B,C. So B € ftv(SyA).
Therefore, fov(Slg) C fov(5150A) = fou(S14) C x.

e a ¢ dom(Sp). Because we know @ € dom(S1), then it must be a €
vars(Ry). So a € ftv(SpA) U (Ng — Np). It cannot be (Ng — Nyp)
since & € ftv(B,C) and Ny is fresh to B,C. So & € ftv(SpA). So
fov(S1@) C fou(S150A4) = fouv(S14) C x.

So we now have fov(S1A41,51B) C x. By induction hypothesis on equa-
tion 229 we have fou(S2A41,5:B) C x.

Claim 2: fov(S24s,52C) C x. From soundness of subtyping (lemma
39) on equation 229, we have

Sy =Ry - S (235)
dom(Sz2) € vars(S1) U ftv(Ay, B) U (N1 — Na) (236)
vars(Ry) € ftv(S1A1,S51B) U (N1 — Na) (237)

From fov(S1A43,51C) € x, we know that all the ordinary variables in
Ay, C are already in x. So we consider the meta type variables. If Ay, C
have no meta type variables then it is finished; otherwise, consider a €
ftv(As, C). If & ¢ dom(Ss) then it is finished. Otherwise & € dom(Ss).
Consider two cases:
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variables, then it is finished because fov(S2a) = fov(S1@) € fov(S1Az,51C) €
x. Otherwise, consider 3 € 7. Then it must be 8 ¢ dom(S;). If 3 ¢
dom(S2) then it is finished. Otherwise, Be dom(Sz2). Then it must
be B € vars(Ry). By equation 237, we have B € ftv(S141,51B) U
(N1—N3). Obviously B cannot come from (N1—N3), since Be (S10),
and & € ftv(A4s,C), and N; is fresh to S; and Az, C. So B €
fto(S1A1,81B). So fou(S2f) C fov(S2S1 A1, S251B) = fov(S2 A1, S2B) C
X.

e a ¢ dom(Sy). Because we know a € dom(S3), then it must be

a € vars(Rg). So a € ftv(S141,51B) U (N; — Na). It cannot be
(N1 — N3) since a € ftv(As,C) and Nj is fresh to A3, C. So a €
ftv(S141,S1B). So fou(S2a) C fou(S251A1,5251B) = fou(S241,58) C

So WXe now have fov(S3A45,52C) C x. By induction hypothesis on equa-

tion 230 we have fov(S3Az, S3C) C x.

Claim 3: fov(S341,S53B) € x.

From soundness of subtyping on equation 230, we have

S3 =Ry - Ss (238)
dom(Ss3) € vars(S2) U ftv(Az,C) U (Ng — N3) (239)
vars(R3) € ftv(S2As,52C) U (N2 — N3) (240)

From fov(S3A41,S52B) € x, we know that all the ordinary variables in

Ay, B are already in x. So we consider the meta type variables. If A, B

have no meta type variables then it is finished; otherwise, consider & €

ftv(Aq, B). If & ¢ dom(Ss3) then it is finished. Otherwise & € dom(Ss).

Consider two cases:

e a € dom(S2). Then consider 7 = Sea. If 7 contains no meta type
variables, then it is finished because fov(S3a) = fov(S2a) € fov(SeA1, S2B) €
x. Otherwise, consider 3 € fto(7). Then it must be B ¢ dom(Sz).
If B ¢ dom(Ss) then it is finished. Otherwise, 3 € dom(Ss). Then it
must be ’5\ € vars(R3). By equation 240, we have B € ftu(Se Az, SoC)HU
(N3 — N3). Obviously 3 cannot come from N, — N3, since 3 €
ftu(Saa), and @ € ftv(A;, B), and Ny is fresh to Sy and Ay, B.
So B € ftu(S3A45,5,C). So fou(S3B) C fov(S392A2,555,C) =
fOU(SgAQ, 530) € X
e & ¢ dom(S3). Because we know @ € dom(Ss), then it must be

a € vars(Rs). So a € ftv(SaA3,52C) U (N2 — N3). It cannot be
(Ng — N3) since a € ftv(A;, B) and Ny is fresh to A1, B. So a €
ftU(SQA27 SQC) So fO’U(Sga) - fO’U(SgSQAQ, 53520) = fO'U(S3A27 SdC) -
X.

So we now have fov(S3A41,S3A2,55B,S53C) C x. From equation 234 it

is easy to derive S3A = S3A4; — S3As. So fou(S54,S53B,53C) € x and

we are done.
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— Case AS-FUNL. Similar as last case.
— Case AS-MONO. Follows directly by lemma 43.
Part 2 Do induction on the subtyping relation and case analysis.
— Case AS-EMPTY. Follows trivially.
~ Case AS-FORALLL2. We have(So, NoB) 1 ¥ + Va.A <: B < (S1, Ny),

given
(S0, No) 1 W+ Afa— B] <: B < (S1,Ny) (241)

And fov(So(Va.A)) U fou(Se¥) € x. We will assume a is a fresh name.
So by induction hypothesis, we have fov(S1¥) U fov(S1(Afa — Eﬂ)) U
fou(S1B) C fou(So®) U fou(So(Afa — B])). We know B ¢ dom(So)
since 3 comes from a fresh name supply. So fou(S1¥) U fou(S1(Afa —
B))Ufov(S1B) C fou(So®)Ufou(SoA)—{a} = fou(So®)Ufou(So(Va.A)) C
X- Namely, fov(S1¥) U fov(S1(Va.A)) U fov(Slg) U fov(S1B) C x. So
we are done.

— Case AS-FUN2. We have (So,Ng) 1 ,C - A —- B <: C - D —
(S2, N2), given

(S(),No) FC <: A= (Sl,Nl) (242)
(Sth) IWEB < D« (SQ,NQ) (243)

And fov(SpA, SoB, So?, SoC) € x. Apply part 1 of this lemma to equa-

tion 242, we get fov(S14,51C) C x. Apply induction hypothesis on

equation 243, we have fov(S1B,S1D,S1¥) C x. So the goal is proved.
— Case AS-MONO2. We have (So, No) 1 F 1 <: B < (S, Na), given

(SO;NO) |—_>7':7’1 — Ty — (Sth) (244)
(Sl,Nl) Wbk — 1 < B‘—)(SQ,NQ) (245)

And fou(So¥, SoT) € x.
Apply lemma 44 to equation 244, we have fov(Syi7,S171,5172) € x. By
soundness of arrow unification, we have

517' = SlTl — SlTQ (246)
Sy =R -So (247)
vars(Ry) C ftv(SoT) U (Ng — Ny) (248)

Claim 1: fov(S1¥) € yx.

From fov(So¥) € x, we know that all the ordinary variables in ¥ are
already in x. So we consider the meta type variables. If ¥ have no meta
type variables then it is finished; otherwise, consider & € wvars(¥). If
& ¢ dom(S1) then it is finished. Otherwise & € dom(S1).

Consider two cases:
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e & € dom(Sp). Then consider 7 = Spav. If 7 contains no meta type
variables, then it is finished because fov(Si1a@) = fov(So@) € fov(So¥) €
x. Otherwise, consider 3 € ftv(r). Then it must be 3 ¢ dom(Sy).
If B ¢ dom(S:) then it is finished. Otherwise, B € dom(S;). Then
it must be 3 € vars(R;). By equation 248 we have 3 € ftv(Sor) U
(Ng — Np). Obviously B cannot come from (Nog — Np), since B e
ftv(So@), @ € vars(¥), and Ny is fresh to ¥. So Be fto(SeT). So
fov(S18) C fov(S1S07) = fou(S1T) C x.
o & ¢ dom(Sp). Because we know & € dom(S1), then it must be a €
vars(Ry). So @ € ftv(SoT)U(Ng— Ni). It cannot be (Ng— Ny) since
a € vars(¥) and Ny is fresh to W. So a@ € ftv(SeT). So fov(S1a) C
fou(S1Se7) = fou(S17) C x.
Now we have fov(S1%, S1711,S172) € x. By induction hypothesis on equa-
tion 245 we have fov(Sa71, SoTe, SoW, SoB) € x. Also it is easy to derive
SoT = Sam — SaTe. So fov(SaeT, S2W, SoB) C x, which is exactly what
we want, so we are done.

Lemma 46. if (So,No) 1 ' 1@ Fe = A< (S1,N1), and fov(Sol’, So¥) C x,
then fov(SiT,51%,51A) C x.

Proof. Do induction on the typing relationship and case analysis.
— Case AT-VAR. We have (So, No) 1 ' W Fx = B < (S, Ny), given

z:AET (249)
(So,No) 1WA <: B (S1,Ny) (250)

And fov(Sol, So¥) C x. Because x : A € I', so fov(SpA) C x. Then by
Lemma 45, we have fov(S14,51B,5%) C x.
Now we want to prove fov(S1I") C x. By soundness of subtyping, we have

S1=R-Sy (251)
vars(R) C ftv(SpA) U ftv(Se¥) U (Ng — Ny) (252)

From fov(So¥) C x, we know that all the ordinary variables in ¥ are already
in . So we consider the meta type variables. If ¥ have no meta type variables
then it is finished; otherwise, consider & € ftv(¥). If @ ¢ dom(S;) then it is
finished. Otherwise, @ € dom(S;). Consider two cases:

e & € dom(Sp). Then consider 7 = Spa. If 7 contains no meta type vari-
ables, then it is finished because fou(S1a) = fov(Sp@) C x. Otherwise,
consider j3 € fto(7). Then it must be B ¢ dom(Sy). If B ¢ dom(S1) then
it is finished. Otherwise, 3 € dom(S;). Then it must be 3 € vars(R).
By equation 252, we have 3 € ftv(SyA) U ftv(Se®) U (Ng — Ny). Ob-
viously B cannot come from (Ng — Ny), since B € (Spa), a € ftu(¥),
and N is fresh to Sy and ¥. So 3 € ftv(SoA) U ftu(Se¥). Therefore,

-~

fou(S18) C fou(S1S0A) U ftu(S15¥) = fou(S1A) U fou(S1¥) C x
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e a ¢ dom(Sy). Because we know a € dom(Sy), then it must be a €
vars(R). So a € ftv(SpA)U ftu(Spsctx) U(Ng— Ni). It cannot be (Ng —
Ny) since & € fto(¥), and Ny is fresh to &. So & € ftv(SoA)U ftv(So¥).
So fov(S1@) C fov(S150A4) U ftv(S15¥) = fou(S14) U ftv(S1¥) C x.
— Case AT-INT. Follows directly.
— Case AT-LAMANNI1. We have (So,Ng) 1 ' F Az : A.e = A —- B —
(Sh, N1), given

(So,No) 1 [z : A e = B < (S1,Ny) (253)

And fov(SoI") € x.
Because A is an annotation and is closed, so fov(So(I,z : A)) € x. Then
by induction hypothesis, we have fov(S1(I,z : A)) U fou(S1B) € x. So
fov(S1I") U fou(S1(A — B)) € x.

— Case AT-LAMANN2. We have (So, No) 1 [ 1¥,CFXx:A.e = C— B<—
(S2, N3), given

(So,No) FC <. A= (Sl,Nl) (254)
(S1,N1) 1 [Nx: AW ke = B (S2,Na) (255)

And fov(SoI") U fou(So(¥,C)) C x.

Because A is closed, so we have fov(SpA,SoC) C x. By Lemma 45 on
equation 254, we have fov(S14,5,C) C x.

Claim 1: fov(S1I") U fov(S1¥%) C x.

From soundness of subtyping on equation 254 we have

Si =R -So (256)
vars(Ry) C ftv(SoC) U ftv(SpA) U (Ng — Ny) (257)

From fou(SoI") U fou(So¥) € x, we know that all the ordinary variables in
I' W are already in x. So we consider the meta type variables. If I', ¥ have
no meta type variables then it is finished; otherwise, consider a € ftv(I, V).
If & ¢ dom(S1), then it is finished. Otherwise, @ € dom(S7). Consider two
cases:

e & € dom(Sp). Then consider 7 = Spa. If 7 contains no meta type vari-
ables, then it is finished because fov(S1a) = fov(Spa) € x. Otherwise,
consider B € fto(7). Then it must be B ¢ dom(Sy) If B ¢ dom(S7) then
it is finished. Otherwise 3 € dom(S1). Then it must be Be vars(Ry).
By equation 257, we have 3 € fto(SeC) U ftu(SeA) U (Ng — Ny). Obvi-
ously 3 cannot come from (Ng— Ny), since Be fto(Sod), & € fto(l,¥),

N

and Ny is fresh to Sy and I',W. So 5 € ftv(SoC) U ftv(SpA). Therefore,
Fou(S158) C fou(S15,C) U ftv(S1S0A) = ftu(S1C) U ftu(S1A) C x.

o & ¢ dom(Sy). Because we know & € dom(Sy), then it must be a €
vars(Ry). So a € ftw(SoC) U ftv(SpA) U (Ng — Nyp). It cannot be
(Ng — Np) since @ € fto(¥, ') and Ny is fresh to ¥, I". So fou(S1a) C
fOU(SlsoA,51SQO) = fov(SlA,SlC) g X-
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Now we have fov(S1([,z: A))U fou(S1¥) C x, by induction hypothesis on
equation 255 we have fov(Sa(I,z : A)) U fov(Sa¥) U fov(S2B) € x.
Claim 2: fov(S2C) C x.

From soundness of typing on equation 255 we have

So=Rs-S1  (258)
vars(Rg) C fto(S1(Ix : A)) U fto(S1¥) U (N1 — N) (259)

From fou(S1C) € x, we know that all the ordinary variables in C' are already
in x. So we consider the meta type variables. If C have no meta type variables
then it is finished; otherwise, consider & € ftv(C). If & ¢ dom(S2), then it
is finished. Otherwise, & € dom(S2). Consider two cases:

e & € dom(S1). Then consider 7 = Sya. If 7 contains no meta type vari-
ables, then it is finished because fov(Saa) = fov(S1a) € x. Otherwise,
consider 3 € ftv(7). Then it must be B ¢ dom(Sy). If B ¢ dom(S2) then
it is finished. Otherwise 3 € dom(Sz). Then it must be Be vars(Rsg).
by equation 259, we have 8 € ftu(S1I) U ftv(S1%) U (Ny — N,). Obvi-
ously B cannot come from (S1 — Na), since Be fto(S1a), a € fto(C),
and N is fresh to Sy and C. So B € ftv(SiI") U ftv(S1¥). Therefore,
Fou(S2B) C fou(S281T) U ftu(S281%) = fou(Satcta) U fov(ass¥) C x.

e & ¢ dom(Sy). Because we know & € dom(Sz), then it must be a €
vars(Rz). Soa € fto(S11)Uftv(S1¥)U(N;—N3). It cannot be (N1 —Na)
since @ € ftv(C) and Ny is fresh to C. So fov(Saa@) C fov(S251T, 5251%)
fov(S2T, SaW) C x.

Therefore fov(SaI")U fov(Sa (¥, C))U fov(S2(C — B)) € x and we are done.
Case AT-LAM1. We have (So,NoB) I I' - Az. e = B — A < (S1,Ny),
given

(So,No) 1 Lz : BHe = A< (S1,Ny) (260)

And fou(SoI") € x. Because B comes from a fresh name supply so B\ ¢ Sp. So
fou(So(I,x : B)) € x. Then by induction hypothesis, we have fov(S; (I, x :
E)) U fov(S1A) € x, namely fov(S1I") U fov(Sy (B\—> A)) € x.

Case AT-LAM2. We have (Sg, No) 1 ' 10, AF Az.e = A — B < (S1,N1),

given
(So, No) 1 [Nz : A1 ¥ ke = B (S,N) (261)

And fou(SoI")U fou(So(¥, A)) € x. Namely, fov(So(I,z: A))U fov(Se¥) €
X- So by induction hypothesis, we have fov(S1(I,z : A)) U fov(S1¥) U
(S51B) € x and we are done.

— Case AT-APP. We have(So, No) 1 ' 1 ¥ ey e = C — (53, N3), given

(S(),No) 1 I'Fey = A~ (Sl,Nl) (262)
(Sl,Nl) [ Fagen(A) =B < (SQ,NQ) (263)
(SQ,NQ) A !Z’,B H e1 = B— C— (Sg,Ng) (264)
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And fov(SoI') U fov(So¥) € x.
By inversion on equation 263, we have

Sy =Sy (265)
B =Vb.(S1A)[a — 1] (266)

By induction hypothesis on equation 262, we have fov(S1I)U fov(S14) € x.
So it is easy to derive that fov(S1B) € x.

Claim 1: fou(S1¥) € x.

By soundness of typing on equation 262, we have

Sy =Ry -So (267)
vars(Ry) C fto(Sel") U (No — Ny) (268)

From fov(Soy¥) € x, we know that all the ordinary variables in ¥ are already
in . So we consider the meta type variables. If ¥ have no meta type variables
then it is finished; otherwise, consider & € ftv(¥). If @ ¢ dom(S;) then it is
finished. Otherwise, @ € dom(S7). Consider two cases:

o a € dom(Sp). Then consider 7 = Spa. If 7 contains no meta type vari-
ables, then it is finished because fov(Si1@) = fouv(Spa) € x. Otherwise,
consider 3 € fto(7). Then it must be B ¢ dom(Sy). If B ¢ dom(S7) then
it is finished. Otherwise, B € dom(S1). Then it must be B € vars(Ry).
By equation 268, we have E € ftu(SoI")U(Ng— Ny). Obviously E cannot
come from Ny — Ny, since 3 € fto(Sp@), @ € ftv(¥), and Ny is fresh
to So and ¥. So B € ftv(SoI"). Therefore, fov(Slg) C fou(S150I") =
fov(S1I') C x.

o & ¢ dom(Sy). Because we know & € dom(Sy), then it must be a €
vars(Ry). So @ € ftv(Sel") U (No — Np). It cannot be (No — Ny) since
a € fto(¥) and Ny is fresh to ¥. So @ € ftv(Sol). So fov(Sia) C
fov(S150T") = fou(SiT") C x.

So we now have fov(S1I)U fov(S1(¥, B)) € x. Since S; = Sa, by induction
hypothesis on equation 264, we have fov(S3I")Ufov(S5(¥, B))U fov(S3(B —
() € x and we are done

O

Lemma 47 (Completeness of Unification). if SSym; = SSy7, then 35,
that Sy b 71 = 70 < S1. And 3R, that S - So = R - S1. Moreover, vars(R) C
vars(Sy) Uvars(S) U ftu(ry, m2).

Proof. We do induction on following lexicographic pair

{lrange(So) U ftv(m1, 72)l, size(r1) + size(r2))

and proceed by case analysis on the possible forms of 7 and 7.
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— 71, 7o are both arrow types. So 7 = 71 — Ti2, To = To1 — Too. By inversion

we have
SSoT11 = SSoT21 (269)
SSoT12 = SS0T22 (270)
Since
{lrange(So) U ftu(ri1,701)|, size(T11,T21)) < (271)
{lrange(So) U fto(mi1 — Ti2, To1 — T22)|, size(T11 — T12, T21 — T22))
By induction on equation 269, we have
So b 111 =121 = 51 (272)
SSy = R151 (273)

Moreover, vars(Ry) C vars(S) Uwvars(So) U fto(ri1,721).

And by soundness of unification (lemma 37) on equation 272, we have
vars(Sy) C vars(Sy) U fto(ri1, T21)-

From SS()’TlQ = SSOTQQ, with equation 273 we have R151T12 = R151T22.

By lemma 42 that range(S1) C range(Sy) U ftv(7i1,721). So we have

<|’I’G/I’L96(Sl) U ft’l)(’ﬁg7 T22)|, SiZG(Tlg, T22)> <

274

<|range(So)Uftv('rH — T12, 721 *)TQQ)|,S7;ZG(T11 — T12,T21 *)7'22» ( )
then by induction, we have

S1 b T2 = Tag = 52 (275)

R1S1 = RS, (276)

And vars(Rz) C vars(Ry) Uvars(Sy) U fto(ri2, Ta2).

So, feed So and R to the goal, we have S; F 11 = 75 < S5 by using AU-FUN
with equation 272 and 275. And S5y = R2.S2 by transitivity with equation
273 and 276.

Case they are both ordinary variables. Then they must be the same ordinary
variable and we can prove the case trivially by using AU-REFL.

Case they are both Int, holds trivially.

Case when one is a meta variables. Without loss of generality, we assume
71 = . There are several cases:

e 75 = @. Then we can prove the case trivially by AU-REFL. So in the
following cases, we will assume 75 # Q.

e a € dom(Sp). We have SSya = SSy7a, or equivalently SSy(Spa) =
SSo7e. Since we know Sy is well-defined, and & € dom(Sp), so a ¢
range(Sp). And obviously @ ¢ 75 since otherwise SSpa = SSy72 cannot
hold. So we have

|range(So) U fto(Soa, 7)| < |range(So) U ftu(a, )| (277)
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because ftv(Sp) € range(Sy), also we know the left hand side contains
@ but the right hand side does not.
Therefore we can apply the induction hypothesis to get

S() [ S(]a = To — Sl (278)
S5, = RS (279)

With the same S; and R, by AU-BVAR1 we are done.
e a ¢ dom(Sp). Then we have following sub-cases:

x SoT = @. Since 7 # a, we have that 7 :AB and SOB = a. Also
because Spa@ = @, then the goal Sy F @ = 8 — Sy holds by using
AU-BVARI with Sg Fa =a < Sy. Take R = S we are done. So in
the following cases we assume So7 # Q.

x a € ftv(SoT). Impossible case because then SSpa = SSp7 becomes
Sa = S(So7) and the sizes of types in both side are not equal now.

* a ¢ ftv(SoT). In this case we apply AU-VARI to get the goal Sy F
a =71 <= [@a— Sor] - So. Then we need to give the R makes
SSo = R [a— So7]So. We already know SSpa = Sa = SSy7. We
can rewrite S = S’ - [@ — Sp7]. So choose R = S’ and we are done.

|

Lemma 48 (Completeness of Arrow Unification). If SSpA = B — C,
then for any fresh name supply Ny, we have for some S1, (So,Ng) 7 A =
A1 — AQ — (Sl,Nl), and HR, that S - SO =R- Sl\No—Nu and RS1A1 = B,
RS1As = C. Moreover, vars(R) C vars(S) Uwvars(Sy) U ftv(A) U (Ng — Ny).

Proof. By case analysis on the type structure of A.

— A is Int or an ordinary variable. Impossible.

— A is a meta variable @. Then both B and C are monotypes. Then we would
like to use rule AF-MoNO, where we have (Sp, Noa1te) F7 @ = ap — Qg <
(S1, No), if given Sp F @ = a3 — @z < S7. So our goal now is to prove the
later one. There are two sub-cases:

o & ¢ dom(Sy). Here we are going to use AU-VARI, because definitely
a ¢ fto(So(an — az)) = {a1,as} since a; and ay come from a fresh
name supply. So S1 = [a@ — a3 — az] - So.

Then in order to prove S-Sy = R - S1\a,,a,, namely S-Sp =R - [a —
al — aQH . 50\317627 ple R=S5- [[&1 — BH . [[ag — CH

e a € dom(Sp). Then we case analyze the form of Spa

* Spa is Int or an ordinary variable. Impossible. R

x Spa = [ where 8 # &. Also because Sy is well-defined, so 5 ¢
dom(Sp). Then in order to give So H & = a; — ay — 51, we are
going to use rule AU-BVARI and turn to give Sy = Soa0 = ap —
ay < S1, namely Sp F 8 = (@1 — @3) < S;. For this one, we are
going to use rule AU-VARI1 to conclude S; = [[B — a1 — Q3]So.
In order to prove S-Sy = R - S1\a, a,, Damely S-Sy = R - [[B —
&1 — &2]] . So\al,a}, we piCk R=S5- [[&1 — B]] . [[ag — C]]
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x Spa = D1 — Ds. Then in order to give So - a = a; — as < S, we
are going to use rule AU-BVARI1 and turn to give So - Dy — Dy =
Q1 — Qg < S7. We assume D; and D5 are not meta type variables,
because the cases when they are meta variables are similar. Then we
can apply rule AU-FUN and with a result Sy = [as — D5 - [a1 —
Dl]] . So.

In order to prove S-Sy = R - S1\a,,a,, namely S-Sy =R - [as —
D;] -[@1 — D1] - So\&, a,, we choose R = S. It is easy to derive this
holds so we are done.

— Ais a function type so A = Dy — Ds. So SSoD; = B and SSyDs = C. Then
by AF-ARROW we have (So,No) v Dy — Dy = Dy — Dy — (Sp, No),
namely A; = Dy and As = Dy. Then choose R = S and we are done.

O

Lemma 49 (Completeness of Subtyping).

1. If SSoA <: SSyB, then for any fresh name supply Ny, we have for some
Sl, that (So,No) FA <. B— (Sl,Nl), and HR, that S-Sy = R'Sl\No—Nl-
Moreover, Ny is fresh to R.

2. If SSo¥ + SSyA <: B, then for any fresh name supply Ny, we have for
some Sl, that (SO7N(]) vEA < C — (Sl,Nl), and 3R, that S-S =
R - S1\ny—n, - And RS1C = B. Moreover, Ny is fresh to R.

Proof. This lemma has two parts, with only the second one depending on the
first one. So we prove them separately.

Part 1 By induction on the height of derivation. And we case analyze the last
rule used in the derivation

— Case S-Int. This means SSypA = SSyB = Int. Both A and B are mono

types.
From the completeness of unification (lemma 47), we know for some
Sy, that So H A = B < S;. And S-Sy = R- Sy, with vars(R) C
vars(Sp) U vars(S) U ftv(A, B). So by using rule AS-MONO we have
(So,No) A <: B < (S1,Ng). Choose the same R and we are done.

— Case S-VAR. Similar to the case S-INT.

— Case S-FORALLR. So SSyB = Va.C and SSyA <: Va.C. Suppose a
is fresh because we can always use a renaming to choose a fresh one.
Then we know B = Va.B; since Vs are preserved by substitution. Also
SS9B1 = C. Suppose b is one fresh name provided by name supply, by
a renaming, Va.C' = Vb.Ca — b]. So SSyA <: Vb.Ca + b]. Then ac-
cording to rule S-FORALLR we have SSpA <: C[a — b]. Equivalently,
SSoA <: SSop(Bifa > b]). By induction hypothesis

(So,Nob) FA <: Bl[[a — b]] — (Sl,Nl) (280)

And SS() = RS1\N0b7N1.
Then we can apply rule AS-FORALLR to get (Sp, Nob) H A <: Va.B; —
(S1, N1), namely (Sp, Nob) F A <: B < (S1, Ny) if we can satisfy other
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premises, which are b ¢ ftv(S1A) and b ¢ ftv(S;B). We already know
b ¢ ftv(A, B) because b comes from a fresh name supply. Then suppose
by contradiction that b € ftv(S’lA S1B). There must be a Be ftv(A, B)
and b € ftv(Slﬁ) Since ﬁ ¢ Nob — N; since name supply is fresh, we
have SSOB = RSlﬁ Then we have b € ftv(RSlﬁ) = ftv(SSOB)
b € vars(S,Sp). But b is a fresh name to S, Sy, a contradiction.
— Case S-Fun. Then we have SSgA = A1 — A, and SSoB = By — Bs.
There are both two cases for both A and B: R
e A is a meta type variable A = @ and B is a meta variable B = f3.
We have SSpa <: SSpf. Because both sides are monotypes, so it
must be SSpa = SSp5. Then by completeness of unification (lemma

47), we have
SoFa=p3<5 (281)
SSo = RSy (282)
vars(R) C vars(So) Uvars(S) U fto(a, B) (283)

Then by rule AS-MONO we have (So, No) F @ <: B < (51, No).
All the subgoals follow directly.

e A is a meta variable and B is a function type B = Dy — Ds, and
SSoDy1 = By, SSogDs = Bs.
Because SSyA = A; — As, by completeness of arrow unification
(lemma 48), we have

(So, No) F7 A=C1 — Cy — (S1,Nq) (284)
SSo = R1S1\No—m, (285)

R1S,Cy = A, (286)

R1S1Co = Ay (287)

Moreover, N; is fresh to R;.

From the preconditions, we have By <: A, namely SSoD; <: R15:Ch,
equivalently, R1S1D; <: R151Ch, because ftv(D;) has no variables

in (No — N7). From this, we can apply induction hypothesis:

(Sl,Nl) FD; <: Ci— (SQ,NQ) (288)
RyS2 = R1S1\N,—Ns (289)
Moreover, Ny is fresh to Rs.
Similarly, from hypothesis we have A; <: By, namely R1.5:Cy <: SSyDa,
equivalently RoS5Cs <: R9S5Ds. By induction hypothesis we have
(SQ,NQ) [ 02 < D2 — (Sg,Ng) (290)
R3S3 = R3S2\N,— N, (291)

Moreover, N3 is fresh to Rg.
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Then by rule AS-FUNR with equation 284, 288 and 290, we can
derive (So,No) FA < Dy = Dy — (Sg,Ng), namely (So,No) F
A < B < (S5,N3). And from equation 285, 289 and 291 we get
5850 = R353\ Ny—N-

e A is function type and B is meta variable. Similar to last case.

e both A and B are function types. Similar to last case.
— Case S-FORALLL. Then A = Va.A;. Assume a ¢ vars(S,Sp). Because

we can always by « renaming achieve this requirement. Then we have
Va.SSgA1 <: SSOB given that Ja — 7]S5S04; <: SSOB where a ¢
ftv( ). Consider a 6 comes from a fresh name Supply Ny 6 , then we have
[[5 — T]]SSO(A1 [a — ﬂﬂ) <: S5y B. Equivalently, [[B — 7] SSo(A1]a —
B]] < [[B — 7] SSoB.

However, 7 may contain variables that in Ny. We know Ny is fresh to
SS50A; and SSyB. So we only need to take care of the type variables
in 7 but not in ftv(SSpA1,SS0B). Consider a renaming substitution @
that maps those type variables to fresh variables. By subtyping substi-
tution, we have [8 — Q7]SSo(Ai]a — 6]]) < [[ﬁ — Q7] SSoB. Now
by induction hypothesis we have

(So, No) F AyJa s B] <: B < (S1,Ny) (292)
RS, = [B — Q7]5S0\ny—n, (293)
Moreover, Ny is fresh to R.
Then from equation 292 by AS-FORALL we have (.Sp, Noﬂ) FVa.A; < B<
(S1, N1).

From equation 293 we have RS; = SSp)\
Part 2 By induction on the height of derivation. gnﬁ we case analyze the last

rule used in the derivation

— Case S-EMPTY. So ¥ = 0, SSyA = B. By AS-EMPTY and choose
R =S, each subgoal holds trivially.

— Case S-FORALLL. Then A = Va.A;. Assume a ¢ vars(S, Sp). Because

we can always by a renaming achieve this requirement. Then we have
SSo¥ + Va.SS0A; <: B given that SSo¥ + [[a — THSSoAl <: B,
where a ¢ ftv(r). Consider a E comes from a fresh name supply NOB\,
then we have SSo¥ - [B +— 7]5S0( (Arfa — B]]) <: B. Equivalently,
[5 — 7]SSo¥ [[6 — 7] SS0(A1]a — B]])
However, 7 may contain variables that in No We know Ny is fresh to
SSpA; and B. So we only need to take care of the type variables in
7 but not in ftv(SSyA1, B). Consider a renaming substitution @ that
maps those type variables to fresh variables. By subtyping substitution,
we have [ — Q7]SSo¥ b [B — Q7]S5So(A1[a — B]) <: B. Now by
induction hypothesis we have

(So,NQ) \!Pl—Al[[aHﬁ}] < CH(Sl,Nl) (294)

RSy = [B — Q7]SS0\ny—n, (295)
RS,C =B (296)
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Moreover, Nj is fresh to R. R
Then from equation 294 by AS-FORALL2 we have (So, NoB) 1 ¥ +
Va.Al <: C— (Sl,Nl).
From equation 295 we have RS; = 5'5'0\]\,0571\[1
— Case S-Fun2. Then we have SSgA = Ay — Ay, and B = By — Bs.
Assume ¥ = W’, Dl, then SSODl = Bl.
There are two cases for A:
e A is a meta variable.
Because SSyA = A; — As, by completeness of arrow unification
(lemma 48), we have

(S0, No) F= A= Cy — Cy < (S, Ny) (297)
SSo = R1S1\ng—n, (298)

R1S1Ch = A (299)

R1S1Co = Ay (300)

Moreover, N7 is fresh to R;.

From the premises, we have B; <: Ajp, namely SSoD; <: R15,C1,
equivalently, R1S1D; <: R1S51C1, because ftv(D;) has no variables
in (Nyg — Ny). From this, we can apply the part 1 of this lemma to
get:

(Sl,Nl) - D1 < Cl — (SQ,NQ) (301)
RyS> = R1S1\N,—N, (302)

Moreover, N5 is fresh to Rs.

From hypothesis we have SSo¥’' + Ay <: By, namely R;S51¥’ F
R151Cy <: Bs, equivalently RpSoW’ F R9S3Cy <: Bsy. By induc-
tion hypothesis we have

(SQ,NQ) - CQ <: Dy — (S3,N3) (303)
R3S3 = RQSQ\N27N3 (304)
R3S3Ds = Bo (305)

Moreover, N3 is fresh to Rj.
Then by rule AS-FUN2 with equation 301, 303, we can derive (S7, N1)
W/,Dl FC, — Cy <: Dy — Dy — (Sg,Ng), namely (Sl,Nl) ¥
Ci1—-Cy <: Di - Dy — (S3,N3)
And with AS-MoN02 and equation 297, we have (So,Np) 1 & F
A <: Dy — Dy — (Sg,Ng,).
And from equation 298, 302 and 304 we get SSo = R353\Ny—Ns-
(RgSg)(Dl — Dg) = RgSng — RgS3D2 = SSODl — By = B —
Bs.

e A is function type. Then we have A = C; — Cs, and SS,C, = Ay,
SSyCy = As.
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From the premises, we have By <: Aj, namely SSoD; <: SSyC1,
applying the part 1 of this lemma we get

(S(),No) FD; <: Ci— (Sl,Nl) (306)
S50 = R1S1\Ny—N, (307)
Moreover, N is fresh to R;.

From the premises we have SSo¥’ - Ay <: B, namely RS9
R15:C5 <: Bs. By induction hypothesis we have

(Sl,Nl) - CQ <: Dy — (SQ,N2) (308)
Ry S5 = Rlsl\leNz (309)
R2S>Ds = By (310)

Moreover, N5 is fresh to Rs.
Then by rule AS-FUN2 with equation 306, 308, we can derive (Sg, No)
W’,Dl FC, —Cy <: Dy — Dy — (SQ,NQ), namely (S(),No) |
A < D1 — Dy — (SQ,NQ).
And from equation 307, 309 we get 5SSy = R2S52\No— N, -
(RQSQ)(Dl — Dg) = RQSng — RQSQDQ = SSoDl — By = By —
Bs.

O

Before we state the completeness of typing, let us consider an example

(Az. z) (Az. ). In algorithmic system, the result type is deterministic, which
is Va.a — a. However in declarative system, it is possible to derive the type
Int — Int. For the type Int — Int, it is impossible to use substitution to make two
result types equivalent. Namely, the result type come from algorithmic system is
possibly more polymorphic than the one from declarative system. But with this
statement, the completeness of typing involving generalization becomes hard to
prove. So instead of stating the subsumption between the result type, we state
the subsumption between the generalized result types.

Lemma 50 (Completeness of Typing).
1. If SSoI 1 SSy¥ e = A, and ftv(SSoW¥) C ftu(SSol"), then for a fresh

name supply Ny, 351, N1, B, that (So,No) 1 ' 1 ¥ e = B — (S1,N1),
and AR, that S-Sy = R- Sl\NofNN AlSO, SS()F(RSlB) < SS()F(A)
Moreover, Ny is fresh.

If SSoI' e = Ai, and SSoIyen (A1) = Az, then for a fresh name supply
No, that (S(),No) 1 I'Fe = By — (Sl,Nl), and (Sl,Nl) F Fagen(Bl) =
By — (Sl,Ng) and ER, that S-Sy = R - Sl\No—Nz) and RS1By; <: As.
Moreover, Ns is fresh.

Proof. This lemma has two parts and they relies on each other. So we prove
them simultaneously.

Part 1 By induction on the height of derivation, and case analyze the last rule

used in the derivation.
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— Case T-VAR. We have e =z, and x : C' € SSoI', and SS¥ - C <: A.
So there must be x : B € I', and SSoB = C. Therefore, SSo¥ +
SSyB <: A. By completeness of subtyping (lemma 49) we have

(SO7NO) IWEB <: D« (Sl,Nl) (311)
S-So=R-S1\ny_n, (312)
RSiD = A (313)

So by rule AT-VAR, we have (So,No) 1 ' 1 ¥ F e = D < (S1,Ny).
And all other goals follow naturally.

— Case T-INT. Choose R = S and all subgoals are trivial.

— Case T-LAMANN. we have ¥ = (), A = B — C, and SSoI" F Az :
B.ey = B — C, given SSyol,x : B+ e; = C. Because B is a user
defined type so it is closed. So we can rewrite the equation as SSo (I, :
B)Fe; = C. By induction hypothesis, we have

(So,No)IF,IZBF(il = D‘—)(Sl,Nl) (314)
S So=R-Si\ny_n, (315)
SSo(l,z: B)(RS1D) <: SSo(I',xz: B)(C) (316)

By equation 314 and rule AT-LAMANNL we have (So,No) 1 I' F Az :

B.ey = B — D < (51, N;). Because B is closed, equation 316 can be

rewritten as SSoI'(RS1D) <: SSoI'(C).

Then we have SSoI'(RS1(B — D)) = SSoI'(B — RS1D) <: SSyI'(B — C).
— Case T-LAMANN2. we have A = A; — As, and assume ¥ = ¥’ C,

then SSoC = A;. From premises, we have SSqI" 1 SSo¥’,SS5,C +

Ax @ B.er = Ay — As, given SSoI,x : B 1 SSo¥’ F e = Ao,

and SSoC <: B. Because B is a user defined type, so equivalently

SS,C <: SSyB.

By completeness of subtyping (lemma 49), we have

(So,No) FC <: B— (Sl,Nl) (317)
S-So=R1-S1\Ne-N, (318)

with Nj fresh.

Again because B is a user defined type and so is closed, we can rewrite
the typing premise as SSo(Iz : B) 1 SSo¥’' F e; = A,. Equivalently,
R1S1(Ix : B) 1 R1S1¥' ey = Asy. By induction hypothesis, we have

(S1,N\) 1 T,z : B W' Fep = Dy (Sa, Na) (319)
Ry -S1 =Ry So\nN,—-nN, (320)
SS()(F,I : B)(RQSQDQ) <: SSO(F,JZ : B)(AQ) (321)

with Ny fresh.
By rule AT-LAMANN2 with equation 317 and 319 we have (Sg, No) 1 I |
lpl,C FAXx:B.eg = C— Dy — (SQ,NQ).
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Since B is an annotation and is closed, so equation 321 can be rewritten

as SSQF(RQSQDQ) <: SSOF(A2>

By precondition we have ftv(SSoC) C ftv(SSoI"). So we can deduce
SSQF(RQSQC — RQSQDQ) = SSOF(SSOO — RQSQDQ) < SS()F(SSOC — AQ) =
SS()F(Al — AQ)

Case T-LAM. So A = A; — Ay. Assume ¥ = ¥’ C, then SS5,C = A;.

We have SSoI" | SSo¥’,SSoC F Az. ey = A; — Asg, given SSol,z :

SSyC 1 SSo¥' + e; = Asy. Equivalently, SSo(Iz : C) 1 SSo¥’ +

e; = As. By induction hypothesis, we have

(So,No)IF,ZZZZC\W/F61 = DQ‘—>(517N1) (322)
S-So=R-S1\N,—N, (323)
SS()(F,Z‘ : C)(RSlDQ) <: SSO(F,JL‘ : C)(AQ) (324)

with Np fresh.

So from equation 322 and rule AT-LAM?2 we get (So, No) 1 I'1¥',C
Ax.ep = C— Dy — (Sl,Nl).

From preconditions, we have ftv(SSyC) C ftv(SSoI"), so equation 324
can be rewritten as SSoI'(RS1D2) <: SSoI'(Az).

AlSO7 SS()F(RSlc — RSng) = SS()F(SS()C — RSlDz) < SS()F(SS()C — Ag) =
SSQF(Al — Ag)

Case T-LAM2. So¥ = (), and A = 7 — Ay. We have SSoI" = Az.e; = 7 —
Az, given SSoI,x : 7 e1 = As. Suppose ﬁ comes from a fresh name
supply Noﬂ, then we have [8 — 7]SSo([,x : [3) Fe = As. By induc-
tion hypothesis, we have

(So,NQ) I F7.%‘ : B\}— e = Cg — (Sl,Nl) (325)
[[B’_}T]]S'SO =R -S1\ny—n, (326)
[B 7]SSo(I, 2 : B)(RS1C2) <: [Br 7]SSo(Ix: B)(As)  (327)

with Nj fresh.

From equation 325 and rule AT-LAM1, we have (S, Nog) 1 I'FAx.ep = 3 —
CQ — (Sl7 Nl).

From equation 326 we have S+ Sp = R S1\y 3_y,-

And equation 327 can be rewritten as (SSo [,z : 7)(RS1C2) <: (SSol,x : 7)(As2).
Suppose it is Va.RS1Cy <: Vb.As, where @ = ftv(RS1Co)— ftv(SSol’)—

fto(r), b= ftv(As) — ftv(SSoI") — ftu(r). What we want is

SSoI'(RS1(B — Cs)) <: SSoI'(t — Az), namely SSoI' (T — RS1C3) <: SSoI'(T — Ay).
Suppose ¢ = ftv(T)—ftv(SSeI"), then what we want is Vea.r — RS;Cy <: Veb.r —

A,, equivalently Va.r — RS;C; <: Vb.r — Ay which can be easily de-

rived from Va.RS;Cs <: Vb.As.
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— Case T-APP. From premises, we have

SS()F Feo = B; (328)
S50l gen(B1) = Bo (329)
SSOF | SSOW, Bykep = By — A (330)

Suppose x = ftv(Bs) — vars(S,Sy) U fto(I,¥) U ftv(A). Consider a
substitution () maps the variables in x to a fresh set. Then according to
the substitution lemma (lemma 35), we have

SSol'+es = Bs (331)
SSOFgen(B3) = QBQ (332>
SS()F | SS()LD, QBQ Fel = QBQ — A (333)

From part 2 of this lemma on equation 331 and 332,

(So,No) 1 ' es = By — (S1,Ny) (334)
(S1,N1) F Fagen(B4) = Bs < (51, N2) (335)
S-Sy =Ry S1\Ny-N (336)

RiSiBs <: QB (337)

Because the application context decides the form of typing result, we
can derive from equation 330 that

A= SSow — A’ (338)
SSOF | SS()W, Bokey = By — SS()W — A (339)

According to lemma 33, with equation 339 and 337, we have

SSoI" 1 SSoW, RiS1Bs - e1 = R1SyBs — SSo¥ — A (340)
SSoI'(AL) <: SSol'(A) (341)

Let Ay = SSo¥ — Af. From preconditions we know ftv(SSo¥) C

ftv(SSoeI"), so from equation 341, we can derive SSoI'(SSo¥ — AY) <: SSeI'(SSo¥ — A'),
namely SSoI'(A2) <: SSoI'(A).

Rewrite equation 340 we get R151F | R151u7, R18135 = e = R1SlB5 —

As. Apply the induction hypothesis, (since application context decides

the form of result type, so instead of As we use By — Aj)

(Sl,NQ) AN Rl,B5 F e = B5 — A3 — (Sg,Ng) (342)
RoS5 = RlSl\NQ_N3 (343)
R151F(R253(B5 — A3)) < RlSlf(RlSlB5 — Ag) (344)

Combining equation 334, 335, 342 with rule AT-APP, we get (So, No) |
I'Vke e = A3 — (Sg,Ng).
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From equation 336 and 343 we get S - Sop = Ra - S5\ Ny— N5 -
We can rewrite equation 344 as Ry 511" (R151Bs — RoS3A3) <: R1S11'(R151Bs — As).
Because By is generalized under I', so ftv(Bs) <: ftu(I'),so ftv(R151Bs) C
fto(R151T). Then we can derive R1S11"(R2S3A3) <: R1S11(As), namely
SS()F(RQ;SgAg) <: SS()F(AQ) By transitivity, SSOF(RQS?,AB) < SSOF(A)

Part 2 From preconditions, we have

SSOF Fe = A1 (345)
SSOFgen(Al) = A2 (346>

with Ay =Va.A;, where a = ftv(A4;) — fto(SSol).
Apply part 1 of this lemma on the equation 345, we get

(SO7N0) 1 I'te = B; — (Sl,Nl) (347)
RS =5 So\non, (348)
SS()F(RslBl) <: SSOF(Al) (349)

From equation 348, we have R-S; =S - So\Ny—N,-

In order to be able to use rule AT-GEN, we need to show that ftv(S;By) —
ftv(S1I) are all meta type variables, which means I'ygen(B1) = S117(S1B1).

From Lemma 46, on equation 347, we have fov(S1B1) C fov(SoIl"). Obvi-

ously fov(SoI") C fov(S1I), since S; = R’ Sy for some R'. So fov(S1B1) C
fov(S1I), namely ftv(S1B1) — ftv(S11I") are all meta type variables.

By lemma 36 RS1 By = RSl(Fagen(Bl)) = RSlSll“(SlBl) <: RSlle(RslslBl) =
RS1I'(RS1By) = SSoI'(RS1By).

And it remains to prove SSoI'(RS1B1) <: SSol'jen(A1). It can be easily

derived from equation 349.

The two parts of lemma rely on each other. This lemma holds because part
1 calls part 2 with a smaller height and part 2 calls part 1 with the same height.
So it will terminate. ad

Theorem 4 (Completeness). If I' - e = A, then for a fresh name supply
Ny, that ([|, No) 1 I' e = B < (S1,N1), and 3R, that '(RS1B) <: I'(A).

Follows directly by lemma 50. a

E.4 Extension of Pairs

This section talks about how to extend the algorithmic type system with pairs.
To do so, there are several changes in the formalizations, and more cases after
the induction in proofs.

Unification The unification rules for pairs are given in Figure 17, which are
quite standard.
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So I T1 = T2 “—~ Sl
T1, T2 inputs

SQ}_leT{‘—)‘SH Sl|_7'2=7’é‘—>52
S() = (’7'1,7'2) = (T{,Té) — Ss

AU-PAIR

SoFleT{;)Sl SoFleT{‘—)Sl

7 AU-Fst 7 AU-SnD
So F fstm =fstm — S5) SoFsndm =snd7m — S

Fig. 17. Unification extends Figure 13 with pairs.

Soundness of Unification. Following proof extends the proof for Lemma 37.

— Case AU-PAIR. Similar as AU-Fun.
— Case AU-FST. Follows directly from the hypothesis.
— Case AU-SND. Similar as AU-FST.
O

Completeness of Unification. Following proof extend the proof for Lemma 47.

— 71, T2 are both pair types. So 7 = (711, T12), T2 = (721, T22). By inversion we

have
SSOTll = SSngl (350)
SSoT12 = SS0T22 (351)
Since
<|range(50) U ftU(Tll, T21)|, SiZ@(Tll, 7‘21)>
. (352)
< (|range(So) U ftu((Ti1, T12), (T21,T22))|, size((T11, Ti2), (T21, T22)))
By induction on equation 350, we have
So 711 =721 = 51 (353)
SSy = R151 (354)

Moreover, vars(Ry) C vars(S) Uwvars(Sy) U fto(ri1, T21)-

And by soundness of unification (lemma 37) on equation 353, we have

vars(S1) C vars(So) U fto(r11, T21)-

From SSy7115 = SSo722, with equation 354 we have R1S17m2 = R1.517209.

By lemma 42 that range(S1) C range(Sy) U ftv(ri1,721). So we have
<|range(51) U ft'l)(’7'127 T22)|, SiZG(Tlg, 7'22)>

355
< (|range(So) U ffv((7'1177'12)7 (7'21,7'22))|a Size((Tll, 7’12), (7'21,7'22)» ( )
then by induction, we have

S1 T2 = T22 = S (356)
R1S1 = R25> (357)
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And vars(Rg) C vars(Ry) Uwvars(S1) U ftv(ri2, T22).
So, feed So and Ry to the goal, we have S1 - m = 7 — S by using
AU-PAIR with equation 353 and 356. And SSy = R3S> by transitivity with
equation 354 and 357.

O

‘ (S(),N[)) l_() A= (A1,A2) — (Sl,Nl)
A input, A1, A2 outputs

S() Fa= (a1,a2) — 51

AP-MonNo
(So,N0a1a2) "0 a= (&1,&2) — (S1,No)

AP-PAIR

(S0, No) FO (A, B) = (A, B) < (S0, No)

Fig. 18. Pair Unification

Pair Unification Similar as Arrow Unification, we need a Pair Unification
process for pairs, as given in Figure 18.

Lemma 51 (Soundness of Pair Unification). if (Sp, No) FU A = (A4;, A3) <
(S1,N1), then S1A = (S1A41,514s), and 3R, that Sy = R - Sy. Moreover,
ftv((A1, Az)), and vars(Sy) are all subsets of vars(Sp) U fto(A) U (Ng — N1);
vars(R) C ftv(SpA) U (Ng — Ny).

Proof. By induction on pair unification relation. We analyze each case.

— Case AP-MONO. Sja; = (S1a1,5102) comes directly by the soundness
of unification (lemma 37), with the same R. ftv((ai,az)) = {a1, a2} =
(Noa1aiz) — No. So ftu((aq, d2)) € (Noaraz) — No. And from soundness
of unification, we get vars(R) C ftv(Soa, So(a1,d2)). Therefore vars(R) C
ft’U(Soa) @] ft’l}((al, ag)) - ft’l)(S()a) U ftU(NoalaQ — No)

Finally, from the soundness of unification, we know S; = R-Sy. So vars(S;) C
vars(R) Uwvars(Sy) C vars(Sp) U ftv(a@) U ftu(Noayas — Np). The case is
finished.

— Case AP-Pair. Choose R to be empty, each goal holds trivially.

O

Lemma 52 (Completeness of Pair Unification). If SSpA = (B,C), then
for any fresh name supply No, we have for some Sy, (So, No) FO A= (A1, Ag) —
(Sl,Nl)} and HR, that S - S() =R- Sl\N()—N17 and RSlAl == B, RSlAQ =C.
Moreover, vars(R) C vars(S) Uwvars(Sy) U ftv(A) U (No — Ny).

Proof. By case analysis on the type structure of A.
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— A is Int or an ordinary variable or function. Impossible.

— A is a meta variable @. Then both B and C are monotypes. Then we would
like to use rule AP-MoNoO, where we have (Sy, Noa1dz) F0 @ = (@, az) —
(51, No), if given Sy F (& = (@1, a2)) = Si. So our goal now is to prove the
later one. There are two sub-cases:

e a ¢ dom(Sy). Here we are going to use AU-VARI, because definitely
a ¢ ftv(So(ay,as)) = {0, die} since &y and ay come from a fresh name
supply. So S7 = [a — (a1, @s2)] - So.

Then in order to prove S-Sy = R - S1\a,.a,, Damely S-Sp =R - [a —
(&1,a2)ﬂ . SO\&haw piCk R=S- [(/1\1 — B]] . [[622 — Cﬂ
e ac dom(So) Then we case analyze the form of Sy
* Soa is Int or an ordmary variable or a function. Impossible.

x Spa = [3 where ﬁ # a. Also because Sy is well-defined, so ﬁ ¢
dom(Sp). Then in order to give Sp - @ = (a1, &) — S1, we are going
to use rule AU-BVARI and turn to give Sy - Spa = (@1, ) — Sy,
namely Sy B = (@1, Q2) < Sp. For this one, we are going to use
rule AU-VARI1 to conclude Sy = [3 — (@1, d2)]So.

In order to prove S-Sy = R - S1\a, a,, namely S-Sy = R - [[E —
(al,ag)]] . S()\al,a17 we ple R=S5- [[@1 — Bﬂ . [[ag — C]]

* Soa = (D1, D2). Then in order to give So F a = (a1, as) — S1, we
are going to use rule AU-BVARL and turn to give Sy - (D1, D2) =
(a1,03) < S1. We assume D; and D, are not meta type variables,
because the cases when they are meta variables are similar. Then we
can apply rule AU-PAIR and with a result S; = [as — Do) - [a1 —
Dq] - So.

In order to prove S-Sy = R - Si\a,.a,, namely S-Sy = R - [ap —
D] - [@y = D1] - So\a, ,a,, we choose R = S. It is easy to derive this
holds so we are done.

— A is a pair type so A = (D1, D3). So SSoD1 = B and SSyDy = C. Then
by AF-PAIR we have (Sg, No) FO (D1, Dy) = (D1, D3) < (So, No), namely
Ay = D7 and Ay = D>. Then choose R = S and we are done.

O

Subtyping The algorithmic subtyping rules for pairs are given in Figure 19,
which make use of the Pair Unification process.

Subtyping Subsitution. Following proof extends the proof for the Part 1 of
Lemma 34.
— Case S-Pair. By induction hypothesis, we have S;1A; <: S1B; and S;A; <: S1Bs.
Follows directly by using rule S-PAIR.
O

Soundness of Subtyping. Following proof extends the proof for Lemma 39.

— Case AS-PairL. Similar as AS-FunL.
— Case AS-PairR. Similar as AS-FunR.
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‘(SO,NO)l—A < B<—>(Sl,N1)‘
A, B inputs

(S0, No) FU A = (A, A2) < (S1,Ny)
(Sl,Nl) A <: B (SQ,NQ) (SQ,NQ) FAy, <: C— (537]\]3)

AS-PAIRR
(So,No)F A <: (B,C) — (S5, N3) A
(S0, No) FO A = (A1, A3) < (S1, N1)
(S1,N1)FB <: Al‘—>(SQ7N2) (SQ,N2)FC <: AQ;)(SB,N3) AS.PAIRL
-PAIR

(So,No) = (B,C) <: A (Sg,Ng)

Fig. 19. Subtyping extends Figure 15 with pairs.

Completeness of Subtyping. Following proof extends the proof for Lemma 49.

— Case S-Pair. Similar as S-Fun.

O
‘(SO,NO)J“\J/I—e = Ao (sl,Nl)\
I' ¥, e inputs, A output
(So,No) 1 I'kFey = A — (S1,N1) (Sl,Nl) I I'Fey = Ay — (SQ,NQ)
AT-PAIR

(S(),No) '+ (61,62) = (A1,A2) — (SQ,NQ)
(S0, No) 1 ¥ - Vab.(a,b) = a <: A< (S1,Ny)
(SO7N0) 1 DU -fst = A< (SQ,NQ)

(So, No) 1 ¥ F Vab.(a,b) - b <: A< (S1,N1)
(So,No)\FlEpl—SIld = A‘—)(SQ,NQ)

AT-FsT

AT-SND

Fig. 20. Typing extends Figure 16 with pairs.

Typing The algorithmic typing rules for pairs are given in Figure 20.

Typing Subsitution. Following proof extends the proof for Part 1 of Lemma 35.

— Case AT-Pair. By induction we have S1I" 1 S1¥ F e; = S1A, and S11"
S1¥ F ey = 5B, follows directly by AT-PAIR.

— Case AT-Fst. Follows directly by subtyping substitution (Lemma 34).

— Case AT-Snd. Similar as AT-FsT.
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Soundness of Typing. Following proof extends the proof for Lemma 41.

— Case AT-Pair. Given

(S(),N()) 1 I'Fep = Al — (Sl,Nl) (358)
(Sl,Nl) 1 I'Fey = A2 — (SQ,NQ) (359)

By induction hypothesis, we have

SiT ke = Si4A (360)
Sy = Ry - So (361)
Sol' b ey = SyAy (362)
Sy =Ry - 5 (363)

Moreover, both vars(S;) and vars(A;) are subsets of vars(Sp) U ftv(I") U
ft?)(@) U (No - Nl), ’UCLT‘S(Rl) g ft”U(S()F) @] ftU(Sow) U (No - Nl)

And, both vars(S2) and vars(As) are subsets of vars(Sy)U fto(IM)U fto(¥)U
(Nl — NQ), ’UCLTS(RQ) Q ft’U(Slp) U ft’U(Slq/) U (N1 — Ng)

By applying the first part of typing substitution (Lemma 35) on equation 360
with Ry, we have

RoSiI'Fer = RaS14 (364)
namely
Sol'Fer = S94; (365)
So by rule T-PAIR and equation 362 and 365 we have
Sol'F (e1,e2) = Sa(A1,As) (366)
By equation 361 and 363, we have
Sy =Ry -R1-S (367)

Moreover, both vars(Sz) and vars((A1, Az)) are subsets of vars(So)Uftv(I")U
Fto(P)U(No—N1)U(Ny1—N3), namely vars(So)U fto(I)Ufto(P)U(Ng—N3).
And U(ZTS(RQ'Rl) g ftv(SOF)Uftv(SOW)U(NOle)Uftv(Slf)Uftv(SlkT/)U
(N1 — N3). Because we know that ftv(S1I") = fto(R1Sol") C vars(R;) U
ftv(SoI"), similar for ftv(S1¥), so we can get vars(Rs - Ry) C fto(Sol") U
ftv(So¥) U (Ng — N2) and we are done.

— Case AT-Fst. Follows directly by soundness of subtyping (Lemma 39), by
noticing ftv(Vab.(a,b) — a) = 0.

— Case AT-Snd. Similar as AT-Fst.
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Completeness of Typing. Following proof extends the proof for Part 1 of Lemma 50.
— Cast AT-Pair. We have ¥ = &, A = (A1, As), and e = (e1,€2), and

SS()Fl—el = Al (368)
SSOI"—GQ = A2 (369)

By induction hypothesis on equation 368 we have for some By, N1,S1, Ry,

(So,No) A e = B1 — (S1,N1) (370)
S-So=Ry- Sl\Nole (371)
SSOF(R151B1) < SS()F(Al) (372)

Moreover, N is fresh.
We substitute equation 371 on 369 we get

RlSlf}—ez = A2 (373)

By induction hypothesis, we have for some Bs, Na, Sa, R

(Sl,Nl) A €y = BQ — (SQ,NQ) (374)
Ri-5 =Ry SQ\NI,N2 (375)
R151F(RQSQBQ) < RlSlf(Ag) (376)

Moreover, N is fresh.
By rule AT-PAIR and by equation 370 and 374 we have

(S(),No) I (61,62) = (Bl,BQ) — (SQ,NQ) (377)

Notice SS()F = R151F = RQSQF.

Consider ¢ = ftv(R2S2B2)— ftv(R151 ). It must be ¢ € dom(R2S3). There-
fore ¢ € dom(RyS1). Also ¢ € ftv(I"). Furthermore, for every ¢ € ¢, ei-
ther ¢ € ftv(Bsg), or there exists d, d € ftv(Bz2), d € dom(R2S2), and
cE ft’U(R2SQBQ).

e ¢ € ftv(Bs3). By soundness of typing on equation 374, ftv(Bs) C
vars(Sy) U ftu(I') U Ny — Ny. We know ¢ ¢ fto(I'). If ¢ comes from
vars(Sy), it means ¢ € range(Sy). However in this case ¢ cannot be in-
troduced into B directly. So there must be a d, that ¢ € ftv(S1d), and
d € fto(I'). But then ¢ € ftv(R151I") a contradiction. So the only case
remains is ¢ € N1 — Na. In this case, ¢ cannot in vars(R1S1). We use V
to represent the substitution that maps c¢ to a fresh variable ¢;. So, we
have

Ry-51 = (V . Rg) . SQ\NI_NZ (378)
Rlslp((VRg)Sng) < RlSlf(Ag) (379)
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From equation 371 and 378 we can get
S So= (VRz) - S2\Ny— N, (380)

And from equation 372 and 379, and we know ¢ = ftv((VR2)S2B1) —
fto(I") are fresh to the free type variables in ftv((V Rz2)S2B1), so

SS()F((VRQ)SQBl, (VRQ)SQBQ) <: SSOF((Al,AQ)) (381)

So we are done.

e d € ftv(Ba), d € dom(R252), ¢ € ftu(R2S2d). Again by soundness
of typing, d € vars(Sy) U fto(I') U Ny — Na. But if d € fto(I'), then
¢ € ftu(RaS2I"), leads to a contradiction. If d € wvars(Sy), again it
can only be introduced by a d; € ftv(I'), leads to a contradiction. So
d € N1 — Ns. In this case, d cannot in vars(R;St).

Since d ¢ vars(S1), so it cannot in dom(Ss), so it is in dom(Rz).

We use V' to represent substitution after the changes in Ry that sub-
stitute the type variable ¢ in the solution of d with some fresh variable
Cy.

Ri-S1=V-S\n-_n, (382)
RlSlF(VSQBQ) <: RlSlF(Ag) (383)

From equation 371 and 382 we can get
S-So=V-S\Ny-N, (384)

Substituting equation 375 and 383, we can get

SSOF(VSQBl,VSQBQ) <: SSOF((A1,A2)) (385)

So we are done.
— Case AT-Fst. Follows directly by completeness of subtyping.
— Case AT-Snd. Similar as AT-Fst.
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