
Effect Handlers for Choice-Based Learning

Gordon Plotkin & Ningning Xie
Google DeepMind

1 Introduction

Machine learning (ML) has achieved many remarkable advances and successes in numerous areas. However, it is difficult for
programmers to maintain, reuse, and extend ML programs [25, 3, 2]. In particular, ML programs often come with a wide
range of configurable options, including hyperparameters [14], different optimization methods [27], or variants of ML models
(eg reinforcement learning (RL) [28] vs deep RL [4]). As a result, programmers often need to define a family of programs.
Currently they do this in an ad-hoc way, causing a significant amount of code duplication [29].

Here, we study ML programming from a language design perspective. We propose a new choice-based learning paradigm
which provides a separation of concerns that fosters modularity. On the one hand, programmers define training models
with choices and losses; this includes widely-used decision-making models and techniques eg Markov decision processes, with
actions as choices. On the other hand, they separately implement optimization strategies. In contrast, existing learning
systems based on decision-making models, eg Spiral [20], SmartChoices [7, 15], come with pre-determined interfaces and
built-in learning techniques; so choices cannot be made using user-provided composable language primitives.

The key insight underlying our design of choice-based learning is to combine two programming techniques: algebraic effects
and handlers, and loss continuations. Algebraic effects [21, 22] and handlers [23, 24] provide a flexible mechanism for modular
programming with user-defined effects [8, 26, 19, 5]. They achieve modularity by separating user-defined effect operations from
their implementation by effect handlers (which may call further effects). Semantically, loss continuations are functions γ ∈ RX

where R is a set of losses. Computations for x ∈ X are then selection functions ie F ∈ S(X) =def R
X → X, the selection

monad. Example such F ’s are argmax, choosing an x maximising γ, or optimization functions choosing x using γ (eg gradient
descent). This monad [12] has been used in such areas as game theory, proof theory, and decision-making models [9, 10, 11, 1].
It can be combined with auxiliary monads T to account for additional effects, yielding ST (X) = RX → T (X) [13].

We implement choice-based learning by combining effect handlers with loss continuations and a loss effect operation, as
considered in Section 2 and illustrated in Section 3. The loss operation enables programmers to register losses; choice effect
operations enable them to write training models; handlers now have access to the loss continuations, enabling them to define
choice operations using optimizations. Semantically, as briefly described below, this corresponds to the monad SWϵ where
Wϵ combines the writer monad with one for (as yet) uninterpreted operations. Our design provides a flexible and modular
interface for ML programming, as multiple choices and different optimization strategies can be easily nested and combined.

2 Theory

To illustrate our ideas, omitting many details, we present C, a small first-order core language with handlers h and loss
continuations l; types σ are basic, b, or products, (σ1, . . . , σn).

e ::= x | c | f(e1, ..., en) | let x :σ = e in e | (e1, . . . , en) | e.i
| op(e) | withh from ehandle e | loss(e) | reset e | ⟨⟨e⟩⟩

h ::=

{
. . . , opi(p :par , x :out i, l : (par , ini)→ real ! ϵ, k : (par , ini)→ σ′ ! ϵ) 7→ ei, . . .
return(p :par , x :σ) 7→ e

}
Losses are incurred using the loss construct loss(e). As in, eg [18], handlers h (invoked using with) define all the operations
of an effect label ℓ; the difference is that, as well as the usual delimited continuations k, operations have access to loss
continuations l; these can be used to perform optimizations. The reset e and ⟨⟨e⟩⟩ constructs are used to localize effects:
reset e resets the loss to 0 and ⟨⟨e⟩⟩ executes e with the zero loss continuation. Expressions are effect-typed as Γ ⊢ e :σ ! ϵ,
where the effects ϵ are multisets of effect labels.

Given the selection monad origins of this work it is natural to seek a denotational semantics. So, for such expressions e there
is a selection monadic semantics S [|e|] (ρ) ∈ SWϵ

([|σ|]). Here Wϵ is the commutative combination of the writer monad W and
the free algebra monad Fϵ for the ϵ-effect label operations, counted with suitable multiplicities (by [17] Wϵ(X) = Fϵ(R×X)).

C can be compiled into standard algebraic effect handler languages; in this way we can take advantage of existing effect
handler implementations. One such target language is T, with expressions and handlers exactly as above, but without the
loss(e), reset e, or ⟨⟨e⟩⟩ constructs, and where operations do not have access to loss continuations. In order to have a syntax
for loss continuations we add a syntactic category of abstractions ab = λx :σ. e. T also has a monadic semantics, now using
Fϵ. The compiler translates source code C expressions nf in ANF (A-Normal Form) to T target code Tσ(nf, ab), given a loss
continuation ab. (We do not detail ANFs.) Here are some specimen cases for ANF expressions and ANF handlers nh (ie
handlers as above, but with ANF operation bodies and return clause):

1

Tσ((x1, ..., xn), ab) = (0, (x1, ..., xn))
Tσ(op(x), ab) = (0, op(x))
Tσ(withnh from phandle nf, ab) = with T(nh, ab) from phandle Tσ(nf, 0σ1)

(return(p :par, x :σ1) 7→ nf1 in h)
Tσ(loss(x), ab) = (x, ())
Tσ(resetnf, ab) = (0, Tσ(nf, ab).2)
Tσ(⟨⟨nf⟩⟩, ab) = Tσ(nf, 0σ)
Tσ(let x :σ1 = at in nf, ab) = wletσ x :σ1 = Tσ1(at, λx :σ1. Tσ(nf, ab) wthen ab) in Tσ(nf, ab)

T(nh, ab) =

. . . , opi(p :par, x :outi k : (par, ini) → (real, σ′) ! ϵ)

7→ Tσ′(nfi, 0σ′)[λ(p′ :par, y : ini). k(p
′, y) wthen g/l], . . .

return(p :par, x : (real, σ) 7→ wletσ′ x :σ = x in Tσ′(nf, ab)

Here wlet simulates Wϵ-binding, wthen is used to construct complex loss continuations from simpler ones, and 0σ is the

zero loss continuation λx : σ. 0. Note how the loss continuation needed for the handler translation is constructed from the
delimited one k and the available global one ab. The translation is correct w.r.t. the semantics: for ⊢ nf :σ ! ϵ we have:

S [|nf|] (λx ∈ [|σ|] . 0) = F [|Tσ(nf, 0σ)|]

3 Practice

We provide an implementation of our design as an effect handler library in Haskell. In this article we briefly present two
examples to demonstrate the design; interested reader may refer to the appendix for more examples and detailed explanations.

Following our design, the training program can be written as an effectful computation using the choose and loss operations,
while the optimization algorithm is implemented as an effect handler for the choose operation that makes use of losses. As
an example, the code below on the left defines the training program for linear regression using our library.

[effect | data Choose = Choose {choose :: Op [Param] [Param]}]

linearReg [w , b] x y = do
[w’, b’]← perform choose [w , b]
let model = w’ ∗ x + b’
loss $ (model − y) ∗ (model − y)
return [w’, b’]

gradDesc = handler Choose {choose =
operation (λws lk k → do

ds ← autodiff lk ws
let ws’ = zipWith (λw d → (w − 0.01 ∗ d)) ws ds
k ws’)}

The effect Choose has an operation choose that takes the current parameters and returns new ones, where a parameter Param
is a datatype used for automatic differentiation. The program linearReg defines the linear regression model, taking the current
weight and bias [w , b] and a data point x and y . It first performs choose to get new parameters, then calculates the model
and the loss, before returning the new parameters. As this example shows, with choice-based learning, the system needs
to associate each choice with its resulting loss. Notably, the program does not specify how the new parameters are chosen.
Instead, we must write a handler for handling the choose operation. The gradDesc handler on the right defines how choose is
handled. Inside the handler, we first differentiate the loss continuation using autodiff (whose definition is omitted), getting
the gradients ds. We then do gradient descent by returning, essentially, (ws − 0.01 ∗ ds), where 0.01 is the learning rate.
Finally, we resume with the new parameters. By combining the training program with the handler, we can get a complete
definition of linear regression.

By separating training and optimization, we provide a modular interface where different optimization algorithms can be
easily reused, nested, and composed. For example, we can use the interface to implement Generative adversarial networks
(GAN) [16], a prominent framework for generative AI. Its key idea is to simultaneously train two models that contest with each
other: a generative model that takes noise and learns to generate samples, and a discriminative model that evaluates samples
and estimates the probability that a sample comes from a real data distribution rather than the generative distribution.
GAN is an interesting example for our framework, as it corresponds nicely to two handlers for the same loss

hGenerator = gradDesc -- gradient descent

hDiscriminator = handler DChoose {dChoose = operation (λws lk k → ...)} -- gradient ascent

gan sample noise = hDiscriminator α1 $ hGenerator α2 $ do ...

In the future, we would like to integrate our design into existing machine learning frameworks such as JAX [6] which has
built-in mechanisms for (effect-free) AD and parallelism, and apply the integrated framework to large-scale applications. We
would also like to investigate AD for handler languages.

2

References

[1] Mart́ın Abadi and Gordon D. Plotkin. Smart choices and the selection monad. In Proceedings of the Thirty sixth Annual
IEEE Symposium on Logic in Computer Science (LICS 2021), pages 1–14. IEEE Computer Society Press, June 2021.

[2] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachiappan Nagappan,
Besmira Nushi, and Thomas Zimmermann. Software engineering for machine learning: A case study. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 291–300.
IEEE, 2019.

[3] Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. Software engineering challenges of deep learning. In
2018 44th euromicro conference on software engineering and advanced applications (SEAA), pages 50–59. IEEE, 2018.

[4] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep reinforcement learning:
A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[5] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal of logical and algebraic
methods in programming, 84(1):108–123, 2015.

[6] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Nec-
ula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

[7] Victor Carbune, Thierry Coppey, Alexander Daryin, Thomas Deselaers, Nikhil Sarda, and Jay Yagnik. Smartchoices:
Hybridizing programming and machine learning, 2019. URL https://arxiv.org/abs/1810.00619.

[8] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and Leo White. Con-
current system programming with effect handlers. In Trends in Functional Programming: 18th International Symposium,
TFP 2017, Canterbury, UK, June 19-21, 2017, Revised Selected Papers 18, pages 98–117. Springer, 2018.

[9] Mart́ın Hötzel Escardó and Paulo Oliva. The peirce translation and the double negation shift. In Fernando Ferreira,
Benedikt Löwe, Elvira Mayordomo, and Lúıs Mendes Gomes, editors, Programs, Proofs, Processes, pages 151–161,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-13962-8.

[10] Mart́ın Hötzel Escardó and Paulo Oliva. Computational interpretations of analysis via products of selection functions.
In CiE, pages 141–150. Springer, 2010.

[11] Mart́ın Hötzel Escardó and Paulo Oliva. What sequential games, the tychonoff theorem and the double-negation
shift have in common. In Proceedings of the Third ACM SIGPLAN Workshop on Mathematically Structured Func-
tional Programming, MSFP ’10, page 21–32, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781450302555. doi: 10.1145/1863597.1863605. URL https://doi.org/10.1145/1863597.1863605.

[12] Mart́ın Hötzel Escardó and Paulo Oliva. Selection functions, bar recursion and backward induction. Mathematical
Structures in Computer Science, 20(2):127–168, 2010. doi: 10.1017/S0960129509990351.

[13] Mart́ın Hötzel Escardó and Paulo Oliva. The herbrand functional interpretation of the double negation shift. The
Journal of Symbolic Logic, 82(2):590–607, 2017.

[14] Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning: Methods, systems,
challenges, pages 3–33, 2019.

[15] Daniel Golovin, Gabor Bartok, Eric Chen, Emily Donahue, Tzu-Kuo Huang, Efi Kokiopoulou, Ruoyan Qin, Nikhil
Sarda, Justin Sybrandt, and Vincent Tjeng. Smartchoices: Augmenting software with learned implementations. arXiv
preprint arXiv:2304.13033, 2023.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[17] Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum and tensor. Theoretical computer science,
357(1-3):70–99, 2006.

[18] Daan Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, pages 486–499, 2017.

[19] Daan Leijen. Structured asynchrony with algebraic effects. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Type-Driven Development, pages 16–29, 2017.

3

[20] Meta. Spiral: Self-tuning services via real-time machine learning, 2018. URL
https://engineering.fb.com/2018/06/28/data-infrastructure/spiral-self-tuning-services-via-real-time-machine-learning/.

[21] Gordon Plotkin and John Power. Adequacy for algebraic effects. In Foundations of Software Science and Computation
Structures: 4th International Conference, FOSSACS 2001 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001 Genova, Italy, April 2–6, 2001 Proceedings 4, pages 1–24. Springer, 2001.

[22] Gordon Plotkin and John Power. Algebraic operations and generic effects. Applied categorical structures, 11:69–94, 2003.

[23] Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In Programming Languages and Systems: 18th
European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings 18, pages 80–94. Springer, 2009.

[24] Matija Pretnar and Gordon D Plotkin. Handling algebraic effects. Logical methods in computer science, 9, 2013.

[25] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael
Young, Jean-Francois Crespo, and Dan Dennison. Hidden technical debt in machine learning systems. Advances in
neural information processing systems, 28, 2015.

[26] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. Retrofitting
effect handlers onto ocaml. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2021, page 206–221, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383912. doi: 10.1145/3453483.3454039. URL https://doi.org/10.1145/3453483.3454039.

[27] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization methods from a machine learning perspective.
IEEE transactions on cybernetics, 50(8):3668–3681, 2019.

[28] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[29] Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, Rhia Singh, Ajani Stewart, and Anita Raja. An empirical
study of refactorings and technical debt in machine learning systems. In 2021 IEEE/ACM 43rd international conference
on software engineering (ICSE), pages 238–250. IEEE, 2021.

4

