
Multi-stage Programming with Splice Variables

TSUNG-JU CHIANG, University of Toronto, Canada

NINGNING XIE, University of Toronto, Canada

Multi-stage programming is a popular approach to typed meta-programming, reducing abstraction overhead

and producing performant programs. However, the traditional quote-and-splice staging syntax, as introduced

by Rowan Davies in 1996, can introduce complexities in managing expression evaluation, and also often

necessitates sophisticated mechanisms for advanced features such as code pattern matching. This paper

introduces 𝜆○▷, a novel staging calculus featuring let-splice bindings, a construct that explicitly binds splice

expressions to splice variables, providing flexibility in managing, sharing, and reusing splice computations.

Inspired by contextual modal type theory, our type system associates types with a typing context to capture

variables dependencies of splice variables. We demonstrate that this mechanism seamlessly scales to features

like code pattern matching, by formalizing 𝜆○▷
pat

, an extension of 𝜆○▷ with code pattern matching and rewriting.

We establish the syntactic type soundness of both calculi. Furthermore, we define a denotational semantics

using a Kripke-style model, and prove adequacy results. All proofs have been fully mechanized using the

Agda proof assistant.
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1 Introduction
Typed meta-programming allows programs to generate and manipulate code fragments, reducing

abstraction overhead and producing performant programs. A prominent approach to typed meta-

programming is multi-stage programming based on temporal logic [Davies 1996, 2017], which has

been implemented in several languages, including OCaml [Chiang et al. 2024; Kiselyov 2014; Xie

et al. 2023], Scala [Stucki et al. 2018, 2021], and Haskell [Sheard and Peyton Jones 2002; Xie et al.

2022], and has been successfully applied to improve performance in various domains [Jonnalagedda

et al. 2014; Kiselyov et al. 2017; Wang et al. 2019; Willis et al. 2020; Yallop 2017; Yallop et al. 2023].

Multi-stage programming integrates type and scope checking of code expressions into the type

system, allowing meta-programs to be type-checked at compile time, leading to safer and more

predictable code generation.

A classic example of staged programming is the power function. We present the example below

using the quoting and splicing mechanisms, where a quotation <..> represents the code fragment

of an expression, and a splice $(..) extracts the term from a quoted code fragment:

let rec power x n = if n == 0 then <1>
else <$(x) * $(power x (n - 1))>
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Given a quoted expression <e> and a known integer n , this function generates an expression

with 𝑛 repeated multiplications, avoiding recursion at runtime and thus reducing overhead for any

specific e . For example, with n being 5 , we have:

<fun x → $(power <x> 5)> -- generates <fun x → x * x * x * x * x * 1>

While the quote-and-splice syntax offers a useful staging mechanism, it also introduces several

complexities. Specifically, managing expression evaluation is subtle and often involved a level-index
reduction relation [Calcagno et al. 2003; Taha and Sheard 2000], complicating both implementations

and formal semantics. Moreover, supporting pattern matching on code often requires sophisticated

mechanisms [Jang et al. 2022; Parreaux et al. 2017; Stucki et al. 2018].

In this paper we introduce let-splice bindings, a language construct that explicitly binds splice

expressions to splice variables. Unlike the splice operator, let-splice bindings offer precise control
over splice evaluation order, drawing inspiration from the target calculus of Typed Template

Haskell [Xie et al. 2022]. Moreover, let-splice bindings provide greater flexibility and enable the

sharing and reuse of splice computations. Our design includes a novel type system that tracks

the variable dependencies of splice variables, allowing splice expressions to be defined in contexts

where certain variables are not yet available. Inspired by contextual modal type theory [Jang et al.

2022; Nanevski et al. 2008], this type system associates types with a typing context to capture

these variable dependencies, ensuring well-typed splice definitions. When a splice variable is

used, its associated dependencies must be provided. These contexts can be nested to specify

intricate dependency structures. Furthermore, we demonstrate that our design naturally supports

advanced meta-programming features such as unhygienic functions [Barzilay et al. 2011], code
pattern matching [Stucki et al. 2021], and code rewriting [Parreaux et al. 2017], using the same

mechanism for managing variable dependencies, highlighting the expressiveness of our approach.

We present two calculi: (1) 𝜆○▷, a temporal-style multi-stage calculus supporting let-splice

bindings, featuring a novel contextual modality (Δ ▷ ) for managing variable dependencies; and

(2) 𝜆○▷
pat
, an extension of 𝜆○▷ which integrates code pattern matching and code rewriting. Both

calculi are equipped with a small-step operational semantics, and enjoy syntactic type soundness.

Moreover, we define a denotational semantics based on a Kripke-style model for both calculi, and

establish the adequacy results for 𝜆○▷. The calculi along with all proofs are fully formalized in the

Agda proof assistant. In particular, we offer the following contributions:

• §3 and 4 present 𝜆○▷, a staging calculus featuring let-splice bindings with splice variables,

dependency tracking with nested typing context, a temporal-style code type for code expressions,

and a separate contextual modality for managing variable dependencies.

• §5 proves soundness and completeness of 𝜆○▷’s type system with respect to constructive linear-
time temporal logic [Kojima and Igarashi 2011], and then provides a type-preserving translation

from 𝜆○▷ to 𝜆○ [Davies 1996], providing insight into their relationship.

• §6 introduces 𝜆○▷
pat

, an extension of 𝜆○▷ that enables pattern matching on code and code rewriting,

allowing for inspection and manipulation of code expressions.

• §7 defines a denotational semantics for 𝜆○▷ and 𝜆○▷
pat

using a Kripke-style model, establishing

termination of the operational semantics and adequacy of the denotational semantics.

• We formalize 𝜆○▷ and 𝜆○▷
pat

in the Agda proof assistant (§8), and establish key properties and

theorems including progress, preservation, and adequacy. The Agda definitions and proofs of

all stated lemmas and theorems are provided in the supplementary materials.

Lastly, §9 compares our approach to related work. For reasons of space, some of the rules of our

calculi are elided in the paper; the complete set of rules are provided in the appendix.
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Multi-stage Programming with Splice Variables 249:3

2 Examples
This section outlines the design of our calculus and illustrates its expressiveness through examples.

We use OCaml-like syntax throughout this section.

2.1 Staged Power Function
Recall the staged power function from the introduction:

val power : int
1
code → int

0 → int
1
code

let rec power x n = if n == 0 then <1>
else <$(x) * $(power x (n - 1))>

Here, a quotation <expr> represents the code fragment of the expression, and a splice $(expr)

extracts out the expression from the code fragment. The type constructor code annotates typed

code expressions. Formally, the type system associates each variable and expression with a level (i.e.
“time” in temporal logic). Intuitively, levels indicate the evaluation stage of expressions. Quotations

increase the level of the quoted expression, splices decrease the level, and local variables have the

same level as their surrounding context and can only be used at that level. For clarity, we annotate

base types with their levels.

While the quote-and-splice syntax is useful, it also introduces several complexities. Consider

evaluating (e1 <e2 $(e3)>) . Here, e1 and e3 are evaluated, but e2 is not, as e2 represents an

expression in the next stage. Therefore, evaluating a staged program necessitates a level-indexed
reduction relation [Calcagno et al. 2003; Taha and Sheard 2000] to track an evaluation level, which

is dynamically updated by quotations and splices during evaluation. This adds complexity to both

implementations and formal semantics. Moreover, it is difficult to precisely control the evaluation of

splice expressions (see also §2.2). Such fine-grain control is also needed for nested splices in compile-

time code generation systems [Sheard and Peyton Jones 2002; Xie et al. 2022, 2023], where splices

without surrounding quotations are evaluated at compile-time. For instance, in $(e1) $($(e2)) ,

the relative evaluation order of e1 and e2 is unclear: while e1 appears first, e2 has more splices.

Recently, Xie et al. [2022] addresses this by prioritizing more deeply nested splices through an

elaboration process. However, the resulting target calculus is not directly accessible to programmers.

In this paper, we present let-splice bindings, a new construct that defines splice variables. This
approach explicitly defines splice expressions and thus specifies their evaluation order, eliminating

the need for a level-indexed reduction relation. For example, the staged power function can be

written as follows using our syntax:

val power : int
1
code → int

0 → int
1
code

let rec power x n = if n == 0 then <1>
else let$ s1 : int

1
= x in -- lifted

let$ s2 : int
1
= power x (n - 1) in -- lifted

<s1 * s2>

Here, let-splice bindings, defined using let$ , replace the splice operation. There definitions bind a

code expression to a splice variable. In this case, the splice variables s1 and s2 represent the splices

of x and power x (n - 1) , respectively. Since these variables represent splices in the original

program, they can be used directly within the quotation, as in <s1 * s2> . Formally, let-splice

bindings unwrap a code-typed expression, introducing a variable which is one level higher and

thus may be used within quotations. Let-splice bindings are evaluated sequentially; in this case, s1

is evaluated before s2 , making the evaluation order of splice expressions explicit.
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More interestingly, let-splice bindings can be annotated with a list of variable dependencies. This
provides flexibility for splice expressions which depend on values that are only available when the

splice variable is used. For instance, we can define power5 as:

let$ power5 : (x : int
1 ⊢ int

1
) -- variable dependency on x

= power <x> 5 -- generates <x * x * x * x * x * 1>

As (power <x> 5) refers to the variable x , the splice variable power5 is declaredwith a dependency

on x : int
1 , allowing x to be used within its definition. Our type system tracks splice variables’ de-

pendencies, in addition to their levels. In this case, power5 has type (x : int
1 ⊢ int

1
) , indicating

that it is a level-1 splice with type int
1 that depends on a variable x : int

1 .

To use a splice variable with variable dependencies like power5 , the syntax (s with x = e)

provides a delayed substitution. This allows variable dependencies to be replaced with specific

values when a splice variable is actually used:

let thirty_two = <power5 with x = 2> -- <2 * 2 * 2 * 2 * 2 * 1>

The right-hand side of the substitution can be any expression or variable in general. For brevity, we

often write s with x as a shorthand for s with x = x . Similarly, s with x; y is a shorthand

for s with x = x; y = y , and so on. For example:

let fpower = <fun x → power5 with x> -- <fun x → x * x * x * x * x * 1>

In practice, an implementation may automatically capture dependencies from the context, allowing

identical entries like with x = x to be omitted entirely.

2.2 Reuse of Splice Variables
We demonstrate that let-splice bindings and splice variables offer finer-grained control over splice

expression evaluation. In particular, consider below a program using the quote-and-splice syntax,

which generates a pair of functions that apply a function f : int
1
code → int

1
code to their

arguments, and increment and decrement the result, respectively:

<(fun x → $(f <x>) + 1, fun y → $(f <y>) - 1)> -- quote and splice

For example, given f z = (let w = very_long_computation in <$(z) * 2>) , this generates

<(fun x → x * 2 + 1, fun y → y * 2 - 1)>

However, the program evaluates the two splices $(f <x>) and $(f <y>) sequentially, leading to

duplicated computations of very_long_computation . Similarly, it may also be desirable to run a

function f only once when it is effectful.

To avoid duplicated computations, we may pre-compute the splice expression’s result (here z is

introduced and used at level 1), bind it to a variable, and use that variable in the definition:

let s = <fun z → $(f <z>)> in
<(fun x → $(s) x + 1, fun y → $(s) y - 1)>

Unfortunately, the generated code is different:

<(fun x → ((fun z → z * 2) x) + 1, fun y → ((fun z → z * 2) y) - 1)>

introducing two additional beta-redexes, since s produces a function being applied to x . This

may not be desirable, for example, when we can inspect the generated code using pattern match-

ing (§2.5).
1

1
One may also write let s = fun z → <$(f z)> in <(fun x → $(s <x>) + 1, fun y → $(s <y>) - 1)> , which
however still results in f being evaluated twice.
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In our calculus, we can easily share splice computations using splice variables. Specifically, we

can write the original computation as:

let$ s : (z : int
1 ⊢ int

1
) = f <z> in -- splice variable

<(fun x → (s with z = x) + 1, fun y → (s with z = y) - 1)>

Here, let$ declares a splice variable s with a dependency on z . The expression f <z> is evaluated,

which can refer to variable z . The (s with z = x) syntax directly substitutes z with x , and

(s with z = y) substitutes z with y . In this case, the very_long_computation is evaluated only

once, and the generated code is the desired <(fun x → x * 2 + 1, fun y → y * 2 - 1)> .

2.3 Variable Dependencies
Building upon variable dependencies, our system extends support for dependency declarations to

standard let bindings and function arguments. As an example, consider the following program:

val w : (x : string
1
; y : int

1 ⊢ int
1
code)

let w = <if y == 0 then "hello" else x>

This let binding declares a normal variable w which depends on variables x and y , and produces a

value of type int
1
code . The following function f takes an argument of this type, substituting x

with "world" and y with 42 :

val f : (x : string
1
; y : int

1 ⊢ int
1
code) → int

1
code

let f z = (z with x = "world"; y = 42)

We can then apply f to w :

f w -- <if 42 == 0 then "hello" else "world">

We refer to w as an unhygienic value, and f as an unhygienic function; we will revisit this in §2.4.

Moreover, we note that dependencies can also be nested, allowing dependencies themselves to

depend on other dependencies. For example, we can define:

val z : (s : (x : int
1 ⊢ string

1
) ⊢ string

1
code)

let z = <cat (s with x = 2) (s with x = 2 + 1)>

Here, z depends on s , which in turn has a dependency on x . When z is used, such as in

z with s = e , s is replaced by e , with e potentially using x . This x is subsequently replaced by

2 and 2 + 1 , respectively. As a concrete example, we have:

(z with s = string_of_int x) -- <cat (string_of_int 2) (string_of_int (2 + 1))>

Lastly, a type can express variable dependencies across multiple levels, and the corresponding

term can take expressions from these levels, as in the following program:

val h : (x : bool
1
; y : int

2 ⊢ string
2
code code)

let h = <if x then <string_of_int y> else <string_of_int (y + 1)>>

2.4 Unhygienic Functions
Hygienic macros [Kohlbecker et al. 1986] guarantee that macro expansion does not accidentally

capture variables. While hygienic macros are well-established, they can sometimes also be insuffi-

cient. Barzilay et al. [2011] observed common kinds of practically useful, yet unhygienic, macro

patterns, particularly those which can implicitly introduce bindings. Two common examples include

a looping macro (e.g. while ) that implicitly binds a variable (e.g. abort ) that can be used to escape

the loop inside the loop body [Clinger 1991], and anaphoric conditionals which introduce a binding
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to hold the value of the tested expression. Barzilay et al. [2011] described these unhygienic macros

as “notoriously difficult to deal with”.
In this paper, we use unhygienic functions to mean functions whose arguments may depend on

additional, later-stage variables provided when the function is used. These variables are always

refined by explicit substitutions, reflecting how a term can declare its free variables in its type. We

show how our system supports unhygienic functions within this context. Considering anaphoric

conditionals as an example, we would like to create a function aif , with which we can write the

following program:

aif <big_long_calculation> <foo it ...> <bar it ...>

Here, both the then- and else-branches use the variable it to represent the result of big_long_

calculation . The program will expand to:

<let it = big_long_calculation in
if it then (foo it ...) else (bar it ...)>

In statically-typed languages, it will obviously stand for True in the then-branch and False in the

else-branch. In dynamically-typed languages like Scheme, however, it in the then-branch is not

necessarily True , making the function more practical.
2
While we focus on anaphoric conditionals

for their simplicity, the underlying principles extend to more complex examples like looping.

Using variable dependencies, we define aif with the following type signature. Note that the

second and third arguments have an additional dependency on the variable it :

val aif : bool
1
code

→ (it : bool
1 ⊢ 'a

1
code) → (it : bool

1 ⊢ 'a
1
code) → 'a

1
code

When aif is applied, its type signature tells the type checker to introduce it into the scope of the

second and third arguments, allowing them to directly use it.

Now that we have the type signature, we can implement aif as follows:

let aif cond foo bar =

let$ s1 : bool
1
= cond in

let$ s2 : (it : bool
1 ⊢ 'a

1
) = (foo with it) in

let$ s3 : (it : bool
1 ⊢ 'a

1
) = (bar with it) in

<let it = s1 in
if it then (s2 with it) else (s3 with it)>

The aif function takes three code arguments: cond , foo , and bar , with the latter two depending

on the variable it . The let$ unwraps these code arguments and binds them to splice variables s1 ,

s2 , and s3 , respectively, with it explicitly provided. The quoted expression then constructs the

resulting code. Notably, while code is generated for both branches, only the branch corresponding

to the value of it will be evaluated at runtime. Supporting unhygienic functions shows the

expressiveness of our calculus, enabling a broader range of meta-programming patterns, including

those that intentionally manipulate lexical scoping in a type-safe manner.

2
In Scheme, expressions such as (if 2 foo bar) are valid, in which case it will be bound to 2 within the then-branch.

Moreover, with mutable states, it can be dynamically bound to different values throughout program execution.
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2.5 Pattern Matching on Code
We have so far focused on generative meta-programming, where smaller code fragments are

combined to construct larger ones, as illustrated by the power and aif examples. Analytic meta-

programming, in contrast, can inspect or deconstruct code, enabling useful techniques like code

rewriting (§2.6) for optimization. This is often realized through pattern matching on code in staging

calculi [Jang et al. 2022; Parreaux et al. 2017; Stucki et al. 2021].

We extend our calculus with support for pattern matching on code, integrating it seamlessly

through our mechanism of splice variables. As an example, we can write the following program

that simply swaps two addends:

val swap : int
1
code → int

1
code

let swap n = match$ n with | (x `+ y) → <y + x>
| _ → n

The match$ construct performs pattern matching on code. Patterns describe the structurewithin the
quotation, distinguishing between pattern variables (e.g. x and y ) that match any code expression,

and identifier literals like `+ and `* that match those exact identifiers. Intuitively, pattern variables

behave similarly to splice variables, as they match inside quotations and may only be used within

quotations. In this case, therefore, we have x : int
1 and y : int

1 . When matching succeeds, we

return <y + x> . As a result, we have:

swap <1 + 2> -- generates <2 + 1>

This demonstrates how our calculus naturally supports code pattern matching using a mechanism

similar to splice variables. In fact, code pattern matching can be viewed as a generalization of

let-splice bindings (§6), with additional rules for typing code patterns.

One key challenge in code pattern matching, however, is handling open code. Specifically,

consider the following match expression:

match$ <fun x → x + 1> with | (fun x → y) → e

A natural result would be for y to match on x + 1 . However, this results in y storing a code

fragment that refers to the bound variable x . When y is used in e , x is no longer in the scope! To

address this issue, Stucki et al. [2018] require writing the pattern as fun x → $(y(`x)) , which
binds y to a function fun x → <$(x) + 1> with type int

1
code → int

1
code . In other words,

y has been eta-expanded to take the open variable (x ) as an input. However, explicitly applying

pattern variables to free variables is inconvenient, and binding the pattern variable to a function may

be undesirable. Moreover, Stucki et al. [2018] restrict patterns to the simply-typed lambda calculus,

as it remains unclear how the approach generalizes to quotes, splices, or matches themselves.
3

In our calculus, just like pattern matching can be viewed as a generalization of let-splice bindings,

pattern variables with open code work similarly to splice variables with variable dependencies. In

the above example, our system binds y to x + 1 with type (x : int
1 ⊢ int

1
) . We can thus use

y by providing specific x , e.g.

match$ <fun x → x + 1> with
| (fun x → y) → <y with (x = 2)> -- generates <2 + 1>

Here, crucially, x is not matched by name. Rather, the pattern matches any code expression with

the function form, and we can refer to the bound variable as x within the function body. That is,

pattern matching is binding-aware, and operates on the expression’s binding structure.

3
Contextual modal type systems [Jang et al. 2022] and similar calculi [Parreaux et al. 2017] inherently support open code.

These systems behave quite differently, requiring the type of code to explicitly specify its open variable (see §9).
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Pattern variables with open code offer a useful technique for code manipulation. As a larger

example, consider a program that computes the partial derivative of an arithmetic expression as a

code fragment. The following partial function recursively matches its argument e , generating

code for its partial derivative with respect to an variable var :

val (+) (*) : int
1 → int

1 → int
1

val partial : (var : int
1 ⊢ int

1
code → int

1
code)

let rec partial e = match$ e with
| (`var) → <1>
| (g `+ h) →

let$ dg = (partial with var) <g> in
let$ dh = (partial with var) <h> in <dg + dh>

| (g `* h) →
let$ dg = (partial with var) <g> in
let$ dh = (partial with var) <h> in <g * dh + h * dg>

| _ → <0>

We can apply partial by providing var and the expression. For example, the following program:

let df : (x : int
1
, y : int

1 ⊢ int
1
code) = (partial with var = x) <x * y + 1>

generates <(1 * y + x * 0) + 0> . We then use df by providing specific x and y , such as

df with x = 1, y = 2 , which produces <(1 * 2 + 1 * 0) + 0> .
Using pattern variables with open code, we can perform pattern matching under a binder.

Specifically, consider computing the partial derivative of a let expression let (y : int) = f in g .

Using the chain rule, the derivative is computed as:

𝜕𝑥 𝑔(𝑥, 𝑓 (𝑥)) = 𝜕𝑥 𝑔(𝑥,𝑦) |𝑦=𝑓 (𝑥 ) + 𝜕𝑦 𝑔(𝑥,𝑦) |𝑦=𝑓 (𝑥 ) · 𝜕𝑥 𝑓 (𝑥)
This can be implemented with an additional pattern matching case:

match$ e with
| ...

| (let (y : int
1
) = f in g) →

let$ df = (partial with var) <f> in
let$ dg1 : (y : int

1 ⊢ int
1
) = (partial with var) <g with y> in

let$ dg2 : (y : int
1 ⊢ int

1
) = (partial with var = y) <g with y> in

<let (y : int1) = f in (dg1 with y) + (dg2 with y) * df>

Again, y is not matched by name, and the pattern matches any code expression with the let form.

In this case, g is matched as a splice variable with a variable dependency on y . Within the pattern

case, dg1 computes the derivative of g with respect to the given variable var , dg2 computes

the derivative of g with respect to y , and df computes the derivative of f . The final expression

combines these derivatives according to the chain rule.

2.6 Code Rewriting
Lastly, we support code rewriting, a primitive that replaces instances of a pattern within a target

expression with a replacement expression. This is particularly useful for optimizing generated code,

which often contains redundancies. For example, the df example using the partial function above

generates <(1 * y + x * 0) + 0> , where the operations 1 * , * 0 , and + 0 can be simplified.

Code rewriting is expressed as:
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e_target rewrite p → e_replacement

where p is a code pattern, and e_target and e_replacement are code expressions. Similar to

pattern matching, the pattern p can introduce pattern variables, potentially containing open code,

which can be then used inside e_replacement .

As an example, the following program uses code rewriting to simplify the code generated by df :

let df_opt : (x : int
1
, y : int

1 ⊢ int
1
code) =

<(df with x; y)>
rewrite (z `* `0) → <0>
rewrite (z `+ `0) → <z>
rewrite (`1 `* z) → <z>

Here, the first rewrite simplifies z `* `0 to <0> , where `* and `0 match those exact identifiers,

and z is a pattern variable that matches any code expression, which can be used within <z> . Thus,
any code expression matching z `* `0 is simplified to 0 . The other rewrites work similarly. The

entire program simplifies the code <(1 * y + x * 0) + 0> to <y> .
As another example, we consider a program which finds all the local variables defined to be

pairs, and rewrites any projections on these variables into direct component accesses [Parreaux

et al. 2017]. The following program shows how to use rewrite to traverse a term pgm and perform

these rewrites:

pgm rewrite (let p : int
1
* int

1
= (a, b) in body) → -- a: int

1
; b: int

1

let$ body2 : (p : int
1
* int

1 ⊢ 't
1
) = -- body: (p: int

1
* int

1 ⊢ 't
1
)

<body with p>
rewrite (`fst `p) → <a>
rewrite (`snd `p) → <b>

in <body2 with p = (a, b)>

The first rewrite identifies let bindings that define a variable p to be a pair of a and b . Here, a and

b are pattern variables, and body is matched as a splice variable with a variable dependency on p .

Within body with p , we rewrite every occurrence of `fst `p to <a> , and `snd `p to <b> , and
bind its splice result to body2 . The program then returns <body2 with p = (a, b)> , substituting
p with (a,b) within body2 . For example, given <let y = (1+2, 3) in (fst y + snd y, y)> ,
the bodymatches <(fst y + snd y, y)> . Then, body2 binds the rewritten program ((1+2)+3, y) ,

and then the substitution turns it into <((1+2)+3, (1+2, 3))> .

3 A Staging Calculus with Splice Variables
This section presents 𝜆○▷, a typed lambda calculus with staging, quotations, and let-splice bindings.

We begin by introducing the syntax of types and expressions (§3.1-3.2), and then present the typing

rules (§3.3). The dynamic semantics are introduced in the following section (§4).

3.1 Types and Typing Contexts
Types. Types are defined by the following grammar:

A, B F bool | [Δ ⊢ A] → B | ○A | Δ ▷A

• bool represents booleans.
• [Δ ⊢ A] → B represents unhygienic functions from A to B, where the argument may additionally

depend on variables in Δ. We write A → B as shorthand for [· ⊢ A] → B.
• ○A represents quoted expressions of type A, whose computations happen at the next stage.
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• Δ ▷ A represents unhygienic values of type A with dependencies Δ. This type allows any

expressions to depend on later-stage variables, enabling unhygienic values to be used as first-

class citizens. For example, we can express function types like (Δ ▷A) → (Δ′ ▷B).
We note that while [Δ ⊢ A] → B can be expressed as (Δ ▷A) → B4, we include the former in

the language as it allows for more natural definitions of unhygienic functions, without requiring

explicit wrapping and unwrapping (§3.2).

Contexts. 𝜆○▷ uses typing contexts to track variable dependencies. These contexts enable unhy-
gienic values and serve as the foundation for code pattern matching, which is introduced in §6.

Contexts are defined by the following grammar:

Γ,Δ F · | Γ, x : [Δ ⊢n A]

Each variable x within a context is associated with three components:

• A context Δ, which tracks the variable dependencies of x. When Δ is empty, we write x : An
as

shorthand for x : [· ⊢n A].
• An integer level n at which x is bound. The level has the same meaning as in Davies [1996]:

higher values correspond to later stages, while lower values correspond to earlier stages.

• A type A, which describes the type of x. As we will see, types themselves can contain further

variable dependencies, thus allowing for nested variable dependencies.

The restriction of a context Γ to level n, written Γ↾n, removes all variables in Γ with levels less than n.

Well-stagedness. We consider only well-staged types and contexts in our typing rules (§3.3).

An (Well-staged Types)

WS-Bool

booln

WS-CtxArr

Δn+1

An Bn

( [Δ ⊢ A] → B)n

WS-Code

An+1

(○A)n

WS-Wrap

Δn+1 An

(Δ ▷A)n

Γn (Well-staged Contexts)

WS-Empty

(·)n

WS-Nest

Γn Δm

Am m ≥ n

(Γ, x : [Δ ⊢m A])n

For type [Δ ⊢ A] → B and Δ ▷A to be well-staged at level n, Δ must be well-staged at level n + 1.

A context Γ is well-staged at level n, if each entry x : [Δ ⊢m A] has m ≥ n. In other words, stage

levels can only stay the same or increase as the nesting of [] becomes deeper. This allows us to

express nested variable dependencies as well as variable dependencies across multiple levels (§2.3).

We often write An
and Γn to indicate the levels of a type or a context. This notation binds more

tightly than type constructors. For example, [Δn+1 ⊢ An] → Bn is a well-staged type at level n.
Importantly, context restriction preserves well-stagedness: if Γn, then (Γ↾m)m.

3.2 Expressions
We define the syntax of expressions in 𝜆○▷ as follows.

e F x𝜎 (Variables) 𝜎 F · (Empty)

| true | false | if e1 then e2 else e3 (Booleans) | 𝜎, x ↦→ y (Renaming)

| 𝜆Δx : A. e | e1 e2 (Functions) | 𝜎, x ↦→ e (Substitution)

| ⟨e⟩ | letΔ⟨x : A⟩ = e1 in e2 (Quote and Unquote)

| wrapΔe | letwrapΔ x : A = e1 in e2 (Wrap and Unwrap)

4
We have wrapToArr : ( (Δ ▷A) → B) → ([Δ ⊢ A] → B) ≔ 𝜆f . 𝜆Δx : A. f (wrapΔxidΔ ) ; and arrToWrap : ( [Δ ⊢ A] →
B) → ( (Δ ▷A) → B) ≔ 𝜆f . 𝜆x : (Δ ▷A) . f (letwrapΔ y : A = x in yidΔ ) . Notably, [Δ ⊢ A] → B brings syntactic

convenience, such as putting Δ into scope when typing the function argument (rule CtxApp in Fig. 1).
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Within expressions, x𝜎 represents a variable x paired with a delayed substitution 𝜎 . This substitution
maps the dependencies of x to expressions in the current context. The substitution is applied when

x is substituted with a concrete expression (see §4.1 for the formal definition of substitution).

An unhygienic function 𝜆Δx : A. e allows its argument x to depend on variables in Δ. An
application e1 e2 applies a function e1 to an argument e2. A quotation ⟨e⟩ quotes an expression e
into a code expression. Dually, a let-splice binding letΔ⟨x : A⟩ = e1 in e2 unquotes a code expression
e1 that can depend on variables in Δ, introducing a next-stage variable x with dependencies Δ,
which can be used inside quotations within e2. Similarly, wrapΔe wraps an expression e with
dependencies Δ, allowing e to refer to variables in Δ, while letwrapΔ x : A = e1 in e2 unwraps a

wrapped expression e1 with dependencies Δ, binding it to a current-stage variable x in e2.
Substitutions 𝜎 can contain two kinds of entries: x ↦→ y renames a dependency x to another

variable y, and x ↦→ e maps a dependency x to an expression e. We write idΓ for the identity

substitution that maps each variable in Γ to the same variable, i.e. x1 ↦→ x1, x2 ↦→ x2 . . . for x𝑖 ∈ Γ.
Moreover, the notation 𝜎↾n removes all entries in 𝜎 with levels less than n, similar to context

restriction. Lastly, for well-typed substitutions (§3.3), we write xmΔ ↦→ y or xmΔ ↦→ e to indicate the

dependencies and stage level of a substitution entry.

Mapping between concrete and abstract syntax. As examples, (1) x with y = e1; z = e2 is ex-

pressed as xy ↦→e1,z ↦→e2 ; (2) fun x : (∆ ⊢ A) → e as 𝜆Δx : A. e; (3) let x : (∆ ⊢ A) = e1 in e2

as (𝜆Δx : A. e2) e1; (4) let$ x : (∆ ⊢ A) = e1 in e2 as letΔ⟨x : A⟩ = e1 in e2.

3.3 Typing Rules
The typing judgment Γ ⊢n e : A assigns a type A to an expression e under the context Γ, at stage
level n. We require the context Γ to contain distinct variables, and to be well-staged at level n. The
typing rules then ensure that A is also well-staged at level n. The judgment depends on another

judgment, Γ ⊢ 𝜎 : Γ′, which types a substitution 𝜎 between contexts Γ and Γ′. We similarly require

both Γ and Γ′ to contain distinct variables and to be well-staged. Intuitively, the substitution maps

variables in Γ′ to variables or expressions typed under Γ. Thus, we refer to Γ′ the domain of 𝜎 .

The typing rules are defined in Fig. 1.

Rule VarSubst type-checks variables. A variable x : [Δ ⊢n A] can only be used at level n, and
must be provided a substitution 𝜎 that maps each dependency variable in Δ to a variable or an

expression with the corresponding type under Γ. If Δ is empty, as is the case for normal variables,

then 𝜎 is also empty. The next rules True, False, and If are standard.

Rule CtxAbs types an unhygienic function, which allows its argument to depend on Δ. Notably, a
dependency context Δ is always staged one level higher than its surrounding context. The rule puts

(x : [Δn+1 ⊢n A]) into the context to type-check the body. Rule CtxApp type-checks an application.

If e1 has type [Δn+1 ⊢ A] → B, the rule extends the context with Δ to type-check the argument e2.
RuleQuote increases the level to n+ 1 and restricts the context to Γ↾n+1 (§3.1) to type-check the

quoted expression e. If e has type A, then ⟨e⟩ has the code type ○A. Rule LetQuote unquotes a code

expression e1, and binds it to a variable x at the next level. Note that e1 is typed under the current

context extended with Δ, and thus x represents an open code fragment that may additionally

depend on variables in a context Δ. The rule put x in the context to type-check e2.
To type-check Δ ▷A, ruleWrap extends the context with Δ to type-check e. Note that unlike

rule Quote, rule Wrap does not change the stage level of the expression. Intuitively, quote corre-

sponds to the next operator [Davies 1996, 2017], while Δ▷A can be seen as Δ contains assumptions

about future times. If each assumption in Δ is true at their corresponding time, then A is true at the

current time. Rule LetWrap unwraps a wrapped expression and binds it to a contextual variable

x : [Δ ⊢n A] when typing e2.
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Γ ⊢n e : A (Expression Typing)
VarSubst

Γ ∋ x : [Δ ⊢n A] Γ ⊢ 𝜎 : Δ

Γ ⊢n x𝜎 : A

True

Γ ⊢n true : bool

False

Γ ⊢n false : bool
If

Γ ⊢n e1 : bool Γ ⊢n e2 : A Γ ⊢n e3 : A
Γ ⊢n if e1 then e2 else e3 : A

CtxAbs

Γ, x : [Δn+1 ⊢n A] ⊢n e : B
Γ ⊢n 𝜆Δx : A. e : [Δ ⊢ A] → B

CtxApp

Γ ⊢n e1 : [Δn+1 ⊢ A] → B Γ,Δ ⊢n e2 : A
Γ ⊢n e1 e2 : B

Quote

Γ↾n+1 ⊢n+1 e : A
Γ ⊢n ⟨e⟩ : ○A

LetQuote

Γ,Δn+1 ⊢n e1 : ○A Γ, x : [Δ ⊢n+1 A] ⊢n e2 : B
Γ ⊢n letΔ⟨x : A⟩ = e1 in e2 : B

Wrap

Γ,Δn+1 ⊢n e : A
Γ ⊢n wrapΔe : Δ ▷A

LetWrap

Γ ⊢n e1 : Δ ▷A Γ, x : [Δ ⊢n A] ⊢n e2 : B
Γ ⊢n letwrapΔ x : A = e1 in e2 : B

Γ ⊢ 𝜎 : Γ′ (Substitution Typing)

S-Empty

Γ ⊢ · : ·

S-Rename

Γ ⊢ 𝜎 : Γ′ Γ ∋ y : [Δ ⊢m A]
Γ ⊢ (𝜎, x ↦→ y) : Γ′, x : [Δ ⊢m A]

S-Subst

Γ ⊢ 𝜎 : Γ′ Γ↾m,Δ ⊢m e : A

Γ ⊢ (𝜎, x ↦→ e) : Γ′, x : [Δ ⊢m A]
Fig. 1. 𝜆○▷ typing rules

For typing substitutions, rule S-Rename checks that renaming preserves the stage level and

dependencies of a variable. Rule S-Subst checks that substitution maps an m-level variable x to an

m-level expression e, where Γ is restricted to level m and then extended with Δ to type-check e.
Given the typing rules, we have Γ ⊢ idΓ : Γ (§3.2). Also, if Γ2 ⊢ 𝜎 : Γ1, then Γ2↾n ⊢ 𝜎↾n : Γ1↾n.

4 Dynamics
This section presents a small-step, call-by-value operational semantics for 𝜆○▷, based on substitution.

4.1 Substitution
We define a substitution function e[𝜎], which applies a typed substitution 𝜎 to a typed expression

e, and 𝜎1 [𝜎], which applies 𝜎 to another typed substitution 𝜎1. Since expressions and substitutions

can contain each other, these functions are defined mutually. These functions perform simultaneous
substitution, meaning that all open variables in the expression are replaced at once. As a consequence,

the domain of 𝜎 must match the context of the expression being substituted (see also Theorem 4.2).

The definitions are presented below, with Γ1 ⊢n e : A and Γ2 ⊢ 𝜎 : Γ1 (Theorem 4.2). For space

reasons, we show a selection of rules; the complete set of rules can be found in §A.

e[𝜎] (Expression Substitution)
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(x𝜎1 ) [𝜎] ≔
{
y(𝜎1 [𝜎 ] ) if 𝜎 (x) = y,
e[idΓ2↾m , 𝜎1 [𝜎]] if 𝜎 (x) = e.

(⟨e⟩) [𝜎] ≔ ⟨e[𝜎↾]⟩
(letΔ⟨x : A⟩ = e1 in e2) [𝜎] ≔ letΔ⟨x : A⟩ = (e1 [𝜎, idΔ]) in (e2 [𝜎, x ↦→ x])

(wrapΔe) [𝜎] ≔ wrapΔ (e[𝜎, idΔ])
(letwrapΔ x : A = e1 in e2) [𝜎] ≔ letwrapΔ x : A = (e1 [𝜎]) in (e2 [𝜎, x ↦→ x])

𝜎1 [𝜎] (Substitution on Substitutions)

(·) [𝜎] ≔ · (𝜎1, x ↦→ y) [𝜎] ≔ 𝜎1 [𝜎], x ↦→ 𝜎 (y)
(𝜎1, xmΔ ↦→ e) [𝜎] ≔ 𝜎1 [𝜎], x ↦→ e[𝜎↾m, idΔ]

For expression substitutions e[𝜎], most cases simply extend or restrict the substitution to match

the contexts of the subexpressions and then recurse. The most interesting case is substitution on a

variable, (x𝜎1 ) [𝜎]. Intuitively, applying 𝜎 to both x and 𝜎1 should yield 𝜎 (x) (𝜎1 [𝜎 ] ) . Thus, when
𝜎 (x) = y, the function simply returns y(𝜎1 [𝜎 ] ) . When 𝜎 (x) = e, however, since only variables

can have delayed substitutions, the function must further apply 𝜎1 [𝜎] to e. In other words, the

delayed substitution is applied at this point. The termination of this process is less obvious and

requires a subtle argument, which is discussed in §4.1.1. The extended identity substitutions are for

proofs (Theorem 4.2); a practical implementation may omit them.

To substitute a substitution, 𝜎1 [𝜎] simply applies 𝜎 to each entry of 𝜎1. If an entry is a variable

y, it is replaced with the corresponding entry 𝜎 (y). Otherwise, if the entry is an expression e, the
function applies 𝜎 to e, restricting and extending 𝜎 to match the level and context of e.

4.1.1 Termination. The substitution e[𝜎] defined above is not structurally recursive on e, so its
termination is not immediately obvious. The problematic case is the second clause of (x𝜎1 ) [𝜎]:

(x𝜎1 ) [𝜎] = e[idΓ2↾m , 𝜎1 [𝜎]] if 𝜎 (x) = e.

Here, the expression e is not a sub-expression of x𝜎1 , but rather an element of the substitution 𝜎 .

Therefore, we cannot argue for termination based solely on the size of the input expression. A

similar issue arises in Boespflug and Pientka [2011], where termination of single substitution is

shown by demonstrating that the size of the input expression’s context decreases.

In our case, since we work with simultaneous substitution, all expression entries within the

substitution must be considered. To prove termination, we define the depth of a substitution 𝜎 as

the maximum context depth among all its expression entries:

depth(Γ) (Context Depth)

depth(·) ≔ 0

depth(Γ, x : [Δ ⊢m A]) ≔
depth(Γ) ⊔ (depth(Δ) + 1)

depth(𝜎) (Substitution Depth)

depth(·) ≔ 0

depth(𝜎, x ↦→ y) ≔ depth(𝜎)
depth(𝜎, xmΔ ↦→ e) ≔ depth(𝜎) ⊔ (depth(Δ) + 1)

Intuitively, the depth of a substitution bounds the number of times the problematic case can

occur in a recursive call. To prove this, we show that the depth decreases in the problematic case

and does not increase in other cases. Non-increase follows because extending with variable entries

does not change the depth, as they are not counted, and restriction does not increase the depth

since the depth is defined as a maximum. In the problematic case, we need to show that

depth(idΓ2↾m , 𝜎1 [𝜎]) < depth(𝜎).
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Γ ⊢ e −→ e′ (Call-by-value Reduction)
CtxAppAbs

Γ ⊢ (𝜆Δx : A. e1) v2 −→ e1 [idΓ, x ↦→ v2]

LetQuoteQuote

Γ ⊢ letΔ⟨x : A⟩ = ⟨e1⟩ in e2 −→ e2 [idΓ, x ↦→ e1]
IfTrue

Γ ⊢ if true then e2 else e3 −→ e2

IfFalse

Γ ⊢ if false then e2 else e3 −→ e3

LetWrapWrap

Γ ⊢ letwrapΔ x : A = wrapΔv1 in e2 −→ e2 [idΓ, x ↦→ v1]

CongWrap

Γ,Δ ⊢ e −→ e′

Γ ⊢ wrapΔe −→ wrapΔe
′

Fig. 2. 𝜆○▷ operational semantics (excerpt)

Let Δ be the domain of 𝜎1. By induction, 𝜎1 [𝜎] is well-defined and Γ2 ⊢ 𝜎1 [𝜎] : Δ. Since adding
variable entries does not change the depth, and since the depth of a substitution is at most the

depth of its domain, we have depth(idΓ2↾m , 𝜎1 [𝜎]) ≤ depth(𝜎1 [𝜎]) ≤ depth(Δ). Since xmΔ ↦→ e ∈ 𝜎 ,

it follows that depth(Δ) < depth(𝜎). Thus, we get depth(idΓ2↾m , 𝜎1 [𝜎]) ≤ depth(Δ) < depth(𝜎)
as required. Therefore, the substitution function terminates and is well-defined on all inputs.

4.1.2 Substitution Properties. We prove that the substitution functions enjoy the usual associativity

and commutativity properties. These lemmas are crucial when proving adequacy of the denotational

semantics in §7.4, which employs a logical relations argument that famously relies on these

properties [Abel et al. 2019; Acevedo and Weirich 2023].

Lemma 4.1 (Substitution Properties).

(Identity) (1) If Γ1 ⊢n e : A then e[idΓ1 ] = e.
(2) If Γ1 ⊢ 𝜎1 : Δ then 𝜎1 [idΓ1 ] = 𝜎1 = idΔ [𝜎1].

(Associativity) (1) If Γ1 ⊢n e : A and Γ2 ⊢ 𝜎 : Γ1 and Γ3 ⊢ 𝜎 ′
: Γ2 then e[𝜎] [𝜎 ′] = e[𝜎 [𝜎 ′]].

(2) If Γ1 ⊢ 𝜎1 : Δ and Γ2 ⊢ 𝜎 : Γ1 and Γ3 ⊢ 𝜎 ′
: Γ2 then 𝜎1 [𝜎] [𝜎 ′] = 𝜎1 [𝜎 [𝜎 ′]].

(Commutativity) If Γ,Δ ⊢n e : A, Γ′ ⊢ 𝜎1 : Γ, and Γ′ ⊢ 𝜎2 : Δ, then e[𝜎1, 𝜎2] = e[𝜎1, idΔ] [idΓ′ , 𝜎2].

Since substitution functions are not structurally recursive, some of these properties need to be

proven by induction on depths. Associativity, for instance, is proven by induction on sum of the

depths of both substitutions, i.e. depth(𝜎) + depth(𝜎 ′). The full proofs are available in Agda (§8).

Lastly, we show that substitution preserves typing:

Lemma 4.2 (Substitution Lemma).

• If Γ1 ⊢n e : A and Γ2 ⊢ 𝜎 : Γ1 then Γ2 ⊢n e[𝜎] : A.
• if Γ1 ⊢ 𝜎1 : Δ and Γ2 ⊢ 𝜎 : Γ1 then Γ2 ⊢ 𝜎1 [𝜎] : Δ.

4.2 Operational Semantics
We now present our reduction rules. First, values and evaluation contexts are defined below.

Values v F true | false | 𝜆Δx : A. e | ⟨e⟩ | wrapΔv
Evaluation Contexts E F [] | E e2 | v1 E | if E then e2 else e3 | letΔ⟨x : A⟩ = E in e2

| wrapΔE | letwrapΔ x : A = E in e2

Evaluation contexts are expressions with a hole ([]) that can be filled with another expression,

indicating the part of the expression being reduced. Note that unlike Calcagno et al. [2003]; Taha

and Sheard [2000], our definition of values does not require level indexing.
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The call-by-value reduction is defined in Fig. 2.Wewrite Γ ⊢ e −→ e′ for a reduction step from e to
e′ under context Γ. The context is neededwhen applying substitutions (e.g. in rule LetQuoteQuote).

Rule CtxAppAbs applies a lambda to an argument value by substituting the argument into the

lambda body. Rule LetQuoteQuote unwraps a quoted expression ⟨e1⟩ and substitutes it into the

body e2; since any quoted expression is a value, e1 itself is not necessarily a value. Rules IfTrue

and IfFalse reduce an if-then-else expression to the appropriate branch. Rule LetWrapWrap

unwraps a wrapped valuewrapΔv and substitutes it into the body e2. Unlike rule LetQuoteQuote,

the wrapped value is first reduced to a value before substitution. For each case of the evaluation

context except for [], there is a congruence rule that reduces the expression contained within it.

For example, rule CongWrap reduces the subexpression within a wrap expression. The complete

set of reduction rules can be found in §A.3.

Type Soundness. We prove preservation, which is a corollary of the substitution lemma (4.2):

Theorem 4.3 (Preservation). If Γ ⊢n e : A and Γ ⊢ e −→ e′ then Γ ⊢n e′ : A.

Progress is subtler. Specifically, since we allow arbitrary nesting of dependencies, delayed substi-

tutions are crucial for progress to hold in our calculus. For example, consider the program:

letx:[z:bool⊢1bool] ⟨y : bool⟩ = (let ⟨z : bool⟩ = ⟨true⟩ in ⟨xz ↦→z⟩) in ⟨true⟩

Here, y is declared with a dependency x, which in turn depends on z. To evaluate the inner

let binding, we need to substitute z with true within the let body. Without allowing delayed

substitutions to contain arbitrary (open) expressions (e.g. xz ↦→true), this substitution would do

nothing, and then the evaluation would be stuck. In contrast, the core calculus of Xie et al. [2022]

does not allow nested dependencies. As a result, in their system, variables can only capture their

variable dependencies from the context.

We prove that progress holds for expressions that do not contain variables at the current level.

This reflects our definition of “unhygienic values”: values in this calculus are not necessarily closed

terms, since quotations may include variables from later stages.

Theorem 4.4 (Progress). If Γn+1 ⊢n e : A then either e is a value or there exists e′ such that
Γn+1 ⊢ e −→ e′.

4.3 Example
We demonstrate the operational semantics of the calculus with a larger example. For improved

readability, we present the example using the concrete syntax; recall the mapping between the

concrete syntax and the abstract syntax provided in §3.2. Consider the following program:

1let$ y : (x : (z : bool
1 ⊢ bool

1
) ⊢ bool

1
) =

2let$ z = <true> in <x with z = z>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = x) and z>

The program first defines y , using the same definition as in §4.2. In line 4-5, it defines x , which

depends on z , and then defines z . Finally, the program returns the code of the and operator applied

to y with x = x and z . In line 6, which definition of z is supplied to x?

To answer this, let us go through the reduction steps. First, line 2 reduces to <x with z = true> ,
as discussed in the previous subsection.
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1let$ y : (x : (z : bool
1 ⊢ bool

1
) ⊢ bool

1
) =

2<x with z = true>
3in ...

Then, y is substituted with <x with z = true> in the let body, where the delayed substitution

with x = x is applied.

1let$ x : (z : bool
1 ⊢ bool

1
) = <not z> in

2let$ z = <false> in
3<(x with z = true) and z>

Next, x is substituted with <not z> . The delayed substitution with z = true is then applied,

yielding <not true> .

1let$ z = <false> in
2<(not true) and z>

Finally, z is substituted with <false> , resulting in the value:

<(not true) and false>

Therefore, the answer to our earlier question is that x uses z = true .
What if we wanted x to use the definition z = false instead? We can achieve that by either

modifying the definition of y to explicitly capture z :

1let$ y : (x : (z : bool
1 ⊢ bool

1
); z : bool

1 ⊢ bool
1
) =

2<x with z = z>
3in ...

4<(y with x = x; z = z) and z>

or by changing the definition of y to capture a non-capturing version of x :

1let$ y : (x : bool
1 ⊢ bool

1
) =

2<x>
3in ...

4<(y with x = (x with z = z)) and z>

These examples illustrate the ability of our type system to express and enforce different kinds of

variable dependencies within unhygienic programs.

5 Translation Between 𝜆○▷ and Linear-Time Temporal Logic
This section presents translations between 𝜆○▷, Davies [1996]’s staging calculus 𝜆○ , and Kojima and

Igarashi [2011]’s constructive linear-time temporal logic (CLTL). §5.1 presents a type-preserving

translation from 𝜆○▷ to 𝜆○ , by converting variable dependencies into function arguments. Building

on this, §5.2 shows soundness of 𝜆○▷ with respect to CLTL. Then, §5.3 establishes completeness of

𝜆○▷ with respect to CLTL, by proving CLTL axioms as 𝜆○▷ terms. Thus, 𝜆○▷ is sound and complete

with respect to CLTL. Finally, §5.4 briefly discusses a direct translation from 𝜆○ to 𝜆○▷ following

the approach in Xie et al. [2022].

5.1 Translation from 𝜆○▷ to 𝜆○

Type Translation. We first translate 𝜆○▷ types into 𝜆○ types, which involves converting variable

dependencies into function arguments. Since the input and output of a function are staged at the

same level, we add the appropriate number of ○ to lower the input type to the same level as the

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 249. Publication date: August 2025.



Multi-stage Programming with Splice Variables 249:17

output. For example, (x : A1, y : B2) ▷C0
becomes ○A → ○○B → C. The formal translation is

defined as follows:

⟦An⟧ (Type Translation)

⟦([Δ ⊢ A] → B)n⟧ ≔ (Δ %n ⟦An⟧) → ⟦Bn⟧ ⟦booln⟧ ≔ bool

⟦(Δ ▷A)n⟧ ≔ Δ %n ⟦An⟧ ⟦(○A)n⟧ ≔ ○⟦An+1⟧

Γ %n A (Dependency Translation)

· %n A ≔ A (Γ, x : [Δ ⊢m A]) %n B ≔ Γ %n
(
○m−n (Δ %m ⟦A⟧

)
→ B

)
The notation (Γ %n A) converts the dependencies in Γ into function arguments of a function with

output type A, where 𝑛 is the level of the output type. Since Γ can be nested, each entry in Γ is

recursively translated at its respective level𝑚, then lowered to level 𝑛 by wrapping it in ○ m−n
.

Specifically, if Γ = x1 : [Δ1 ⊢m1 A1], . . . , xk : [Δk ⊢mk Ak], then Γ %n A = ○m1−n (Δ1 %m1 ⟦A1⟧) →
· · · → ○mk−n (Δk %mk ⟦Ak⟧) → A.

Context Translation. The translation from 𝜆○▷ contexts to 𝜆○ contexts is given below, where

dependencies of each variable are translated using the dependency translation.

⟦Γ⟧ (Context Translation)

⟦·⟧ ≔ · ⟦Γ, x : [Δ ⊢m A]⟧ ≔ ⟦Γ⟧, x : (Δ %m ⟦A⟧)m

Term Translation. We now define a term translation from 𝜆○▷ to 𝜆○ . The translation preserves

types but may introduce additional beta redexes inside quotations, similar to the example in §2.2.

We present the translation with selected cases below, where ⟨e⟩n quotes e by 𝑛 times, $
n (e) splices

e by 𝑛 times, (𝝀Δ. e) abstracts an unhygienic term e with respect to Δ using lambda abstractions,

and (x • 𝜎) applies a variable x to each translated element in 𝜎 .

⟦e⟧ (Expression Translation)

⟦x𝜎⟧ ≔ x • 𝜎 ⟦letΔ⟨x : A⟩ = e1 in e2⟧ ≔ let x = ⟨𝝀Δ. $⟦e1⟧⟩
⟦𝜆Δx : A. e⟧ ≔ 𝜆x . ⟦e⟧ in (⟦e2⟧[$(x)/x])

⟦e1 e2⟧ ≔ ⟦e1⟧ (𝝀Δ. ⟦e2⟧) ⟦wrapΔe⟧ ≔ 𝝀Δ. ⟦e⟧
⟦⟨e⟩⟧ ≔ ⟨⟦e⟧⟩ ⟦letwrapΔ x : A = e1 in e2⟧ ≔ let x = ⟦e1⟧ in ⟦e2⟧

𝝀Δ. e (Dependency Abstraction)

𝝀(·). e ≔ e

𝝀(Δ, x : [Δ′ ⊢m A]). e ≔ 𝝀Δ. (𝜆x . e[$m−n x/x])

x • 𝜎 (Dependency Application)

x • (·) ≔ x

x • (𝜎, ymΔ ↦→ e) ≔ (x • 𝜎) ⟨𝝀Δ. ⟦e⟧⟩m−n

x • (𝜎, ymΔ ↦→ z) ≔ (x • 𝜎) ⟨z⟩m−n

We prove that the translation preserves typing:

Lemma 5.1 (⟦·⟧ preserves typing). If Γ ⊢n e : A in 𝜆○▷ then ⟦Γ⟧ ⊢n ⟦e⟧ : ⟦A⟧ in 𝜆○ .

5.2 Translation from 𝜆○▷ to CLTL
CLTL [Kojima and Igarashi 2011] is a Hilbert-style axiomatization of 𝜆○ , which is characterized by

the following axioms and rules. Note that in Hilbert-style systems, inference rules apply only to

judgments with empty contexts; we denote this by writing ⊢ A in the rules:

Axioms (1) any intuitionistic tautology instance

(2) K : ○(A → B) → ○A → ○B (3) CK : (○A → ○B) → ○(A → B)
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Rules (1)
⊢ A → B ⊢ A

⊢ B
(Modus Ponens) (2)

⊢ A
⊢ ○A

(Necessitation)

Kojima and Igarashi proved that 𝜆○ is sound and complete with respect to CLTL. Therefore, by

Lemma 5.1, 𝜆○▷ is also sound with respect to CLTL. In particular, the following translation from

𝜆○▷ judgments to CLTL formulas holds:

Lemma 5.2 (Soundness w.r.t. CLTL). If Γ ⊢n e : A for some 𝑒 in 𝜆○▷, then ⊢ Γ %n ⟦A⟧ in CLTL.

The translation provides temporal interpretation for the 𝜆○▷ types: ○ corresponds to the next
operator, while Δ ▷A asserts that A holds at the current time if each assumption in Δ holds at its

respective time.

5.3 CLTL Axioms as 𝜆○▷ Terms
Next, we show completeness of 𝜆○▷with respect to CLTL through a reverse translation. Specifically,

the axioms of CLTL [Kojima and Igarashi 2011] can be proven by the following 𝜆○▷ terms:

K : ○(A → B) → ○A → ○B ≔ 𝜆f . 𝜆x . let ⟨f ′ : A → B⟩ = f in let ⟨x′ : A⟩ = x in ⟨f ′ x′⟩
CK : (○A → ○B) → ○(A → B) ≔ 𝜆f . letx:An+1 ⟨y : B⟩ = f ⟨x⟩ in ⟨𝜆x . yx ↦→x⟩

where A and B are types staged at level 𝑛 + 1. Notably, the ability to introduce dependencies

in rule LetQuote is crucial for proving CK. Moreover, the rules of CLTL are special cases of

rule CtxApp and ruleQuotewith empty contexts. We have thus demonstrated that 𝜆○▷ is complete

with respect to CLTL.

Lemma 5.3 (Completeness w.r.t. CLTL). If ⊢ A in CLTL, then · ⊢0 e : A for some 𝑒 in 𝜆○▷.

With Lemma 5.2, 𝜆○▷ is sound and complete with respect to CLTL.

5.4 Translation from 𝜆○ to 𝜆○▷

A direct translation from 𝜆○ to 𝜆○▷ can be achieved using a translation similar to the one described

by Xie et al. [2022] for translating 𝜆○ to their 𝐹 JK
calculus. Their translation lifts splice expressions

and binds them as splice environments associated with the innermost enclosing quotation at the same

level. Because 𝜆○▷ generalizes the splice environments of 𝐹 JK
, their translation can be readily adapted.

In our case, this involves lifting the splice expressions and binding them as let-splice bindings

instead. The lifting process captures all encountered lambda bindings as variable dependencies,

and these splice variables are provided with delayed substitutions. As an example,

⟨𝜆y. $(power ⟨y⟩ 2) + 3⟩ translates to let(y:int) ⟨z : int⟩ = power ⟨y⟩ 2 in ⟨𝜆y : int. zy ↦→y + 3⟩

Here, the splice $(power ⟨y⟩ 2) is lifted to become a splice variable z outside of the quotation.

However, since it refers to a local variable y, the splice variable z includes y : int in its variable

dependency. When z is subsequently used inside the quotation, we provide the substitution for y.
Once again, the ability to introduce variable dependencies plays a crucial role in the translation.

For a more detailed explanation, we refer the reader to Xie et al. [2022].

6 Code Pattern Matching
This section introduces 𝜆○▷

pat
, an extension of 𝜆○▷ with code pattern matching and code rewriting.

We present its syntax (§6.1), typing rules (§6.2), and operational semantics (§6.3).
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6.1 Syntax
We extend the syntax of 𝜆○▷ with two new expression forms: if-let expressions for code pattern

matching and rewrite expressions for code rewriting.

e F ... | if letΔ⟨p⟩ = e1 then e2 else e3 | e1 rewrite ⟨p⟩ ↦→ e2 Γ,Δ,Π F · | Γ, x : [Δ ⊢n A]
p F x̂ : A | (inherits every production of e) 𝜋 F · | 𝜋, x ↦→ y | 𝜋, x ↦→ p

if letΔ⟨p⟩ = e1 then e2 else e3 matches the code expression e1 against the pattern p. This can be

seen as a generalization of the letΔ⟨x : A⟩ = e1 in e2 expression in 𝜆○▷, where 𝑥 : 𝐴 becomes a

general pattern p and thus the match always succeeds. Inside the if-let expression, if the match

succeeds, e2 is evaluated with the pattern variables in p bound to the match results. Otherwise, e3
is evaluated, with the pattern variables unavailable. The multi-branch match$ expression used in

the concrete syntax can be desugared into nested if-let expressions. Compared to multi-branch

matching, if-let expressions are more convenient for formalization and ensure matching totality.

e1 rewrite ⟨p⟩ ↦→ e2 replaces occurrences of the pattern p within e1 with e2, where pattern variables

in p match sub-expressions in e1 and become available within e2.
Code patterns p are expressions with pattern variables. As syntactical notations to distinguish

pattern variables from regular variables, we use 𝑥 to denote pattern variables and y for regular

variables. For example, a pattern 𝜆y : A. x̂ + y𝜎 contains a pattern variable x̂ and a binding y. For
simplicity, we assume pattern variables are distinct within a pattern. Substitution patterns 𝜋 are

used to match substitutions, where each entry can be either a variable or a pattern. Lastly, we

write Π to denote contexts of pattern variables, whose definitions are the same as regular contexts

Γ and Δ.

6.2 Typing Rules
We extend expression typing Γ ⊢n e : A with the following two rules:

Γ ⊢n e : A (Expression Typing (extended))
IfLet

Γ↾n+1;Δ
n+1 ⊢n+1 p : A { Πn+1 Γ,Δ ⊢n e1 : ○A Γ,Π ⊢n e2 : B Γ ⊢n e3 : B

Γ ⊢n if letΔ⟨p⟩ = e1 then e2 else e3 : B
Rewrite

Γ ⊢n e1 : ○A Γ↾n+1; · ⊢n+1 p : B { Πn+1 Γ,Π ⊢n e2 : ○B
Γ ⊢n e1 rewrite ⟨p⟩ ↦→ e2 : ○A

Rule IfLet first type-checks the pattern p, yielding a type A and a pattern variable context

Πn+1
(the typing rules for patterns are explained below). It then checks that e1 has type ○A, and

extends the typing context with Πn+1
when checking e2. The rule can be seen as a generalization

of rule LetQuote, which extends the context with only a single variable (x : [Δ ⊢n+1 A]) when
checking e2. Finally, the expressions e2 and e3 must have the same type.

Rule Rewrite is similar. It first type-checks the pattern p, and extends the typing context with

Πn+1
when checking e1. The rule ensures that both e1 and e2 have code types. While the expression

e2 can have any type ○B, only sub-expressions with the same type as p are considered for rewriting.
The pattern typing judgment Γ;Δ ⊢n p : A { Π checks the pattern p under contexts Γ and Δ,

producing a type A and a context Π of pattern variables. The judgment uses two typing contexts:

the expression context Γ contains variables from the surrounding context of the expression (see

rules IfLet and Rewrite), allowing patterns to refer to existing variables, while the local context Δ
contains local variables introduced either by letΔ (rule IfLet) or within the pattern p. Separating
these contexts ensures that each pattern variable captures the correct dependencies. For example,
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in ⟨(𝜆x . ŷ) ẑ⟩, the pattern variable ŷ will capture x since it matches on a sub-expression that may

contain x, while ẑ will not. We present selected typing rules below.

Γ;Δ ⊢n p : A { Π (Code Pattern Typing (excerpt))

P-PVar

Γ;Δ ⊢n (x̂ : A) : A { x : [Δ ⊢n A]

P-VarSubst1

Γ ∋ x : [Δ′ ⊢n A] Γ,Δ ⊢ 𝜎 : Δ′

Γ;Δ ⊢n x𝜎 : A { ·
P-VarSubst2

Δ ∋ x : [Δ′ ⊢n A] Γ;Δ ⊢ 𝜋 : Δ′ { Π

Γ;Δ ⊢n x𝜋 : A { Π

P-CtxAbs

Γ;Δ, x : [Δ′n+1 ⊢n A] ⊢n p : B { Π

Γ;Δ ⊢n (𝜆Δ′x : A. p) : [Δ′ ⊢ A] → B { Π
P-CtxApp

Γ;Δ ⊢n p1 : [Δ′ ⊢ A] → B { Π1 Γ;Δ,Δ′ ⊢n p2 : A { Π2

Γ;Δ ⊢n p1 p2 : B { Π1,Π2

Rule P-PVar types pattern variables, producing a single pattern variable that captures the local

context Δ. Rule P-VarSubst1 matches variables in the expression context Γ using a constant substi-

tution 𝜎 , thereby enabling matching from any expression context. This contrasts with contextual

type systems [Jang et al. 2022; Parreaux et al. 2017], which restrict matching to variables from the

context the code is closed at. Rule P-VarSubst2 matches variables in the local context Δ, allowing
for further matching against the variable’s associated substitution using a substitution pattern

𝜋 . This distinction between rule P-VarSubst1 and rule P-VarSubst2 ensures distinct pattern

variables under substitution. Specifically, variables in Γ may be substituted with arbitrary terms.

For example, consider a pattern ⟨xy ↦→ẑ⟩ where x ∈ Γ and ẑ is a pattern variable. If x is substituted

with a term where y is not used linearly, such as 0 or y + y, then ẑ would appear zero or multiple

times, respectively.
5

In rule P-CtxAbs, the local variable x is added to Δ to check the pattern p. In rule P-CtxApp, the

pattern variables produced by p1 and p2 are combined in the result.

Similarly, the judgment Γ;Δ ⊢ 𝜋 : Γ′ { Π type-checks substitution patterns, producing a typing

context Γ′ and a context Π of pattern variables:

Γ;Δ ⊢ 𝜋 : Γ′ { Π (Substitution Pattern Typing)

P-S-Empty

Γ;Δ ⊢ · : · { ·

P-S-Var

Γ;Δ ⊢ 𝜋 : Γ′ { Π Γ,Δ ∋ y : [Δ′ ⊢m A]
Γ;Δ ⊢ (𝜋, x ↦→ y) : Γ′, x : [Δ′ ⊢m A] { Π

P-S-Pattern

Γ;Δ ⊢ 𝜋 : Γ′ { Π1 Γ↾m;Δ↾m,Δ
′m ⊢m p : A { Π2

Γ;Δ ⊢ (𝜋, x ↦→ p) : Γ′, x : [Δ′ ⊢m A] { Π1,Π2

Rule P-S-Empty is trivial. When the substitution entry maps to a variable y, rule P-S-Var ensures

that y is in either Γ or Δ, and recursively types 𝜋 . When the substitution entry maps to a pattern p,
rule P-S-Pattern type-checks the pattern p, and combines Π1 and Π2.

5
Allowing a pattern variable to appear multiple times within a pattern is straightforward, by simply requiring it to map

to the same expression during the merging of Π contexts (e.g. in rule P-CtxApp). Conversely, a pattern variable must

continue appearing at least once, as it can be used within the matching branch. Mœbius [Jang et al. 2022] declares all pattern

variables upfront, and the operational semantics requires a substitution of every declared pattern variable when matching

an expression. Consequently, their operational semantics is non-deterministic when a pattern variable is unused.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 249. Publication date: August 2025.



Multi-stage Programming with Splice Variables 249:21

6.3 Operational Semantics
Substitutions and evaluation contexts are mostly straightforward extensions of those in 𝜆○▷.

E F . . . | if letΔ⟨p⟩ = E then e2 else e3 | E rewrite ⟨p⟩ ↦→ e2 | v1 rewrite ⟨p⟩ ↦→ E

The reduction rules for if-let and rewrite expressions are defined as follows, which rely on the

meta-level functions match (§6.3.1) and rewrite (§6.3.2), respectively.

Γ ⊢ e1 −→ e2 (Reduction (extended))
IfLetQuote1

match(p; e1) = 𝜎

Γ ⊢ if letΔ⟨p⟩ = ⟨e1⟩ then e2 else e3 −→ e2 [idΓ, 𝜎]

IfLetQuote2

match(p; e1) undefined
Γ ⊢ if letΔ⟨p⟩ = ⟨e1⟩ then e2 else e3 −→ e3

RewriteQuoteQuote

Γ ⊢ ⟨e1⟩ rewrite ⟨p⟩ ↦→ ⟨e2⟩ −→ ⟨rewriteBottomUp (e1; p; e2)⟩
We also define the corresponding congruence rules for if-let and rewrite expressions. The complete

set of reduction rules is given in §B.3.

We have proven the preservation (Theorem 4.3) and progress (Theorem 4.4) theorems for 𝜆○▷
pat
.

The proofs are available in Agda (§8).

6.3.1 Pattern Matching. Matching is defined as partial functions match. We present a selection

of the rules below. Note that match(p; e) is defined up to α-equivalence on e: that is, we allow
renaming of bound variables in e. For contexts introduced by 𝜆Δ, letΔ, or if letΔ, renaming is allowed,

but reordering is not. These align with the de Bruijn representation used in the formalization (§8).

match(p; e),match(𝜋 ;𝜎) (Expression and Substitution Matching (excerpt))

match(x̂ : A; e) ≔ x ↦→ e match((𝜆Δx : A. p); (𝜆Δx : A. e)) ≔ match(p; e)
match(x𝜋 ; x𝜎 ) ≔ match(𝜋 ;𝜎) match(p1 p2; e1 e2) ≔ match(p1; e1),match(p2; e2)

6.3.2 Rewriting. Rewriting builds on the matching function by applying it to sub-expressions

within a target expression, replacing any matches with a specified replacement expression. Given

a target expression Γ ⊢n e1 : A, a pattern Γ; · ⊢n p : B { Π, and a replacement expression

Γ,Π ⊢n e2 : B, a meta-level function rewrite produces an expression of the same type as e1.
The rewrite function can be implemented using various strategies. For example, rewriteBottomUp

rewrites sub-expressions before rewriting their parent expression. We define a helper function

applyBottomUp(𝐹 ; e), which applies a meta-level function 𝐹 to each sub-expression of e with

same level as e, replacing them in bottom-up order. For instance, applyBottomUp(𝐹 ; (𝜆x . f x)) =
𝐹 (𝜆x . 𝐹 (𝐹 (f ) 𝐹 (x))). The complete definition of applyBottomUp is given in §B.5.

rewriteBottomUp (e1; p; e2) (Bottom-up Rewriting)

rewriteBottomUp (e1; p; e2) ≔ applyBottomUp(𝐹 ; e1), where

𝐹 (e) ≔
{
e2 [idΓ, 𝜎] if p and e have the same type and match(p; e) = 𝜎 ,

e otherwise.

At each sub-expression e of e1, the function 𝐹 checks if e matches the pattern p. If so, it substitutes
e2 with the match result 𝜎 and replace e with it. Otherwise, it leaves e unchanged. Other strategies,
such as rewriting only the top-most occurrences of the pattern, can also be defined. We include the

top-most rewriting strategy in the appendix and in our Agda development. We may also iterate the

rewriting process until a fixpoint is reached [Parreaux et al. 2017].
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Lastly, we note that in rule RewriteQuoteQuote, the replacement expression is evaluated into a

value ⟨e2⟩, before rewriteBottomUp takes place. Thus, while the replacement expression may refer to

pattern variables in p, its evaluation cannot access the specific values matched by p. In some cases,

we may want to inspect the match results within the replacement expression (§2.6). This requires a

different semantics where the replacement expression is evaluated at each pattern match, with the

corresponding match results available. We defer the definition of this alternative semantics to §7.3,

where it can be more naturally presented after the introduction of the denotational semantics.

7 Denotational Semantics
This section presents the denotational semantics for 𝜆○▷ and 𝜆○▷

pat
, providing interpretations of types

(§7.1), contexts (§7.2), and expressions (§7.3). We then define a logical relation (§7.4) and establish

the fundamental property (Theorem 7.1), which implies termination of the operational semantics

and the adequacy of the denotational semantics.

At a high-level, since evaluation happens at a specific stage 𝑛, we refer to this stage 𝑛 as the

current stage, and any stages from 𝑛 + 1 onward as later stages. Semantic interpretations are given

to current-stage terms, while later-stage terms remain syntactic. We employ a Kripke-style model

[Asai et al. 2014; Mitchell and Moggi 1991], where “worlds” are later-stage contexts Γn+1 related
by later-stage substitutions Γ′n+1 ⊢ 𝜎 : Γn+1. Types and contexts are interpreted as sets indexed

by later-stage contexts, where these sets are required to be monotonic with respect to the index.

Formally, given an indexed set 𝐷 ( ·) and a later-stage substitution Γ′ ⊢ 𝜎 : Γ, there is a function
𝐷Γ → 𝐷Γ′ mapping elements from 𝐷Γ to 𝐷Γ′ .

6

7.1 Type Interpretation
Interpretations of level-𝑛 types are defined by recursion on the type structure:

LAn MΓ (Type Interpretation)

L [Δ ⊢ A] → B MΓ ≔
∏

(Γ′⊢𝜎 :Γ) LA MΓ′,Δ → LB MΓ′ L bool MΓ ≔ {True, False}
LΔ ▷A MΓ ≔ LA MΓ,Δ L ○A MΓ ≔ { e | Γ ⊢n+1 e : A }

Function types are interpreted as dependent functions that, given a later-stage substitution from Γ
to Γ′ (where Γ′ can be any later-stage context), and map elements of LA MΓ′,Δ to elements of L B MΓ′ .
Δ ▷A is interpreted as the interpretation of A under the extended context Γ,Δ. bool is interpreted
as the set of Booleans. ○A is interpreted as the set of syntactic expressions of type A at level 𝑛 + 1,

modulo α-equivalence.

We show that the interpretation is indeed monotonic. Given a type A, an element 𝑑 ∈ LA MΓ (de-
noted 𝑑A), and a later-stage substitution Γ′ ⊢ 𝜎 : Γ, we define 𝑑 [𝜎] ∈ LA MΓ′ as the result of applying
the substitution 𝜎 to 𝑑 . The definition proceeds by recursion on the type structure:

𝑑 [𝜎] (Element Substitution)
𝑓 A→B [𝜎] ≔ 𝜆𝜎 ′ . 𝑓 (𝜎 [𝜎 ′]) 𝑏bool [𝜎] ≔ 𝑏

𝑑Δ▷A [𝜎] ≔ 𝑑A [𝜎, idΔ] 𝑒○A [𝜎] ≔ 𝑒 [𝜎]

7.2 Context Interpretation
Typing contexts at level 𝑛 are interpreted as the product of the interpretations of their entries,

where the interpretation of each entry depends on whether it is at the current stage 𝑛. Note that in

6
This is similar to a presheaf model [Altenkirch et al. 2005; Kavvos 2024] over the category of later-stage substitutions, but

without naturality conditions. Since our goal is to establish adequacy, which does not require naturality, we work with this

simpler model and leave development of a presheaf model for future work.
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the following definition, the context Γ being interpreted is at level 𝑛, while the context Γ′ and Γ′′

used as indices are at level 𝑛 + 1.

L Γ MΓ′ (Context Interpretation (Environments))

L Γn MΓ′ ≔
∏

Γ∋x:[Δ⊢mA]

{∏
(Γ′′⊢𝜎 :Γ′ ) LΔ MΓ′′ → LA MΓ′′ if𝑚 = 𝑛,

{ y | Γ′ ∋ y : [Δ ⊢m A] } ∪ { e | Γ′↾m,Δ ⊢m e : A } if𝑚 > 𝑛.

Specifically, current-stage entries Γ ∋ x : [Δ ⊢n A] are interpreted as dependent functions from

LΔ M to LA M, similar to the interpretation of function types. Later-stage entries Γ ∋ x : [Δ ⊢m A]
(where𝑚 > 𝑛) are interpreted as syntactic substitution entries under Γ′, which can be either a

variable Γ′ ∋ y : [Δ ⊢m A] (rule S-Rename) or an expression Γ′↾m,Δ ⊢m e : A (rule S-Subst).

We call an element 𝜌 ∈ L Γ MΓ′ an environment, and write 𝜌 (𝑥) to denote the entry corresponding

to 𝑥 in 𝜌 . As with types, we show that the interpretation is monotonic. Given an environment

𝜌 ∈ L Γ MΓ′ and a later-stage substitution Γ′′ ⊢ 𝜎 : Γ′, we define 𝜌 [𝜎] ∈ L Γ MΓ′′ by applying the

substitution 𝜎 to each entry in 𝜌 :

𝜌 [𝜎] (Environment Substitution)

𝜌 [𝜎] (𝑥) ≔

𝜆𝜎 ′ . 𝜌 (𝑥) (𝜎 [𝜎 ′]) if𝑚 = 𝑛,

e[𝜎↾m, idΔ] if𝑚 > 𝑛 and 𝜌 (𝑥) = e,
𝜎 (y) if𝑚 > 𝑛 and 𝜌 (𝑥) = y,

for each Γ ∋ x : [Δ ⊢m A].

where the case for𝑚 = 𝑛 is defined similarly to the function type, and the cases for𝑚 > 𝑛 are

handled by substituting the substitution entry as defined in §4.1.

We write 𝜌↾𝑛+1 to remove all entries from 𝜌 that are at level 𝑛, turning it into a substitution

at level 𝑛 + 1. We can lift an element 𝑑 ∈ LA MΓ,Δ to a singleton environment {x𝑛 ↦→ 𝑑}, whose
definition is given as follows:

{x𝑛 ↦→ 𝑑} ∈ ∏
Γ′⊢𝜎 :Γ LΔ MΓ′ → LA MΓ′ {x𝑛 ↦→ 𝑑} ≔ 𝜆𝜎 𝜌. 𝑑 [𝜎 ′, 𝜌↾𝑛+1]

Note that in the above definition, since Δ is already at level 𝑛 + 1, 𝜌↾𝑛+1 does not remove any

entry from 𝜌 , but instead just converts it into a substitution. We write 𝜌 ∪ 𝜌 ′ to add entries to an

environment, where 𝜌 ′ can either be an environment or a later-stage substitution.

7.3 Expression Interpretation
Given a later-stage context Γ′, expressions Γ ⊢n e : A are interpreted as functions L Γ MΓ′ → LA MΓ′ ,
and substitutions Γ ⊢ 𝜎 : Δ are interpreted as functions L Γ MΓ′ → LΔ MΓ′ . This interpretation can be

viewed as a definitional interpreter for the language, which recursively interprets an expression

under a given environment 𝜌 ∈ L Γ MΓ′ and extending the environment as needed. We present a

selection of rules for expression interpretation for 𝜆○▷:

L e MΓ′ , L𝜎 MΓ′ (Expression and Substitution Interpretation (excerpt))

L x𝜎1 MΓ′ ≔ 𝜆𝜌. 𝜌 (𝑥) idΓ′ L𝜎1 MΓ′ L 𝜆Δx : A. e MΓ′ ≔ 𝜆𝜌. 𝜆𝜎 ′ 𝑑. L e MΓ′ (𝜌 [𝜎 ′] ∪ {x𝑛 ↦→ 𝑑})
L ⟨e⟩ MΓ′ ≔ 𝜆𝜌. e[𝜌↾𝑛+1] L e1 e2 MΓ′ ≔ 𝜆𝜌. L e1 MΓ′ 𝜌 idΓ′ (L e2 MΓ′,Δ (𝜌 ∪ idΔ))
L letΔ⟨x : A⟩ = e1 in e2 MΓ′ ≔ 𝜆𝜌. let e = L e1 MΓ′,Δ (𝜌 ∪ idΔ) in L e2 MΓ′ (𝜌 ∪ (x ↦→ e))

For 𝜆○▷
pat
, the additional expression forms are interpreted as follows:

L if letΔ⟨p⟩ = e1 then e2 else e3 MΓ′ ≔ 𝜆𝜌.{
L e2 MΓ′ (𝜌 ∪ 𝜎) if match

(
p[𝜌↾𝑛+1]; L e1 MΓ′,Δ (𝜌 ∪ idΔ)

)
= 𝜎 ,

L e3 MΓ′ 𝜌 otherwise.

L e1 rewrite ⟨p2⟩ ↦→ e2 MΓ′ ≔ 𝜆𝜌. rewriteBottomUp (p2 [𝜌↾𝑛+1]; L e2 MΓ′,Π (𝜌 ∪ idΠ); L e1 MΓ′ 𝜌)
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The rewrite interpretation corresponds to the small-step semantics (§6.3), where the replacement

expression e2 is evaluated before rewriting happens. Using the denotational semantics, we can

alternatively evaluate the replacement expression at each occurrence of the pattern p within e1,
thus allowing the replacement expression to inspect the specific match results. This approach is

analogous to the big-step semantics of the rewrite construct in Parreaux et al. [2017].

L e1 rewrite ⟨p2⟩ ↦→ e2 MΓ′ ≔ 𝜆𝜌. applyBottomUp(

𝜆e.

{
L e2 MΓ′ (𝜌 ∪ 𝜎) if p2 and e have the same type and match(p2 [𝜌↾𝑛+1]; e) = 𝜎 ,

e otherwise.
; L e1 MΓ′ 𝜌)

This interpretation uses the applyBottomUp function to apply e2’s interpretation to every matching

sub-expression of the target expression e1. Crucially, the environment 𝜌 is extended with the

substitution 𝜎 that represents the match result, rather than idΠ as in the previous definition. This

allows e1 to inspect the match result using 𝜆○▷
pat

’s analytic capabilities. The alternative semantics for

rewriting is strictly more expressive than the small-step version, since the original semantics can

be encoded in the alternative semantics by evaluating the replacement expression before rewriting.

7.4 Adequacy
To prove the adequacy of the denotational semantics, we define the logical relations V , E , and G ,

which relate values, expressions, and environments with their denotation, respectively.

VA
Γ , EA

Γ (Value and Expression Relations)

V [Δ⊢A]→B
Γ ≔ { (𝜆Δx : A. e; 𝑓 ) | ∀(Γ′ ⊢ 𝜎 : Γ). ∀(v;𝑑) ∈ VA

Γ′,Δ . (e[𝜎, x ↦→ v]; 𝑓 𝜎 𝑑) ∈ EB
Γ′ }

VΔ▷A
Γ ≔ { (wrapΔe;𝑑) | (e;𝑑) ∈ VA

Γ,Δ } Vbool
Γ ≔ {(true; True), (false; False)}

V○AΓ ≔ { (⟨e⟩; 𝑒) | Γ ⊢n+1 e : A }

EA
Γ≔ { (e;𝑑) | ∃v. (Γ ⊢n e −→∗ v) ∧ (v;𝑑) ∈ VA

Γ }

GΓ
Γ′ (Environment Relation)

GΓ
Γ′ ≔

∏
Γ∋x:[Δ⊢mA]

{
{ (e; 𝑓 ) | ∀(Γ′′ ⊢ 𝜎 : Γ′). ∀(𝜎 ′

; 𝜌 ′) ∈ GΔ
Γ′′ . (e[𝜎, 𝜎 ′]; 𝑓 𝜎 𝜌 ′) ∈ EA

Γ′′ } if𝑚 = 𝑛,

{ (y; y) | Γ′ ∋ y : [Δ ⊢m A] } ∪ { (e; e) | Γ′↾m,Δ ⊢m e : A } if𝑚 > 𝑛.

The relations generally follow the structure of the denotational semantics. The VA
Γ relation relates

values of type A under context Γ to elements in LA MΓ . For base types bool and ○A,V is essentially

the identity relation, relating each value to a unique element. For function types, a lambda value

(𝜆Δx : A. e) is related to a function 𝑓 if, for any later-stage substitution 𝜎 and any value v related to

𝑑 , substituting e with 𝜎 and v yields an expression related to 𝑓 𝜎 𝑑 . For Δ ▷A, the relation extends

the context with Δ, as in the denotational semantics. The expression relation E relates an expression

to an element if the expression reduces to a value related to that element. The environment relation

GΓ
Γ′ relates substitutions with type Γ′ ⊢ 𝜎 : Γ to elements in L Γ MΓ′ . For current-stage entries, an

expression entry e is related to a function 𝑓 in the same way lambda values are related to functions,

while variable entries are not related. For later-stage entries, it relates the entry to itself.

We prove the fundamental property of the logical relations:

Theorem 7.1 (Fundamental Property).

• If Γ ⊢n e : A and (𝜎 ; 𝜌) ∈ GΓ
Γ′ then (e[𝜎]; L e MΓ′ 𝜌) ∈ EA

Γ′ .
• If Γ ⊢ 𝜎1 : Δ and (𝜎 ; 𝜌) ∈ GΓ

Γ′ then (𝜎1 [𝜎]; L𝜎1 MΓ′ 𝜌) ∈ GΔ
Γ′ .
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Table 1. Formalization in Agda
Definitions 𝜆○▷ 𝜆○▷

pat

Data.StagedList/StagedTree Intrinsically well-staged lists and rose trees. 314

Context Defines types and typing contexts. 22 22

Term Defines intrinsically typed terms using de Bruijn indices. 142 262

Depth Defines the depth of contexts and substitutions. 114 114

Substitution Defines substitution. 34 77

Reduction Defines operational semantics and proves safety properties. 95 87

Denotational Defines the Kripke-style denotational semantics. 92 136

Examples Examples of well-typed expressions and their evaluation. 66 67

Pattern Matching
Matching Defines the match function. 165

Rewriting Defines the rewrite function. 77

Context.Equality Proves decidable equality for 𝜆○▷
pat

contexts. 119

Term.Equality Proves decidable equality for 𝜆○▷
pat

terms. 362

Adequacy
Term.Properties Proves properties of renaming operations. 175

Substitution.Properties Proves properties of substitution. 341

Denotational.Adequacy Proves the adequacy of the denotational semantics. 207

Translation
Context Defines types and typing contexts in 𝜆○ . 30

Term Defines intrinsically typed terms in 𝜆○ . 68

Translation Formalizes the translation from 𝜆○▷ to 𝜆○ . 98

Total 3286

The fundamental property implies termination of the operational semantics and the adequacy

of the denotational semantics. In particular, consider a level-𝑛 expression Γn+1 ⊢n e : A. Given
(idΓ ; idΓ) ∈ GΓ

Γ , it follows that (e; L e MΓ idΓ) ∈ EA
Γ . Therefore, reducing 𝑒 terminates at some value v.

Furthermore,V relates v to (L e MΓ idΓ), the result of evaluating 𝑒 under the denotational semantics.

Since theV is the identity relation at base types bool and ○A, we have v = L e MΓ idΓ . That is, the
result of the operational semantics coincides with the denotational semantics.

Theorem 7.2 (Adeqacy).

• If Γn+1 ⊢n e : ○A, then e −→∗ ⟨e′⟩ where e′ = L e MΓ idΓ .
• If Γn+1 ⊢n e : bool, then e −→∗ true if L e MΓ idΓ = True, and e −→∗ false if L e MΓ idΓ = False.

We have proven the fundamental property in Agda for 𝜆○▷, using an inductive proof on the typing

derivation and employing the associativity and commutativity properties of substitution (§4.1.2).

We have not yet fully established the fundamental property for 𝜆○▷
pat
, but we expect it to hold as

well. The main technical challenge is proving the substitution properties for 𝜆○▷
pat
, which is more

involved because the number of expression forms doubles with the introduction of patterns.

8 Formalization in Agda
We formalize the syntax, typing rules, semantics, translations, stated lemmas and theorems in Agda.

Our formalization leverages the agda-stdlib library [The Agda Community 2024] and adopts the

style of Programming Language Foundations in Agda [Wadler et al. 2022]. We check all proofs with

the safe flag to ensure soundness. Table 1 presents the structure of our definitions and proofs.

In the formalization, all contexts and types are intrinsically well-staged, and all expressions are

intrinsically typed. The modules Data.StagedList and Data.StagedTree define intrinsically well-

staged lists and rose trees, respectively. These modules are developed in a self-contained manner,
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Table 2. Comparison of our calculus with related work
𝜆○▷, 𝜆○▷

pat
𝜆○ 𝐹 JK

Mœbius 𝜆▲ 𝜆{}

[Davies

1996]

[Xie et al.

2022]

[Jang et al.

2022]

[Stucki

et al. 2021]

[Parreaux

et al. 2017]

Quoting ⟨·⟩ next J·K𝜙
box ⌈·⌉ ⌈·⌉

Unquoting letΔ ⟨·⟩ prev let box ⌊·⌋ ⌊·⌋
Code Type ○ ○ Code ⌈Φ ⊢𝑘 ·⌉ ⌈·⌉

Code𝑇 𝐶
Contextual Type Δ ▷ – – –

Nested Contexts Yes – 1-level Yes – No

Polymorphism No No Yes Yes No Subtyping

Pattern Matching Yes – – Yes Yes Yes

Rewrite Yes – – – – Yes

making them reusable for other projects requiring well-staged data structures. In our formalization,

they are used to represent the nested structure of typing contexts. InData.StagedList, concatenation
of well-staged lists is defined as a constructor rather than a function, effectively making it a tree

rather than a list. This design choice allows other context operations to commute with concatenation

by definition, simplifying proofs by reducing the need for casting between equivalent contexts.

Variables are represented namelessly using de Bruijn indices. These simplifications contribute to a

more concise formalization and ensure that pattern matching respects α-equivalence.

9 Related Work
This section compares our calculi with related work. Table 2 provides an overview of the syntax,

type systems, and key features of these calculi.

Let-splice bindings. Let-splice bindings are inspired by 𝐹 JK
, the core calculus of Typed Template

Haskell [Xie et al. 2022], but with several key distinctions. In 𝐹 JK
, let-splice bindings (called splice

environments) are bound to quotations, appearing as J𝑒K𝜙 , where 𝑒 is a quoted expression and 𝜙

is a list of splice bindings. This effectively ties splice bindings to quotations (except for top-level

splices). Our calculus decouples let-splice bindings from quotations, allowing for greater flexibility.

Moreover, 𝐹 JK
contexts are flat, supporting only a single level of nesting, and does not support

dependencies (Δ ▷ ) as first-class types. Our calculus allows arbitrary nesting of contexts, enabling

more complex variable dependencies. This nesting necessitates delayed substitutions to ensure type

soundness, as discussed in §4.2. Finally, 𝐹 JK
lacks support for code pattern matching. In contrast

to syntax-directed staging, Scala’s LMS (Lightweight Modular Staging) framework [Rompf and

Odersky 2010, 2012] mixes present and future-stage computations using a type-based embedding,

reducing syntactic overhead. It would be interesting to explore how concepts similar to let-splice

bindings could potentially apply to such a type-directed staging approach.

Modal logic and staging. While temporal logic based staging [Davies 1996] has been used widely,

S4 modal logic offers an alternative approach to staging [Pfenning and Davies 2001]. Specifically, the

box modality □A models closed code expressions, which cannot depend on the surrounding context.

Thus, □A can always be evaluated to yield a value of type A. This contrasts with the temporal

modality ○A, which allows code to use variables in the surrounding context in a well-staged

way. The relationship between 𝜆○ , 𝐹 JK
, and 𝜆○▷ mirrors the different derivation systems of the

intuitionistic S4 logic. 𝜆○ corresponds to Pfenning and Davies [2001]’s implicit system which uses

quote and unquote operators similar to quasi-quotes, 𝐹 JK
corresponds to the style of Bierman and

de Paiva [2000], pairing an explicit substitution with the quote constructor, and 𝜆○▷ corresponds to

Pfenning and Davies [2001]’s explicit system, using let-bindings for unquoting. In literature, implicit
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systems are sometimes referred to as Kripke-style or Fitch-style [Clouston 2018; Murase 2017;

Murase et al. 2023], while explicit systems are sometimes called dual-context style [Kavvos 2020;

Nanevski et al. 2008]. Contextual modal type theory (CMTT) [Nanevski et al. 2008] extends the S4

approach with contextual modalities, generalizing the □A type to ⌈Φ ⊢ 𝐴⌉, which explicitly declares

a context Ψ that the code may reference. Code of type ⌈· ⊢ 𝐴⌉ is guaranteed to be closed (containing
no free variables), and can thus be evaluated. Our substitution for x : [Δ ⊢n A] is similar to meta-

substitution in second-order abstract syntax [Fiore and Hur 2010], as well as to CMTT. Boespflug and

Pientka [2011] further extend CMTT with multiple levels, modeling meta
𝑛
-variables. Mœbius [Jang

et al. 2022] additionally supports code pattern matching. Our calculus shares similarities with

Mœbius, but with important differences. First, we have different logical foundations: ours is based

on temporal logic, while Mœbius generalizes from S4. Thus, our ○A can still access variables from

its surrounding context. Within a quotation, our system treats both meta-variables and program

variables as variables at the next level, while in Mœbius, meta-variables are treated separately from

program variables. Also, we separate the code modality ○ and the contextual modality (Δ▷), while
Mœbius combines them into a single modality ⌈Φ ⊢𝑘 ·⌉. Furthermore, we use different approaches

to context tracking: a value of type (Δ ▷ A) can use variables in Δ in addition to those in the

surrounding context. This allows dependencies that do not follow lexical scoping, which is essential

for expressing unhygienic functions. It also allows context specifications to be combined with other

type constructors. For instance, (x : bool1) ▷ (A × ○B) could represent an unhygienic value of

type A paired with code of type B, where both use a variable x. This different logical foundation
and design also allow us to use different types for pattern variables. Lastly, Mœbius supports type

polymorphism; as future work, we are interested in extending our design with type polymorphism.

Multimodal type theory [Gratzer et al. 2020; Kavvos and Gratzer 2023] provides a general frame-

work for combining multiple modal types in a single type system. It seems possible to consider

𝜆○▷ as a multimodal type theory with integer modes with ○ : 𝑛 + 1 → 𝑛, whose � corresponds to

context restriction, and Δn+1 ▷ : 𝑛 → 𝑛, whose � corresponds to context extension. The rules for

unhygienic functions can be seen as a special case of function types in multimodal type theory,

where the modality is fixed to be Δn+1 ▷ . Specifying our calculus as a multimodal system would be

an interesting direction.

Code pattern matching. Stucki et al. [2021] present 𝜆▲ , which also supports code pattern matching.

In 𝜆▲ , as mentioned in §2.5, to match a term under a lambda, the pattern variable must first be

η-expanded into a function that takes the code of the bindings as arguments. As noted by Stucki

et al., this only works for a simpler two-stage setting and does not yet support matching on quotes,

splices, and matches themselves. Compared to 𝜆▲’s approach, our type system avoids the need for

η-expansion and allows for matching on, for example, code that itself uses quotations and splices.

Squid [Parreaux et al. 2017] (and their calculus 𝜆{} ) uses CMTT-like types and is thus closely related

to Mœbius [Jang et al. 2022]. Our code rewriting construct is inspired by Squid.

Gabbay and Nanevski [2013] attempt to provide a denotational semantics for CMTT, which

includes an intensional isapp function that checks whether a code is a function application. As

noted by Kavvos [2017a,b], their evaluation of isapp is not confluent. Kavvos [2017a,b] extend

the modal lambda calculus with intensional analysis on closed code to retain confluence. Hu and

Pientka [2024, 2025] propose layered modal type theory (LMTT), where the language at layer 𝑖 + 1

can inspect and analyze code from the one at layer 𝑖 . Similar to CMTT, LMTT distinguishes between

local variables and global variables, and additionally also between code and programs (i.e. layers),

while our calculus uses the same language for code and programs, and also the same variable

dependency mechanism for splice variables and pattern variables. We intend to explore confluence

in future work.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 249. Publication date: August 2025.



249:28 Tsung-Ju Chiang and Ningning Xie

Acknowledgments
This work is funded by the Natural Sciences and Engineering Research Council of Canada.

Data Availability Statement
The Agda mechanization of this paper is provided in the artifact [Chiang and Xie 2025].

A 𝜆○▷ Details
A.1 Syntax

Variables x, y, z
Levels m, n ∈ N

Types A, B F bool | [Δ ⊢ A] → B | ○A | Δ ▷A
Contexts Γ,Δ F · | Γ, x : [Δ ⊢n A]
Expressions e F x𝜎 | true | false | if e1 then e2 else e3

| 𝜆Δx : A. e | e1 e2 | ⟨e⟩ | letΔ⟨x : A⟩ = e1 in e2
| wrapΔe | letwrapΔ x : A = e1 in e2

Substitutions 𝜎 F · | 𝜎, x ↦→ y | 𝜎, x ↦→ e
Fig. 3. Syntax of 𝜆○▷

A.2 Substitution
e[𝜎] (Expression Substitution)

(x𝜎1 ) [𝜎] ≔
{
y(𝜎1 [𝜎 ] ) if 𝜎 (x) = y,
e[idΓ2↾m , 𝜎1 [𝜎]] if 𝜎 (x) = e.

(true) [𝜎] ≔ true

(false) [𝜎] ≔ false

(if e1 then e2 else e3) [𝜎] ≔ if e1 [𝜎] then e2 [𝜎] else e3 [𝜎]
(𝜆Δx : A. e) [𝜎] ≔ 𝜆Δx : A. (e[𝜎, x ↦→ x])

(e1 e2) [𝜎] ≔ e1 [𝜎] e2 [𝜎, idΔ]
(⟨e⟩) [𝜎] ≔ ⟨e[𝜎↾]⟩

(letΔ⟨x : A⟩ = e1 in e2) [𝜎] ≔ letΔ⟨x : A⟩ = (e1 [𝜎, idΔ]) in (e2 [𝜎, x ↦→ x])
(wrapΔe) [𝜎] ≔ wrapΔ (e[𝜎, idΔ])

(letwrapΔ x : A = e1 in e2) [𝜎] ≔ letwrapΔ x : A = (e1 [𝜎]) in (e2 [𝜎, x ↦→ x])

𝜎1 [𝜎] (Substitution on Substitutions)

(·) [𝜎] ≔ · (𝜎1, x ↦→ y) [𝜎] ≔ 𝜎1 [𝜎], x ↦→ 𝜎 (y)
(𝜎1, xmΔ ↦→ e) [𝜎] ≔ 𝜎1 [𝜎], x ↦→ e[𝜎↾m, idΔ]

A.3 Operational Semantics

Values v F true | false | 𝜆Δx : A. e | ⟨e⟩ | wrapΔv

Evaluation Contexts E F [] | E e2 | v1 E | if E then e2 else e3 | letΔ⟨x : A⟩ = E in e2
| wrapΔE | letwrapΔ x : A = E in e2
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Γ ⊢ e −→ e′ (Call-by-value Reduction)

CtxAppAbs

Γ ⊢ (𝜆Δx : A. e1) v2 −→ e1 [idΓ, x ↦→ v2]

LetQuoteQuote

Γ ⊢ letΔ⟨x : A⟩ = ⟨e1⟩ in e2 −→ e2 [idΓ, x ↦→ e1]
IfTrue

Γ ⊢ if true then e2 else e3 −→ e2

IfFalse

Γ ⊢ if false then e2 else e3 −→ e3

LetWrapWrap

Γ ⊢ letwrapΔ x : A = wrapΔv1 in e2 −→ e2 [idΓ, x ↦→ v1]

CongCtxApp1

Γ ⊢ e1 −→ e′
1

Γ ⊢ e1 e2 −→ e′
1
e2

CongCtxApp2

Γ,Δ ⊢ e2 −→ e′
2

Γ ⊢ (𝜆Δx : A. e1) e2 −→ (𝜆Δx : A. e1) e′2

CongLetQuote1

Γ,Δ ⊢ e1 −→ e′
1

Γ ⊢ letΔ⟨x : A⟩ = e1 in e2 −→ letΔ⟨x : A⟩ = e′
1
in e2

CongIf1

Γ ⊢ e1 −→ e′
1

Γ ⊢ if e1 then e2 else e3 −→ if e′
1
then e2 else e3

CongWrap

Γ,Δ ⊢ e −→ e′

Γ ⊢ wrapΔe −→ wrapΔe
′

CongLetWrap1

Γ ⊢ e1 −→ e′
1

Γ ⊢ letwrapΔ x : A = e1 in e2 −→ letwrapΔ x : A = e′
1
in e2

B 𝜆○▷
pat

Details
B.1 Syntax

Expressions e F . . . | if letΔ⟨p⟩ = e1 then e2 else e3 | e1 rewrite ⟨p⟩ ↦→ e2
Patterns p F x̂ : A | x𝜋 | true | false | if p1 then p2 else p3

| 𝜆Δx : A. p | p1 p2 | ⟨p⟩ | letΔ⟨x : A⟩ = p1 in p2
| wrapΔp | letwrapΔ x : A = p1 in p2
| if letΔ⟨p⟩ = p1 then p2 else p3 | p1 rewrite ⟨p⟩ ↦→ p2

Substitution Patterns 𝜋 F · | 𝜋, x ↦→ y | 𝜋, x ↦→ p
Fig. 4. Additional syntax forms of 𝜆○▷

pat

B.2 Additional Typing Rules

Γ ⊢n e : A (Expression Typing)

IfLet

Γ↾n+1;Δ
n+1 ⊢n+1 p : A { Πn+1 Γ,Δ ⊢n e1 : ○A Γ,Π ⊢n e2 : B Γ ⊢n e3 : B

Γ ⊢n if letΔ⟨p⟩ = e1 then e2 else e3 : B
Rewrite

Γ ⊢n e1 : ○A Γ↾n+1; · ⊢n+1 p : B { Πn+1 Γ,Π ⊢n e2 : ○B
Γ ⊢n e1 rewrite ⟨p⟩ ↦→ e2 : ○A

Γ;Δ ⊢n p : A { Π (Pattern Typing)

P-PVar

Γ;Δ ⊢n (x̂ : A) : A { x : [Δ ⊢n A]

P-VarSubst1

Γ ∋ x : [Δ′ ⊢n A] Γ,Δ ⊢ 𝜎 : Δ′

Γ;Δ ⊢n x𝜎 : A { ·
P-VarSubst2

Δ ∋ x : [Δ′ ⊢n A] Γ;Δ ⊢ 𝜋 : Δ′ { Π

Γ;Δ ⊢n x𝜋 : A { Π
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P-If

Γ;Δ ⊢n p1 : bool { Π1 Γ;Δ ⊢n p2 : A { Π2 Γ;Δ ⊢n p3 : A { Π3

Γ;Δ ⊢n if p1 then p2 else p3 : A { Π1,Π2,Π3

P-True

Γ;Δ ⊢n true : bool { ·

P-False

Γ;Δ ⊢n false : bool { ·

P-CtxAbs

Γ;Δ, x : [Δ′n+1 ⊢n A] ⊢n p : B { Π

Γ;Δ ⊢n (𝜆Δ′x : A. p) : [Δ′ ⊢ A] → B { Π

P-CtxApp

Γ;Δ ⊢n p1 : [Δ′ ⊢ A] → B { Π1 Γ;Δ,Δ′ ⊢n p2 : A { Π2

Γ;Δ ⊢n p1 p2 : B { Π1,Π2

P-Quote

Γ↾n+1;Δ↾n+1 ⊢n+1 p : A { Πn+1

Γ;Δ ⊢n ⟨p⟩ : ○A { Π

P-LetQuote

Γ;Δ,Δ′ ⊢n p1 : ○A { Π1 Γ;Δ, x : [Δ′ ⊢n+1 A] ⊢n p2 : B { Π2

Γ;Δ ⊢n letΔ′ ⟨x : A⟩ = p1 in p2 : B { Π1,Π2

P-Wrap

Γ;Δ,Δ′ ⊢n p : A { Π

Γ;Δ ⊢n wrapΔ′p : Δ′ ▷A { Π

P-LetWrap

Γ;Δ ⊢n p1 : Δ′ ▷A { Π1 Γ;Δ, x : [Δ′ ⊢n A] ⊢n p2 : B { Π2

Γ;Δ ⊢n letwrapΔ′ x : A = p1 in p2 : B { Π1,Π2

P-IfLet

(Γ,Δ)↾n+1;Δ′ ⊢n+1 p : A { Π
Γ;Δ,Δ′ ⊢n p1 : ○A { Π1 Γ;Δ,Π ⊢n p2 : B { Π2 Γ;Δ ⊢n p3 : B { Π3

Γ;Δ ⊢n if letΔ′ ⟨p⟩ = p1 then p2 else p3 : B { Π1,Π2,Π3

P-Rewrite

Γ;Δ ⊢n p1 : ○A { Π1 (Γ,Δ)↾n+1; · ⊢n+1 p : B { Π Γ;Δ,Π ⊢n p2 : ○B { Π2

Γ;Δ ⊢n p1 rewrite ⟨p⟩ ↦→ p2 : ○A { Π1,Π2

Γ;Δ ⊢ 𝜋 : Γ′ { Π (Substitution Pattern Typing)

P-S-Empty

Γ;Δ ⊢ · : · { ·

P-S-Var

Γ;Δ ⊢ 𝜋 : Γ′ { Π Γ,Δ ∋ y : [Δ′ ⊢m A]
Γ;Δ ⊢ (𝜋, x ↦→ y) : Γ′, x : [Δ′ ⊢m A] { Π

P-S-Pattern

Γ;Δ ⊢ 𝜋 : Γ′ { Π1 Γ↾m;Δ↾m,Δ
′m ⊢m p : A { Π2

Γ;Δ ⊢ (𝜋, x ↦→ p) : Γ′, x : [Δ′ ⊢m A] { Π1,Π2

B.3 Operational Semantics

Values v F true | false | 𝜆Δx : A. e | ⟨e⟩ | wrapΔv

Evaluation Contexts E F [] | E e2 | v1 E | if E then e2 else e3 | letΔ⟨x : A⟩ = E in e2
| wrapΔE | letwrapΔ x : A = E in e2 | if letΔ⟨p⟩ = E then e2 else e3
| E rewrite ⟨p⟩ ↦→ e2 | v1 rewrite ⟨p⟩ ↦→ E

Γ ⊢ e −→ e′ (Additional Reduction Rules)

IfLetQuote1

match(p; e1) = 𝜎

Γ ⊢ if letΔ⟨p⟩ = ⟨e1⟩ then e2 else e3 −→ e2 [idΓ, 𝜎]

IfLetQuote2

match(p; e1) undefined
Γ ⊢ if letΔ⟨p⟩ = ⟨e1⟩ then e2 else e3 −→ e3

RewriteQuoteQuote

Γ ⊢ ⟨e1⟩ rewrite ⟨p⟩ ↦→ ⟨e2⟩ −→ ⟨rewriteBottomUp (e1; p; e2)⟩
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CongIfLet1

Γ,Δ ⊢ e1 −→ e′
1

Γ ⊢ if letΔ⟨p⟩ = e1 then e2 else e3 −→ if letΔ⟨p⟩ = e′
1
then e2 else e3

CongRewrite1

Γ ⊢ e1 −→ e′
1

Γ ⊢ e1 rewrite ⟨p⟩ ↦→ e2 −→ e′
1
rewrite ⟨p⟩ ↦→ e2

CongRewrite2

Γ; · ⊢n+1 p : B { Π Γ,Π ⊢ e2 −→ e′
2

Γ ⊢ ⟨e1⟩ rewrite ⟨p⟩ ↦→ e2 −→ ⟨e1⟩ rewrite ⟨p⟩ ↦→ e′
2

B.4 Pattern Matching

match(p; e) (Expression Matching)

match(x̂ : A; e) ≔ x ↦→ e

match(x𝜎 ; x𝜎 ) ≔ ·
match(x𝜋 ; x𝜎 ) ≔ match(𝜋 ;𝜎)

match(true; true) ≔ ·
match(false; false) ≔ ·

match(if p1 then p2 else p3;
if e1 then e2 else e3) ≔ match(p1; e1),match(p2; e2),match(p3; e3)

match((𝜆Δx : A. p); (𝜆Δx : A. e)) ≔ match(p; e)
match(p1 p2; e1 e2) ≔ match(p1; e1),match(p2; e2)

match(⟨p⟩; ⟨e⟩) ≔ match(p; e)
match(letΔ⟨x : A⟩ = p1 in p2;

letΔ⟨x : A⟩ = e1 in e2) ≔ match(p1; e1),match(p2; e2)
match(wrapΔp;wrapΔe) ≔ match(p; e)

match(letwrapΔ x : A = p1 in p2;

letwrapΔ x : A = e1 in e2) ≔ match(p1; e1),match(p2; e2)
match(if letΔ⟨p⟩ = p1 then p2 else p3;

if letΔ⟨p⟩ = e1 then e2 else e3) ≔ match(p1; e1),match(p2; e2),match(p3; e3)
match(p1 rewrite ⟨p⟩ ↦→ p2;

e1 rewrite ⟨p⟩ ↦→ e2) ≔ match(p1; e1),match(p2; e2)

match(𝜋 ;𝜎) (Substitution Matching)

match(·; ·) ≔ ·
match(𝜋, x ↦→ y;𝜎, x ↦→ y) ≔ match(𝜋 ;𝜎)
match(𝜋, x ↦→ p;𝜎, x ↦→ e) ≔ match(𝜋 ;𝜎),match(p; e)

B.5 Rewriting Strategies
The meta-level function applyBottomUp(𝐹, e) is defined as follows, where n is the level of e. For brevity,
applyBottomUp(𝐹, e) is denoted as bu(F ; e).
bu(F ; e) (Bottom-up Application)

bu(F ; x𝜎 ) ≔ F (xbu(F ;𝜎 ) )
bu(F ; true) ≔ F (true)
bu(F ; false) ≔ F (false)

bu(F ; if e1 then e2 else e3) ≔ F (if bu(F ; e1) then bu(F ; e2) else bu(F ; e3))
bu(F ; (𝜆Δx : A. e)) ≔ F (𝜆Δx : A. bu(F ; e))
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bu(F ; e1 e2) ≔ F (bu(F ; e1) bu(F ; e2))
bu(F ; ⟨e⟩) ≔ F (⟨e⟩)

bu(F ; letΔ⟨x : A⟩ = e1 in e2) ≔ F (letΔ⟨x : A⟩ = bu(F ; e1) in bu(F ; e2))
bu(F ;wrapΔe) ≔ F (wrapΔbu(F ; e))

bu(F ; letwrapΔ x : A = e1 in e2) ≔ F (letwrapΔ x : A = bu(F ; e1) in bu(F ; e2))
bu(F ; if letΔ⟨p⟩ = e1 then e2 else e3) ≔ F (if letΔ⟨p⟩ = bu(F ; e1) then bu(F ; e2) else bu(F ; e3))

bu(F ; e1 rewrite ⟨p⟩ ↦→ e2) ≔ F (bu(F ; e1) rewrite ⟨p⟩ ↦→ bu(F ; e2))

bu(F ;𝜎) (Bottom-up Application on Substitutions)

bu(F ; ·) ≔ ·
bu(F ;𝜎, x ↦→ y) ≔ bu(F ;𝜎), x ↦→ y

bu(F ;𝜎, xmΔ ↦→ e) ≔ bu(F ;𝜎), xmΔ ↦→
{
bu(F ; e) if m = n,
e if m > n.

To ensure that 𝐹 can be applied to any sub-expression, 𝐹 must accept any expression of type Γ′n ⊢n e′ : A′
,

where Γ′ extends the context Γ of e, and A′
is any level-𝑛 type. The output 𝐹 (e′) must have the same type as

e′.
As another example for rewriting strategies, we can define a top-most rewriting strategy rewriteTopMost

that rewrites the top-most occurrence of a pattern p within an expression e1 with another expression e2:

rewriteTopMost (e1; p; e2) (Top-most Rewriting)

rewriteTopMost (e1; p; e2) =
{
e2 [idΓ, 𝜎] if A = B and match(p; e1) = 𝜎 ,

rewriteSubterms(e1; p; e2) otherwise.

where rewriteSubterms(e1; p; e2) applies rewriteTopMost to immediate sub-expressions of e1.

C Denotational Semantics Details
L e MΓ′ (Expression Interpretation)

L x𝜎1 MΓ′ ≔ 𝜆𝜌. 𝜌 (𝑥) idΓ′ L𝜎1 MΓ′

L true MΓ′ ≔ 𝜆𝜌. True

L false MΓ′ ≔ 𝜆𝜌. False

L if e1 then e2 else e3 MΓ′ ≔ 𝜆𝜌.

{
L e2 MΓ′ 𝜌 if L e1 MΓ′ 𝜌 = True

L e3 MΓ′ 𝜌 if L e1 MΓ′ 𝜌 = False

L 𝜆Δx : A. e MΓ′ ≔ 𝜆𝜌. 𝜆𝜎 ′ 𝑑. L e MΓ′ (𝜌 [𝜎 ′] ∪ {x𝑛 ↦→ 𝑑})
L e1 e2 MΓ′ ≔ 𝜆𝜌. L e1 MΓ′ 𝜌 idΓ′ (L e2 MΓ′,Δ (𝜌 ∪ idΔ))
L ⟨e⟩ MΓ′ ≔ 𝜆𝜌. e[𝜌↾𝑛+1]

L let ⟨Δ. x⟩ = e1 in e2 MΓ′ ≔ 𝜆𝜌. let e = L e1 MΓ′,Δ (𝜌 ∪ idΔ) in L e2 MΓ′ (𝜌 ∪ (x ↦→ e))
LwrapΔe MΓ′ ≔ 𝜆𝜌. L e MΓ′,Δ (𝜌 ∪ idΔ)

L letwrapΔ x : A = e1 in e2 MΓ′ ≔ 𝜆𝜌. let 𝑑 = L e1 MΓ′ 𝜌 in L e2 MΓ′ (𝜌 ∪ {x𝑛 ↦→ 𝑑})

For 𝜆○▷
pat

expressions:

L if letΔ⟨p⟩ = e1 then e2 else e3 MΓ′ ≔ 𝜆𝜌.

{
L e2 MΓ′ (𝜌 ∪ 𝜎) if match

(
p[𝜌↾𝑛+1]; L e1 MΓ′,Δ (𝜌 ∪ idΔ)

)
= 𝜎 ,

L e3 MΓ′ 𝜌 otherwise.

L e1 rewrite ⟨p1⟩ ↦→ e2 MΓ′ ≔ 𝜆𝜌. rewriteBottomUp (p1 [𝜌↾𝑛+1]; L e2 MΓ′,Π (𝜌 ∪ idΠ); L e1 MΓ′ 𝜌)
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L𝜎 MΓ′ (Substitution Interpretation)

L𝜎 MΓ′ ≔ 𝜆𝜌. 𝜆(x : [Δ′ ⊢m A] ∈ Γ).

𝜆𝜎 ′ 𝜌 ′ . L e MΓ′ (𝜌 [𝜎 ′] ∪ 𝜌 ′) if𝑚 = 𝑛 and 𝜎 (x) = e,
e[𝜌↾𝑚, idΔ′ ] if𝑚 > 𝑛 and 𝜎 (x) = e,
𝜌 (y) if 𝜎 (x) = y,
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