
Parallel Algebraic E�ect Handlers

NINGNING XIE∗, University of Toronto, Canada and Google DeepMind, Canada

DANIEL D. JOHNSON∗, University of Toronto, Canada and Google DeepMind, Canada

DOUGAL MACLAURIN, Google DeepMind, USA

ADAM PASZKE, Google DeepMind, Germany

Algebraic e�ect handlers support composable and structured control-�ow abstraction. However, existing

designs of algebraic e�ects often require e�ects to be executed sequentially. This paper studies parallel

algebraic e�ect handlers. In particular, we formalize _? , a lambda calculus which models two key features,

e�ect handlers and parallelizable computations, the latter of which takes the form of a for expression, inspired

by the Dex programming language. We present various interesting examples expressible in our calculus. To

show that our design can be implemented in a type-safe way, we present a higher-order polymorphic lambda

calculus F? that extends _? with a lightweight value dependent type system, and prove that F? preserves the

semantics of _? and enjoys syntactic type soundness. Lastly, we provide an implementation of the language

design as a Haskell library, which mirrors both _? and F? and reveals new connections to free applicative

functors. All examples presented can be encoded in the Haskell implementation. We believe this paper is the

�rst to study the combination of user-de�ned e�ect handlers and parallel computations, and it is our hope

that it provides a basis for future designs and implementations of parallel algebraic e�ect handlers.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; Functional

languages; Semantics; • Theory of computation→ Type theory.

Additional Key Words and Phrases: E�ect handlers, Parallelism, Type systems

ACM Reference Format:

Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke. 2024. Parallel Algebraic E�ect Handlers.

Proc. ACM Program. Lang. 8, ICFP, Article 262 (August 2024), 33 pages. https://doi.org/10.1145/3674651

1 Introduction

Algebraic e�ect handlers [Plotkin and Power 2003; Plotkin and Pretnar 2009] allow programmers
to de�ne structured control-�ow abstraction in a �exible and composable way. Since introduced,
they have been studied extensively in the community, supported in languages including Koka [Lei-
jen 2014], E� [Pretnar 2015], Frank [Lindley et al. 2017], Links [Lindley and Cheney 2012], and
E�ekt [Brachthäuser et al. 2020]. Recent work has implemented e�ect handlers in Multicore
OCaml [Sivaramakrishnan et al. 2021] to support asynchronous I/O for concurrent programming.
As an example of e�ect handlers, consider the monadic encoding of the state e�ect [Kammar

and Pretnar 2017] using the syntax of an untyped algebraic e�ect lambda calculus1:

∗Both authors contributed equally to this research.
1For clarity, we use x ← e1; e2 as a shorthand for (_x. e2) e1, and e1; e2 for (__. e2) e1.

Authors’ Contact Information: Ningning Xie, University of Toronto, Toronto, Canada and Google DeepMind, Toronto,

Canada, ningningxie@cs.toronto.edu; Daniel D. Johnson, University of Toronto, Toronto, Canada and Google DeepMind,

Toronto, Canada, ddjohnson@google.com; Dougal Maclaurin, Google DeepMind, Boston, USA, dougalm@google.com;

Adam Paszke, Google DeepMind, Berlin, Germany, apaszke@google.com.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART262

https://doi.org/10.1145/3674651

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-5961-1493
HTTPS://ORCID.ORG/0000-0002-2594-8442
HTTPS://ORCID.ORG/0000-0003-0122-1377
HTTPS://ORCID.ORG/0000-0002-7665-4559
https://doi.org/10.1145/3674651
https://orcid.org/0000-0002-5961-1493
https://orcid.org/0000-0002-2594-8442
https://orcid.org/0000-0003-0122-1377
https://orcid.org/0000-0002-7665-4559
https://doi.org/10.1145/3674651

262:2 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

handle { get ↦→ _x._k. (_s. k s s), set ↦→ _x._k. (_s. k () x),

return ↦→ _x. (_s. x) }

(perform set 21; x ← perform get (); (x + x)) 0 // 42

Here a handler takes a list of operation clauses, a return clause that wraps the �nal result, and a
computation to be handled. Inside each operation clause, x is the argument to the operation, k is
the resumption captured by the handler, and each operation returns a function that dictates the
evolution of state s. The handled computation sets the state to 21, retrieves it using get, and doubles
it. The initial state s is set to 0. Evaluating the program produces the result 42.
This example clearly shows that the use of algebraic e�ects generally introduces sequential

dependencies between evaluation of di�erent expressions. Indeed, the e�ect of perform set 21

must take place before perform get (), or else the evaluation result would change.
In this work, we are interested in exploring parallel e�ect handlers that relax this sequential

dependency. We allow the user to scope subexpressions in ways that make them independent of
each other, and show that there are a number of practically useful e�ect handlers that can be made
to preserve this independence even in the presence of e�ects. This, in turn, opens up the possibility
of parallel evaluation strategies of e�ectful programs.

Our inspiration is the recent work on Dex [Paszke et al. 2021], a strict functional programming
language for array programming, which has shown that it is possible and useful to de�ne parallel
e�ect handlers. Speci�cally, Dex supports a built-in e�ect Accum which is similar to the regular state
e�ect, but more limited. The state can only be updated through an (in�x) associative increment
operation (+=) and the state is implicitly initialized with an identity element of the increment.
Using the syntax of Dex, we can write the following program that sums an input array (we explain
the syntax in more detail in §2.2):

sum = _x:(Fin n⇒Int). snd (runAccum _y. for i:n. y += x.i)

In Dex, the for expression builds an array. Interestingly, the Dex compiler is able to evaluate the
di�erent steps of the for in parallel, even though they all have e�ects. This is exactly thanks to
the restrictions induced by Accum: (1) associativity enables reassociation of di�erent increments,
enabling splitting work into separate subunits and (2) there is no "read" operation in Accum, so
state cannot be retrieved until runAccum is complete. In particular, the e�ects of an increment in
one iteration cannot be observed in other iterations. A careful reader might already notice the
connections between this e�ect and the Accy applicative functor of McBride and Paterson [2008], a
connection which we explore further in §2.3.

But, so far Accum is the only e�ect in Dex that inhibits parallelization, and the current design of
Dex does not provide a clear path to extending this feature to user-de�ned e�ects and handlers.
Therefore, the key questions we ask in this paper are: is it possible to support user-de�ned algebraic
e�ect handlers that preserve independence between independent subexpressions, enabling parallel

execution? If so, what are their semantics? We o�er the following contributions:

• We formalize _? , an untyped lambda calculus that models two key features (§4): e�ect handlers,
and the parallelizable computations that take the form of the for construct. The untyped semantics
demonstrates the essence of the interaction between the two features.
• We present a variety of illustrative examples of parallel e�ect handlers that are enabled by
our design (§5), demonstrating how our design can be naturally applied to parallelize e�ectful
programs that we believe are practical and useful.
• We present F? , a System Fl -style calculus that extends _

? with a type system (§6), formaliz-
ing parallel e�ect handlers in a type-safe way. We prove that F? preserves the semantics of
_? (Thm. 6.3), and that F? enjoys syntactic type soundness (Thm. 6.2 & 6.5).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:3

• We implement our parallel e�ect handler system as a library in Haskell (§7), which closely
mirrors the semantics and types of F? while also supporting an interface to parallelism based on
Haskell’s applicative functors. All examples in §5 have corresponding Haskell implementations.

Lastly, we discuss alternative designs in §8, survey related work in §9, and conclude in §10. The
complete set of rules and the proofs for stated lemmas and theorems are provided in the appendix.

2 Background

In this section, we present a brief overview of algebraic e�ect handlers (§2.1), and of twomechanisms
for expressing parallel computations by enforcing independence (§2.2 and 2.3).

2.1 Algebraic E�ect Handlers

Algebraic e�ect handlers provide a �exible and modular way to incorporate e�ects in programming
languages. We review them through an example. Consider the following non-deterministic e�ect.
It has a single operation amb that takes a unit and returns a boolean:

ndet { amb : () → Bool }

We can perform an operation by calling perform and providing an operation along with its
argument, e.g. perform amb (). The semantics of e�ects are provided separately as a handler. For
example, here is a handler for amb that collects all possible results in a list.

hamb = { return ↦→ _x. [x], amb ↦→ _x. _k. (k True) ++ (k False) }

The return clause applies to the value returned from the computation being handled2. In this case,
return wraps the result into a singleton list. The amb operation clause takes the operation argument
x (in this case unit), and a resumption k that resumes the original computation with an operation
result. The handler resumes k twice, and concatenates the results. We can use the handler to handle
a computation that contains the amb operation:

handle hamb (x ← perform amb (); y ← perform amb (); x && y)

The �rst operation amb will get handled by the handler, and the program evaluates to

(k True) ++ (k False)

where k is _z. handle hamb (x ← z; y ← perform amb (); x && y). At this point, the program
resumes k with x being True and False, respectively. Note that the handler hamb is reinstalled inside
the continuation, and thus can handle further amb operations. Continuing evaluating this program,
we will get the result

[True, False, False, False]

As a convenience feature, parameterized e�ect handlers [Plotkin and Power 2003] allow passing
a local parameter to handlers, which can be updated when the resumption is resumed. Below shows
the implementation of a state handler as a parameterized handler:

hstate = { return ↦→ _s._x. x, get ↦→ _s._x._k. k s s, set ↦→ _s._x._k. k x () }

Here, both the return clause and the operation clauses receive as an additional argument the
current handler parameter s. The return clause simply returns the computation result. The get

clause resumes the continuation with the handler parameter s and the operation result s, while set
resumes with the new handler parameter x and the operation result unit. Now we can implement
the program in the introduction in a more concise and e�cient way. Note that with parameterized
handlers, the handler also takes an initial parameter, in this case 0.

2In practice, it is common to omit the return clause when it has the default implementation return ↦→ _x. x.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:4 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

handle hstate 0 (perform set 21; x ← perform get (); x + x) // 42

2.2 Parallelizing E�ects With “for” Expressions

In the Dex array programming language [Paszke et al. 2021], parallel computations are expressed
by means of a parallelizable for construct. For instance, the following program increments an array:

incr = _x:(Fin n⇒Int). for i:n. x.i + 1 // incr <1,2,3> = <2,3,4>

Here, x of type Fin n⇒Int is an array indexed by indices of type Fin n and containing elements
of type Int. Retrieval of individual elements is possible using the x.i expression, which looks up
an element of array corresponding to the index i. Denoting arrays using angle brackets ⟨·⟩, the
program incr ⟨1, 2, 3⟩ evaluates to the result ⟨2, 3, 4⟩ .
A key property of the for construct in Dex is that each element of the result array for a (non-

e�ectful) for expression can be evaluated independently, because there is by construction no data
dependence between the di�erent values. This allows Dex to e�ciently compile such expressions
to execute on hardware accelerators. Extending this, Dex also supports a parallelism-friendly Accum

e�ect (as we discuss in §1), which allows each loop iteration to make an additive contribution
to special “reference” objects. This Accum e�ect is carefully designed so that programs such as
runAccum _y. for i:n. y += x.i can still execute in parallel even in the presence of these e�ects.
Unfortunately, Dex lacks an extensible e�ect system, and so its users are limited to a set of built-in
implementations that the compiler can understand and compile.
Abstracting away the details of Dex’s compilation strategy and syntax, the essence of Dex’s

approach to parallel programming with e�ects can be summarized as combining (1) a parallelizable
for construct where the body expr in each expression for i:n. expr is by construction indepen-
dent across iterations, (2) arrays and array types such as ⟨1, 2, 3⟩ :: Fin 3 ⇒ Int, which are
produced by for expressions and can be constructed and indexed into in parallel, and (3) a built-in
transformation of for expressions for the Accum e�ect that preserves the independence between the
for loop’s iterations. In this work, we adopt the �rst two of these (along with their syntax), and
generalize the third to allow parallelization across a wide set of user-de�nable e�ects.

2.3 Previous Approaches to Parallelization Through Independence

Interestingly, the idea of taking advantage of independence between e�ectful subexpressions
to enable parallel execution has been explored before from a di�erent lens, that of applicative
functors [McBride and Paterson 2008]. Applicative functors are relaxations of monads de�ned in
terms of a lifting function pure :: a -> f a and an application function <*> :: f (a -> b) ->

f a -> f b. If we interpret the type f a as meaning “an e�ectful computation that produces a
value of type a”, the key feature of <*> is that, in the expression x <*> y, the e�ects performed by
y cannot be a�ected by the results of x and vice versa, just like di�erent iterations of Dex’s for
are independent by construction. This property of <*> has been previously used to automatically
parallelize e�ectful computations in speci�c Haskell monads when those computations are written
using applicative primitives [Marlow et al. 2014, 2016].
These two ways of denoting independent subexpressions (the Dex-inspired for construct and

the applicative <*>) are, to some degree, equivalent. For instance, we can de�ne versions of pure
and <*> in terms of the for construct as

pure x ↦→ (__. x)

x <*> y ↦→ (__. outs ← (for i:2. i f i == 0 then (x ()) else (y ())); outs.0 outs.1)

This means that, although in this work we express our semantics in terms of for, our work can
also be interpreted as a way to incorporate applicative-style parallelism into e�ect systems, similar

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:5

to the rich connections between e�ect systems and monads [e.g. Forster et al. 2017; Kammar et al.
2013; Kiselyov and Ishii 2015; Kiselyov et al. 2013]. We will explore this connection further in §3.4.

3 Key Ideas

Before we describe our approach, we take a brief stop to rearticulate our goals in detail. We seek an
e�ect system that has:

• Extensiblility. Users should be able to extend the system with new e�ects, rather than being
limited to a set of built-in e�ects.
• User-provided parallel semantics. Users should be able to specify how these new e�ects should
interact with parallelism (in the sense of independence of e�ects between select subprograms),
instead of requiring all e�ects to use built-in parallel semantics.
• Compositionality. It should be possible to use multiple e�ects in the same program, and the
semantics of their combination could be derived from their semantics in isolation.

Our language design satis�es all three goals. It features a novel formulation of e�ect handlers, as
well as a syntax for parallel subcomputations in the form of for expressions. In §3.1 and 3.2 we
focus on the untyped semantics, using a running example of the accumulation e�ect. Then, in §3.3,
we give a brief overview of a type system suitable for our extension, and in §3.4 we discuss how
our design can be integrated with the existing monads and applicative functors in Haskell.

3.1 The Challenge of Parallelizing E�ect Handlers

Let us inspect what causes the traditional e�ect systems to be incompatible with parallel evaluation
strategies. To do so, let us focus on a writer e�ect with a single accum operation:

writer { accum : Int → () }

hAccum = { return ↦→ _s._x. (x, s), accum ↦→ _s._x._k. k (s + x) () }

The associated parameterized handler keeps track of the sum in the handler’s local state. The
return clause simply returns the computation result together with the parameter. When handling
an accum operation, we update the state to (s + x), and resume the computation with (). With this
de�nition, we expect the following program to evaluate to ((), 3):

handle hAccum 0 (perform accum 1; perform accum 2) // ((), 3)

The state is initialized to value 0, then gets incremented by 1 and then 2, and �nally the return

function is used to wrap the result of the second performwith accumulation result.
Note that the description above describes all the steps, as they happen in sequence, even though

there are no data dependencies between the two operations. In particular, when evaluation reaches
perform accum 1, the hAccum clause accum is called with the continuation k = _s. _r. handle

hAccum s (perform accum 2). The second perform is fully controlled by the operation invoked by
the �rst one! And it can be invoked once, twice or even never. This leads to a problem if we wish
to be able to run parts of the program in parallel: since the handler has complete control of the
continuation, we are forced to evaluate the operations in sequence. There is no way for the user
program to declare that these operations could be performed in parallel, and no way for the handler
to make use of that parallelism.

Our goal in this work is to extend the existing calculi to allow for expressing the intent to sever
the dependence between two e�ectful (but data-independent) subexpressions, avoiding unnecessary
sequential dependencies due to the resumption continuation. This, in turn, makes it possible to
evaluate them independently (and possibly in parallel), and then �nally collapse the observable
e�ects they cause back into the computation they were called from in a deterministic way.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:6 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

3.2 Our Approach

Our proposal boils down to two extensions to the standard e�ect calculi. First, the syntax of
our calculus grows to include a for expression, that makes the e�ects induced by the di�erent
instantiations of its body independent. Then, to specify how the di�erent independent e�ects
should re�ect back into the context in which for is evaluated, every handler is now additionally
responsible for implementing a traverse clause in addition to the return clause, which is responsible
for combining the e�ects across these instantiations. In a sense, we treat for as an e�ectful operation
itself, which must be handled by traverse. The traverse clause takes four parameters: (1) the number
of subcomputations, (2) the current value of handler’s state, (3) an array of body continuations,
each of which encapsulate a single independent subexpression and reinstall the current handler
in it, and (4) a resumption that returns to the program after the for. (Note that every handler
must implement traverse, because executing a computation in parallel requires de�ning parallel
semantics for all e�ectful operations that occur in the computation, not just a subset. We discuss a
default implementation of traverse for handlers without special parallelism behavior in §4.2.)

To better illustrate our changes, let us return to the accumulation e�ect. Assuming the existence
of helpers reduce and unzip for arrays (which we will describe shortly), our modi�ed handler is

hAccum = { return ↦→ ..., accum ↦→ ..., // the same as before

traverse ↦→ (_n._s._l._k. pairs ← for i:n. l.i 0;

(results, outs) ← unzip pairs;

out ← reduce (+) outs;

k (s + out) results) }

We illustrate our system in action by stepping through the evaluation steps of the following program,
which sums up an array of values and then returns a constant string:

handle hAccum 0 (for i:3. perform accum (⟨1,2,3⟩.i); "done")

The �rst step is that the for expression is handled by the handler hAccum, just as an e�ect would be.
In our design, all handlers must handle for expressions, with the innermost handler going �rst.
Denoting the traverse clause from hAccum as f_traverse, we obtain:

f_traverse 3 0 ⟨ _s. handle hAccum s (perform accum ⟨1,2,3⟩.0),

_s. handle hAccum s (perform accum ⟨1,2,3⟩.1),

_s. handle hAccum s (perform accum ⟨1,2,3⟩.2) ⟩ -- l

(_s. _xs. handle hAccum s "done") -- k

Here f_traverse takes four arguments: (1) the array length n, in this case 3, (2) the current handler
parameter s, in this case 0, (3) an array of body continuations l with one entry per value of i in
the original program, and (4) the �nal resumption k. The resumption k is much like the original
resumption when handling operations: it captures from where the for "e�ect" is performed, to
where the handler is applied, with the handler reinstalled inside. With parameterized handlers, here
k takes the updated parameter s and an array xs as the result of the for "e�ect", and resumes the
program (which in this case produces a constant value "done"). The body continuation array l is
unique to our design, and is the key to enable parallel e�ect handlers. It captures the for body, but
additionally pushes the handler to be inside the body expression, and allows the traverse handler
to pass di�erent parameters to each body subexpression.
In this case, f_traverse begins by re-emitting a for expression to evaluate the loop bodies in

parallel, but passes the identity element (0) as the handler parameter:

pairs ← for i:n. (⟨ _s. handle hAccum s (perform accum ⟨1,2,3⟩.0),

_s. handle hAccum s (perform accum ⟨1,2,3⟩.1),

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:7

_s. handle hAccum s (perform accum ⟨1,2,3⟩.2) ⟩.i 0);

Since this for expression is no longer contained in any handler, we are free to execute each iteration
in parallel, with the accum operations inside the for expression handled normally by the handler.
As the return clause wraps the result into a pair, we thus obtain an array of pairs:

pairs ← ⟨((),1),((),2),((),3)⟩

Then, we use the standard unzip function that unzips pairs into results and outs, where results is
an array of the computation results, while outs is an array of the accumulated handler parameters:

(results, outs) ← (⟨(),(),()⟩, ⟨1,2,3⟩)

We next sum up the array of handler outputs to a single value by applying out ← reduce (+) outs,
obtaining the value out ← 6. Lastly, (k (s + out) results) resumes the computation with the
new parameter and the results from the for expression:

(_s. _xs. handle hAccum s "done") 6 ⟨(),(),()⟩

which produces the �nal result ("done", 6).

3.3 Type-Checking Parallel E�ect Handlers

So far we have seen untyped parallel e�ect handlers. It would be, of course, even better if we can
implement such semantics in a type-safe manner, especially since it is known that e�ect handlers
enjoy type safety when equipped with an e�ect system (e.g. Leijen [2014]; Pretnar [2015]). It turns
out that giving static semantics to parallel e�ect handlers is trickier than one might expect.

Answer types. We �rst introduce the notion of answer types of a handler. In systems with de-

limited continuations, answer types refer to the types of values returned by contexts up to the
delimiter [Danvy and Filinski 1990]. As handlers also provide a form of delimited control [Forster
et al. 2017], we use answer types to mean the types of values returned by handlers, after the return
clause has been applied. As an example, assume a reader e�ect with an operation ask that takes an
unit and returns an integer. Then consider the following program:

handle { ask ↦→ (_x. _k. k 42), return ↦→ (_x. x + 1) } ((perform ask ()) + 100)

Here, the handler handles ask by resuming the continuation with 42. The continuation adds 100 to
the result, and �nally the return clause adds 1. Thus, the result of the program is (42 + 100 + 1),
namely 143. In this case, we say that the answer type of the handler is Int. Moreover, we remark
that this handler can only handle computations that produce an Int. Speci�cally, because of the use
of (+) in the return clause, the computation result (as denoted by x) must be an integer.

Handling for expressions with answer type constructors. We can now discuss the static semantics
of parallel e�ect handlers. Recall the reduction of the example program

handle hAccum 0 (for i:3. perform accum (⟨1,2,3⟩.i); "done")

from the previous section. How can we assign types to the various stages of the reduction? An
interesting observation is that, at the top level, the program being handled has type String, so the
answer type of the full program is (String, Int). However, while applying the traverse clause, we
obtained intermediate handler expressions such as handle hAccum s (perform accum ⟨1,2,3⟩.0),
where the expression now being handled has type () and the answer type is ((), Int), which is
di�erent than the original program. Moreover, a program may have multiple for expressions that
construct arrays of di�erent types, and we could expect each to produce a di�erent type and thus a
di�erent answer types when the handler is pushed inside.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:8 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

How should we represent this in the type system? We could require all for expressions to have
the same type as the overall program being handled to prevent this problem, but that would be
too restrictive to support interesting examples. Instead, our solution is to require parallel e�ect
handlers to be polymorphic. Speci�cally, we associate each handler with an answer type constructor

f, and require the return clause to map values of any type a into values of type (f a). Importantly,
this answer type constructor gives handlers partial knowledge about the answer type of the
computation.

For instance, in the case of hAccum, if the computation returns a type a, the return clause (return
↦→ _s. _x. (x, s)) gives answer type (a, Int), so the answer type constructor is f a = (a,

Int). The accum clause (accum ↦→ _s. _x. _k. k (s + x) ())) is also polymorphic, preserving the
answer type of the resumption k. Finally, the traverse clause can safely accumulate the accumulator
results, all of which are of type Int, while remaining polymorphic over the type a. Thus, hAccum
can handle computations in a well-typed way even when for expressions have di�erent types.

On may wonder how expressive this design is. In particular, we cannot support the handler for
ask above as a parallel e�ect handler. Nevertheless, it turns out that such design is su�cient for us
to type-check a wide variety of useful parallel e�ect handlers, including all examples in §5.

Array types and value-dependent types. With answer type constructors, we are almost ready to
present the typing rule for handlers. The only task left now is to decide how to type-check arrays.
We can equip the type system with array types such as (Fin n ⇒ Int) for an integer array with
length n, where (Fin n) is an index type denoting natural numbers less than n. This requires forms
of dependent types, where expressions (n) can appear in types (Fin n ⇒ Int).

In this work, we feature a limited form of dependent types, value-dependent types [Swamy et al.
2011], that allow values to appear in types. As an example, the type (x:Int) → (Fin x ⇒ Int)

denotes a function that takes an integer x and returns an integer array of length x. Value-dependent
types integrate well with e�ect handlers, as we do not deal with e�ects on the type level. Combining
e�ect handlers with more general forms of dependent types is possible (see, e.g. Ahman [2017]),
which however is largely an orthogonal extension.With array types, we can now (partially) annotate
the �rst expression in the traverse clause of hAccum as:

traverse ↦→ _n:Int. _s. _l. _k. pairs ← l (for i:Fin n. 0); ...

where value-dependent types make it possible to use the integer argument n in the index type
Fin n in the for expression.3

Typing hAccum. Putting all pieces together, we are now ready to present the types for handlers,
using hAccum as the example. Recall that the answer type constructor for hAccum is f a = (a, Int).
We write simple Int → t rather than (x: Int) → t if x does not appear in t. The types for the
clauses in hAccum are given below (where we omit e�ect annotations for simplicity):

return : forall a. Int → a → (a, Int)

accum : forall a. Int → Int → (Int → () → (a, Int)) → (a, Int)

traverse : forall a b. (n : Int) → Int → (Fin n ⇒ (Int → (b, Int))) --l

→ (Int → (Fin n ⇒ b) → (a, Int)) -- k

→ (a, Int)

Note that traverse is polymorphic over a and b, where a is the type of the full computation and b

is the type of the body of the for expression. traverse takes four arguments: (1) the length (n:Int)

forms a dependent type; (2) the second Int is the type of the handler parameter; (3) the n-length

3We remark the value dependent types allow a safe way to project out from an array. On the other hand, we may also use

arrays with statically unknown length, where projecting out from an array returns a Maybe.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:9

array l consists of body continuations which each map an Int parameter to a (b, Int) result;
(4) lastly, the resumption k takes an updated handler parameter Int and an n-length array (the
output of the for), and returns a wrapped result (a, Int). The �nal result of traverse is thus also
(a, Int).

3.4 Embedding Parallel E�ect Handlers into Haskell

We demonstrate the practicality of our approach by additionally providing a Haskell implementation
of our system (§7), where e�ect computations are wrapped in a monad, denoted PE effs, building
on the Eff effs monad and algebraic data type e�ect representation of Kiselyov and Ishii [2015].
Here, however, we run into an immediate challenge: how should we represent our traverse clause
in Haskell’s type system? In particular, since Haskell lacks a value-dependent type system4 we use
to formalize F? , it is not straightforward to ensure that well-typed handlers preserve the length of
their input array.
Our solution is to abstract away the exact type of the array using Haskell’s typeclasses, and

thus require handlers to be polymorphic over length. For this purpose, we can use Haskell’s
(conveniently-named) Traversable typeclass, which we excerpt below:

class (Functor t, Foldable t) => Traversable t where

traverse :: Applicative m => (a -> m b) -> t a -> m (t b)

The traverse typeclass method allows one to inspect each element of the structure t and modify it
by means of an arbitrary monad or applicative functor m. Haskell’s built-in list is an instance of
Traversable, but instances can also be de�ned for e.g. �xed-length tuples (a, a, a). This means
that, in order for a function to work for all Traversable t, it must preserve the length of its input.
We can use this to de�ne a Haskell version of hAccum’s traverse clause from the previous section as

hAccumTraverse :: Traversable t => Int -> t (Int -> PE effs (b, Int))

-> (Int -> t b -> PE effs (a, Int)) -> PE effs (a, Int)

The only di�erences are that the e�ectful operations now occur under our PE effs monad, the
Fin n ⇒ x types are now abstracted as t x for some Traversable t, and the argument n is removed
since it can be inferred from the t x argument.
Interestingly, once we have abstracted the exact type of the array in this manner, it becomes

straightforward to extend our system to support heterogeneous collections in addition to homo-
geneous arrays, by using a rank-2 variant of Traversable originally proposed in the context of
heterogeneously-typed parsing expression grammars [Blažević and Légaré 2017]:

class (Rank2.Functor t, Rank2.Foldable t) => Rank2.Traversable t where

Rank2.traverse :: Applicative m => (forall b. p b -> m (q b)) -> t p -> m (t q)

A “wrapped list” such as [p Int] can be treated as a rank-2 traversable, but heterogeneous collections
such as (p Int, p Bool, p String) also qualify. In this case, the rank2Traversemethod allows one
to convert e.g. (Maybe Int, Maybe Bool, Maybe String) to (Either String Int, Either String

Bool, Either String String) using a function Maybe a -> Either String a, but requires one to
be generic over both the length of the collection and the speci�c type of the object at each index.
The heterogeneous version of our type for hAccumTraverse then becomes

newtype HAccumCont b = HAccumCont (Int -> PE effs (b, Int))

hAccumTraverse :: Rank2.Traversable t => Int -> t HAccumCont

-> (Int -> t Identity -> PE effs (a, Int)) -> PE effs (a, Int)

4Though there are well-known ways to simulate dependent types in Haskell; see, e.g. Eisenberg and Weirich [2012].

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:10 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

The body continuation array is now represented as an abstract structure whose elements are of
type HAccumCont b ≈ Int -> PE effs (b, Int), and the �nal resumption requires the handler to
provide a same-shaped structure whose elements are of type Identity b (isomorphic to b itself),
with the key di�erence being that now b can be di�erent for di�erent indices of the structure.

Remarkably, this extension is exactly what we need to bridge the gap between the for-based
parallelism of our system _? and the applicative-style parallelism of Marlow et al. [2014], if we
combine it with the free applicative functor as introduced by Capriotti and Kaposi [2014]:

data FreeAp p a where

Pure :: a -> FreeAp p a

Ap :: FreeAp p (a -> b) -> p a -> FreeAp p b

FreeAp is a “minimal” applicative functor, and can be interpreted as a data structure that simply
holds each “e�ectful” component p a in an unevaluated form along with a pure function that knows
how to combine them. Furthermore, FreeAp p a has exactly the structure of a rank-2 traversable: it
is a heterogeneous data structure where each non-Pure element is wrapped in some type constructor
p. This means our system can be directly extended to support an applicative-style interface to
parallelism without changing the core semantics, making it immediately compatible with Haskell’s
existing wide support for applicative functors, as we discuss in more detail in Section 7.

3.5 Summary

Before moving on to the details of our approach, we brie�y recap the key aspects of our design.
To prevent e�ect handling from introducing unnecessary sequential dependencies, we augment a
standard e�ect calculus with for expressions, which identify parallelizable independent subcom-
putations, and traverse clauses, which enable user-de�ned handlers to handle them. The traverse
receives arguments that capture (1) the for expression itself (with the handler pushed inside each
independent subcomputation) and (2) the remaining computation outside of the for expression. To
type-check this system, we introduce answer type constructors, and also equip the type system with
value-dependent types for typing arrays. Finally, we embed our system into Haskell using a rank-2
Traversable typeclass constraint, which allows us to handle heterogeneously-typed collections and
connects our approach to the existing literature on applicative functors.

4 A Calculus of Parallel E�ect Handlers

In this section we introduce an untyped calculus _? that lays out a basis for user-extensible parallel
e�ects, in order to demonstrate the essence of the design. §6 will present a fully typed semantics.

4.1 Syntax

The syntax and semantics of _? are summarized in Fig. 1. Expressions 4 include values E , applications
41 42, the parallelizable (for G : =. 4) construct, the projection operation 41.42, and parameterized
handler (handle ℎ 41 42) that takes a handler ℎ, a handler parameter 41, and a computation 42 to
be handled. The formalism supports parameterized handlers for generality, though they are not
necessary for any of our examples; see §5 for further discussion.

Values E include literals 8 , variables G , lambdas _G . 4 , arrays ⟨E0, . . . , E=⟩, and (perform op) that
performs an operation. We often use 5 for lambdas, = for literals, and B for handler parameters.
A handler ℎ de�nes the semantics of e�ects, where for simplicity we assume that every e�ect

has exactly one operation. A handler takes three clauses: (1) return ↦→ 5A , a return clause that gets
applied when the computation returns a value; (2) op ↦→ 5? , an operation clause that de�nes the
operation implementation; and (3) traverse ↦→ 5C , a novel traverse clause critical to our calculus

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:11

expressions 4 F E | 41 42 | for G : =. 4 | 41.42 | handle ℎ 41 42
values E , 5 , =, B F 8 | G | _G. 4 | ⟨E0, . . . , E=⟩ | perform op

handlers ℎ F {return ↦→ 5A , op ↦→ 5? , traverse ↦→ 5C }

evaluation contexts � F □ | � 4 | E � | �.4 | E .� | handle ℎ � 4 | handle ℎ B �

� F □ | � 4 | E � | � .4 | E .� | handle ℎ � 4

(app) (_G. 4) E −→ 4 [G := E]
(index) ⟨E0, . . . , E=⟩.8 −→ E8
(return) handle ℎ B E −→ 5A B E if (return ↦→ 5A) ∈ ℎ
(perform) handle ℎ B � [perform op E] −→ 5? B E : if op ∉ bop(�) ∧ (op ↦→ 5?) ∈ ℎ

where : = _B. _G . handle ℎ B � [G]
(traverse) handle ℎ B � [for G : =. 4] −→ 5C = B ℓ : if (traverse ↦→ 5C) ∈ ℎ
where ℓ = ⟨ℓ0, ℓ1, . . . , ℓ=−1⟩, ℓ8 = _B. handle ℎ B 4 [G := 8], : = _B. _GB. handle ℎ B � [GB]

4 −→ 4′

� [4] ↦−→ � [4′]
(step)

∀ 0 ≤ 8 < =. 4 [G := 8] ↦−→ E8

� [for G : =. 4] ↦−→ � [⟨E0, . . . , E=−1⟩]
(parallel)

Fig. 1. Syntax and semantics of _? .

that handles parallel e�ects. Here we assume return and traverse are built-in operations, and op is
an e�ect-speci�c operation. We discuss each clause in detail in the next section.
Evaluation contexts, essentially an expression with a hole (□) in it, explicitly indicate the eval-

uation order of an expression. As we will see, when handling an operation, we will search in
the evaluation context the innermost corresponding handler. We distinguish between evaluation
contexts � and pure evaluation context � that contains no handle frame. Notably, � still has the
frame (handle ℎ � 4), where the hole is in the parameter. The notation � [4] denotes an expression
obtained by substituting 4 into the hole of �, e.g., ((E □) 5) [4] = (E 4) 5 . We write bop(�) for the
set of operations that can be handled by a handler frame in �; it follows that bop(�) = ∅ for any � .

4.2 Operational Semantics

The bottom of Fig. 1 de�nes the operational semantics of _? . The evaluation rules have two forms:
−→ de�nes a primitive evaluation step, and ↦−→ evaluates expressions inside evaluation contexts.
We write ↦−→∗ for the re�exive and transitive closure of ↦−→.

Primitive evaluation rules (−→). We �rst discuss primitive evaluation rules. Rule (app) de�nes
the standard call-by-value V-reduction. Rule (index) projects out the 8th element from an array
⟨E0, . . . , E=⟩, returning E8 . Rules (return) and (perform) de�ne the standard operational semantics
of e�ect handlers. In particular, when a handler handles a computation, there are two possibilities.
If the computation returns a value, then rule (return) applies the return clause for that handler 5A
to the value. This can be used to e.g. wrap the result E to Just E . If the computation performs an
operation perform op E that calls the operation op with the argument E , then rule (perform) �nds
the innermost handler for the operation (speci�ed as op ∉ bop(�)), and applies the operation clause
5? to the parameter B , the operation argument E , as well as the resumption : . The resumption :

takes a new handler parameter B and the operation result G , and captures the handler with the new
parameter and the evaluation context between the handler and the operation call.

Traverse. Rule (traverse) captures the essence of parallel e�ect handlers in _? , adding a third
option of how the computation to be handled can interact with the handlers. Speci�cally, if the
evaluation reaches (for G : =. 4) then we would like the expression 4 to be executed in parallel

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:12 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

for each G in =. However, naively evaluating 4 could get us stuck, as the expression may perform
e�ectful operations! Instead, we allow the handler implementers to specify how a for expression
should be handled. In particular, rule (traverse) �rst �nds the innermost handler ℎ, and applies its
traverse clause 5C to (1) the array length =, (2) the new handler parameter B , (3) an array of body
continuations ℓ , and (4) and resumption : that resumes the program segment following the loop.
There are several things to be noted here. First, ℎ is the innermost handler for any operation

rather than for a speci�c operation. The di�erence here from rule (perform) can be seen from the
use of � (instead of �) when looking for handlers. One way to interpret the rule is that for is an
e�ect that can be handled by any handler – this is true in the formalism as every handler de�nes
the traverse clause. Second, the body continuation array ℓ rei�es the computation in the original
for expression, and pushes the handler inside. Thus, the corresponding operations in 4 can now
be handled by ℎ. Moreover, since the handlers in ℓ require parameters, each element of ℓ must
be called with a handler parameter as its argument. Lastly, : is the resumption that takes a new
handler parameter B and the result GB as the result of the for construct, and resumes the original
computation. This resumption closely resembles the resumption when handling an ordinary e�ect.
Depending on the implementation of 5C , the program can have di�erent behaviors.

- 5C may never call the body continuations in ℓ , in which case the for expression is discarded. In
this case it can either pass something arbitrary to : , or abort execution entirely.

- 5C may call each element of ℓ exactly once inside a for expression, e.g. for 8 : =. (ℓ .8) B . Then
the for expression will keep propagating to outer handlers. When there is no outer handler, it
means all handlers have properly handled the for expression, and thus we are able to execute
the expressions in parallel (in rule (parallel), which we will discuss shortly).

- 5C may produce multiple for expressions, potentially calling the continuations in ℓ multiple times.
Then each of these new for expressions will propagate to outer handlers.

- 5C may call the elements of ℓ individually, outside of a for expression. This will break the
independence of the computations and force any remaining e�ects to be evaluated sequentially.
(This should generally be avoided, however, if we wish to enable parallel execution.)

If a handler has no special behavior for parallelism, this default implementation may su�ce:

traverse ↦→ _=. _B. _ℓ . _:. : B (for 8 : =. (ℓ .8) B)

In this case, the traverse clause distributes the same handler parameter B to all iterations of the
original for expression, evaluates each iteration ℓ .8 under a new for expression, and passes the
handler parameter B as well as the result from the new for expression to : . More generally, handlers
may need to pre-process the arguments to each iteration, or post-process their results; we will see
more practical examples of this in §5.

Evaluation inside evaluation contexts (↦−→). We now turn to the rules that evaluate expressions
inside evaluation contexts. Rule (step) says that if an expression 4 can take a primitive evaluation
step to 4′, then the whole expression � [4] evaluates to � [4′]. Rule (parallel) is where parallelism
takes place. Speci�cally, when we have a for expression not under any handlers (recall that � is a
pure evaluation context), it means all handlers have been pushed inside the for expression, and so
we are ready to evaluate the for body in parallel! For every 8 ranging from 0 up to =, we evaluate
the expression 4 after substituting G by 8 . Here we assume some form of built-in parallelism support
for evaluating the ∀ parallelism (for example, a set of operating system threads, or the built-in
parallelism support for for in Dex).

Lastly, we remark that our design of treating for as an e�ectful operation also has implications
on program reasoning. Speci�cally, for any algebraic operation op, we expect the following equality
property: � [op E] ≡ G ← op E ; � [G] [Plotkin and Power 2003]. Generalizing the property in the

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:13

presence of handlers, we have � [op E] ≡ G ← op E ;� [G] when op ∉ bop(�). In our design, since
for needs to be handled by every handler, we have the property for for expressions only under
pure contexts, i.e., � [for G : =. 4] ≡ G ← for G : =. 4 ; � [G]. It is possible to extend our system with a
"pure for" that only allows a pure body (checked by the type system), in which case handlers would
not need to handle it, and a “pure for” can be naturally lifted outside of any evaluation context.

5 Practical Examples

Now that we have described our system, in this section we will show how we can apply our design
and implement a variety of practically interesting e�ects. We will express these examples using
a richer surface language that includes tuples, conditionals, algebraic data types, etc. While not
included in the grammar, we can de�ne a (handler ℎ B 4) construct that takes a computation 4 to
be handled and calls it under the handler as syntactic sugar, which is useful for de�ning handlers
taking a suspended (unit-taking) computation:

handler ℎ 41 42 ≜ handle ℎ 41 (42 ())

5.1 Accumulative Writer

We begin by showing again how to express the parallel accumulation e�ect in our language. We
generalize the accum example from §3.2 to work on an associative binary operation (<>) and an
identity element for that operation (essentially forming a monoid):

runAccum = _(<>). _mempty.

handler { return ↦→ _s._x. (x, s), accum ↦→ _s._x._k. k (s <> x) (),

traverse ↦→ (_n._s._l._k. pairs ← for i:n. (l.i) mempty;

(results, outs) ← unzip pairs

out ← reduce (<>) outs;

k (s <> out) results) } mempty

Here runAccum takes a binary operation (<>) and an identity element (mempty), and returns a handler,
using mempty as the initial parameter. (We omit the implementation of the helper function reduce

here, but note that it could be implemented using a parallel reduction circuit of depth $ (log=) by
forming a balanced binary tree over array elements, and using another parallel for construct to
apply (<>) at each node in parallel.)
In the case of sum, we have (<>) being (+) and mempty being 0. Using handlers to handle e�ects

allows us to easily give di�erent semantics to the same e�ect: if we de�ne (<>) as maximum (without
being a monoid anymore), we obtain a handler that accumulates only the largest result.
We remark again that parameterized handlers are included in the formalism for generality and

for convenience when writing examples, but they are not necessary for encoding the example; we
provide an unparameterized version of this handler in Appendix A.

5.2 Weak Exceptions

Our e�ect system can also express a form of exception handling, using the e�ect

exn { throw : String → () }

To account for exceptions, our handler wraps the result into the standard Either String b data type,
with two constructs Left String and Right b. Since we wish to be able to execute for iterations in
parallel, our handler for exn treats them as "weak" exceptions: an exception in one iteration of a
for does not interrupt execution in any other iterations, although it will still prevent execution of
the code after the for body. Our handler is as follows:

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:14 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

runWeakExcept =

handler { return ↦→ __._x. Right x, throw ↦→ __._err._k. Left err,

traverse ↦→ (_n.__._l._k. eithers ← for i:n. (l.i) ();

combined ← firstFailure eithers;

case combined of Left err → Left err

Right res → k () res }

If a computation completes, then the return clause wraps it inside Right; otherwise the throw

clause wraps the error inside Left. Inside traverse, we �rst evaluate the iteration continuation l,
then use a function firstFailure (not implemented here for space) to extract either the �rst Left,
or the table of values if all values were wrapped in Right. In case of some Left value, the handler
will propagate it instead of calling k; otherwise, the handler resumes with the result res.

The “weak” nature of these exceptions can be observed if we combine the handler with the
accumulative writer from the previous section:

runAccum (++) "" (__. runWeakExcept (__.

perform accum "start ";

for i:5. (i f i == 2 then (perform accum "!"; perform throw "error")

else perform accum (toString i));

perform accum " end") // (Left "error", "start 01!34")

In this example, runAccum takes as the binary operator (++), the string concatenation operator, and
as the initial parameter the empty string "". All for iterations execute their e�ects in parallel, and
then computation aborts at the end of the for expression (thus " end" will not be accumulated). The
result returned is the computation result Left "error" and the accumulated value "start 01!34".
Notice that, even though the perform throw "error" happened for 8 = 2, the e�ects from 8 = 3 and
8 = 4 are still accumulated into the �nal result because their e�ects were processed independently.

Due to the modularity of our system, we are free to combine handlers in di�erent orders. If
runWeakExcept is put before runAccum, then the result will be only Left "error".

5.3 (Pseudo) Random Number Generation

One e�ect that is particularly useful for real-world numerical computation is the generation of
(pseudo) random numbers, which we represent with the following e�ect:

random { sampleUniform : () → Int }

Suppose wewish to parallelize a program such as the following example, which computes a binomial
random variable by summing weighted coin �ips, then scales it by another random variable:

binomial_times_uniform = _n. _p.

(_, count) ← runAccum (+) 0 (__. for _:n. u ← perform sampleUniform ();

i f u < p then (perform accum 1) else ()));

v ← perform sampleUniform ();

count * v

We want each coin �ip to draw distinct random numbers, but also execute in parallel. One way
to accomplish this is using a splittable PRNG [Claessen and Pałka 2013], whose state (called a
key) can be split into arbitrarily many independent streams of random numbers; this technique is
used to e.g., implement accelerator-friendly random numbers in the machine learning framework
JAX [Google 2020]. Conveniently, this design can be directly mapped to our parallel e�ects system.
We assume the existence of two functions: splitKey, which takes a key and a natural number, and

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:15

returns a table of new keys; and sampleUniform, which takes a key and returns a random number
between 0 and 1. Given this, we can implement a simple random number e�ect as follows5:

runRandom = _seed. handler { return ↦→ _key._x. x,

sampleUniform ↦→ (_key.__._k. ⟨key1, key2⟩ ← splitKey key 2;

u ← genUniform key1;

k key2 u),

traverse ↦→ (_n._key._l._k. keys ← splitKey key (n + 1);

results ← for i:n. (l.i) (keys.i) ;

k (keys.(n+1)) results) } seed

Here the function takes an initial seed and returns a handler. We handle sampleUniform by splitting
the key, then using one result to generate the uniform and the other as the new handler parameter
to run the continuation. We handle for expressions similarly, except that we perform an (=+1)-way
split to generate independent streams of random numbers for each iteration.

An interesting observation regarding this handler is that, with this implementation of traverse,
the following two computations may yield di�erent results:

resultWithFor = runRandom shared_seed (__. for i:2. perform sampleUniform ())

resultUnrolled = runRandom shared_seed (__. u0 ← perform sampleUniform ();

u1 ← perform sampleUniform ();

⟨u0, u1⟩)

Speci�cally, assume the current key is some key. In the �rst case, the computation �rst splits key
into two keys key1 and key2, passing them to the two iterations respectively. The �rst iteration then
splits key1 into key11 and key12, and generates one number using key11. In the second case, the
computation �rst splits key into key1 and key2, generating one number using key1, and then splits
key2 to key3 and key4, and generating another number using key3. Note that the number generated
using key11 is not necessaily the same as the number generated using key1. On the other hand, if
we knew in advance that every iteration generated exactly one random number, we could have
implemented it so that they got the same numbers. But more generally, one body iteration may
generate an arbitrary amount of random numbers, and it is di�cult to predict how many random
numbers will be generated by an arbitrary user program, which would be necessary to preserve
equivalence between parallel and sequential programs in general.

As the traverse clause is user-de�ned, it should not be surprising that unrolling the for construct
could yield di�erent results. In this case, the particular keys used to generate (pseudo) random
numbers generally should not matter, since the distributions remain the same.

5.4 Nondeterminism

Our next example is the nondeterminism e�ect (also known as the list monad). Conceptually, the
amb operator takes as argument an array of values, and nondeterministically picks one. Unlike the
PRNG e�ect, however, the result of a computation in the Amb is not a single result but instead the
array of all possible results we might obtain:

runAmb (__. chars ← (for i:3. perform amb ⟨"H", "T"⟩)); reduce (++) chars)

// ⟨"HHH", "HHT", "HTH", "HTT", "THH", "THT", "TTH", "TTT"⟩

We de�ne the handler for amb as follows, which collects the results of all choices. Unlike the other
e�ect handlers we have introduced, in the amb clause this handler calls the continuation inside a

5See Appendix A for an unparameterized version of runRandom.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:16 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

parallelizable for expression, instead of calling it only once or discarding it. This means the amb

handler can introduce new parallelism opportunities into code that appears sequential.

runAmb = handler { return ↦→ __._x. ⟨x⟩,

amb ↦→ (__._options._k. n ← length options;

concatenate (for i:n. k () (options.i))),

traverse ↦→ (_n.__._l._k. results ← for i:n. (l.i) ();

productElts ← cartesianProd results;

m ← length productElts;

for i:m. k () (productElts.i)) } ()

Here, return wraps the result into a singleton array, and the amb clause calls k with all possible
options and collects the result into a �nal array. Inside the traverse clause, cartesianProd is
a function which is assumed to take a length-= array of arbitrary-length arrays and return an
arbitrary-length array of length-= arrays, such that each element of the result is formed by taking
one element from each of the = original arrays.
Again, thanks to the compositionality of our system, users are free to nest multiple e�ects. For

instance, by nesting runAmb inside runAccum, we can count samples with certain properties, e.g.

runAccum (+) 0 (__. runAmb (__.

d1 ← perform amb ⟨0,1,2,3,4,5,6,7,8,9⟩; d2 ← perform amb ⟨0,1,2,3,4,5,6,7,8,9⟩;

i f (d1 + d2 == 13) then perform accum 1 else ()))

Let us emphasize again that even though the code example looks entirely serial, it will be converted
into a parallel loop over all valid values for d1 and d2 by the amb e�ect.

5.5 Parallelizable Shared State

Finally, we present a more complex example, which shows that our system is expressive enough to
support a rudimentary form of communication between otherwise-parallel computation threads,
similar to concurrent programming constructs. Our “shared state” e�ect is de�ned via an operation
update, with type signature

sharedstate { update : (value → value) → value }

Running perform update f calls f with the current value of a shared state variable to produce a
new value, then returns the original value to the user computation. This generalizes the standard
get operation as perform update (_v. v) and the put operation as perform update (__. u); it can
also be used to modify the stored value in place (such as perform update (_v. 2 * v)). Importantly,
we require that these operations must occur in some serial order across parallel iterations of
for expressions, similar to the “compare and swap” pattern for atomic variables in concurrent
programming systems [Herlihy 1991]. If two subcomputations run perform update f and perform

update g, respectively, then either f runs before g (and thus the output of f is the input to g), or
vice versa.

We can handle the sharedstate e�ect by interleaving the updates across parallel “threads”: run
the body subexpressions of each for expression in parallel as much as possible, then run each
of the functions passed to update in sequence, and then resume the continuations for each for

subexpression in parallel. This produces a hybrid of parallel and serial execution behavior: we can
continue running most of the computations in parallel, and only use sequential computations while
running the (hopefully cheap) update functions.

As a concrete implementation of this in our calculus, we present a “round-robin” handler, where
the parallel subcomputations take turns updating the state. The unique property of this handler
compared to previous examples is that this handler responds to update events by packaging the

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:17

continuation itself into the returned value, wrapped in Left. These update events can then be
interleaved and processed recursively by the traverse handler, and �nally “unwound” by an outer
loop. (For convenience, we express this program in terms of explicit recursive call syntax, which
could be desugared using the Y combinator or a similar construction, and a recursive algebraic
datatype Rec, which ensures the recursive program is well-typed.)

// `Rec a` contains either a final `a` or a pair of (update function, continuation).

data Rec a = Rec (Either (value → value, value → Rec a) a)

runSharedState = (_s. _expr.

// interleave : Rec a → Either (value → value, value → ⟨() → Rec a⟩) ⟨a⟩

// → Either (value → value, value → ⟨() → Rec a⟩) ⟨a⟩

// where `value → value` represents an "atomic" updater function,

// `a` is the answer type of an individual for body subexpression,

// `value → Rec a` is one body subexpression continuation,

// `value → ⟨() → Rec a⟩` is an interleaved computation that runs all updates

// in order and produces a list of new body subexpression "thunks"

interleave ← (_(Rec result). _rest. case (result, rest) of

(Right b, Right bs) → Right (b:bs)

(Left (f,k), Right bs) → Left (f, _v. (__.k v):(map (_b.__.b) bs))

(Right b, Left (f,ks)) → Left (f, _v. (__.b):(ks v))

(Left (f1,k1), Left (f2,k2)) → Left ((_v.f2 (f1 v)),(_v.(__.k1 v):(k2 (f1 v)))));

// The traverse rule produces a `Rec b` from an array of `Rec a` and a continuation

// `k : ⟨a⟩ → b` by either calling the final continuation directly (if all body

// subexpressions produce `Right`), or packaging this continuation and a recursive

// traversal into `Left`.

traverse ← (_n.__._l._k.

results ← for i:n (l.i) ();

case foldr interleave (Right ⟨⟩) results of

Right all → Rec (Right (k all))

Left (f,go) → Rec (Left (f, (_v. traverse n () (go v) k))));

// root : Rec a

root ← handler { return ↦→ __._x. Right x, update ↦→ __._f._k. Left (f, k),

traverse ↦→ traverse } () expr;

// Unwrap each layer of the result (and update the shared state) until we obtain

// a `Right` value, indicating termination.

unwind ← (_s1._v. case v of Rec (Right res) → (s1, res);

Rec (Left (f, k)) → unwind (f s1) (k s1));

unwind s root)

Under this handler, a single for inside a stateful computation may transform into a sequence of for
expressions after pushing the shared state handler into it; each such transformation represents a
round of sequential state updates within the overall parallel program. This will not a�ect handlers
that were embedded within the runSharedState call, but it may change the behavior of handlers
outside it; for instance, if runSharedState is nested inside runAccum, all accum calls before the �rst
call to update in each thread will be accumulated before any accum calls performed afterward,
e�ectively interleaving them due to the synchronization e�ects.
We conclude this example by showing how to use this state e�ect to perform rudimentary

communication between otherwise-independent subcomputations. For instance, we can send a
value from the second subcomputation in a parallel for to the �rst:

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:18 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

waitUntil = _f. (v ← perform update (_x. x); i f f v then v else waitUntil f)

result = runSharedState (0,0) (__. for i:2.

i f i == 0 then ((x, y) ← waitUntil (_(x,y). x == 3); y)

else (perform update (__. (4, 7)); perform update (__. (3, 12));

perform update (__. (1, 3)); 42))

This will produce the value ((1,3), ⟨12, 42⟩); here (1,3) is the �nal state, and ⟨12, 42⟩ is the
array of values returned by the loop. In particular, the �rst element of the array is 12, because this is
the value of y when x == 3, even though this update was performed by the second subcomputation.

This handler demonstrates that, although our system is designed to enable independent parallel
execution of the body of for expressions, it does not strictly require it. In Section 8 we discuss some
ways to constrain the power of handlers if a stricter interpretation of parallelism is desired.

6 Typed Parallel E�ect Handlers

So far we have seen the untyped operational semantics of _? . In this section, we present an
explicitly typed calculus F? that extends _? with types and typed constructs. To limit clutter in
the typing rules, we present the typed calculus with unparameterized handlers in this section. As
mentioned, parameterized handlers are not fundamental to our design; we give the typed calculus
with parameterized handlers in the appendix.

To design a typed semantics, it is important to support the behavior of handlers when handling
a for construct, namely the rule (traverse) (Fig. 1). We present its variant (traverse-unp) with
unparameterized handlers below. With unparameterized handlers, the body continuation ℓ takes
unit as an argument (and thus be a unit-taking thunk), so that the handler still has control over
when the body continuations (and any e�ects contained within them) are executed.

(traverse-unp) handle ℎ � [for G : =. 4] −→ 5C = ℓ : if (traverse ↦→ 5C) ∈ ℎ
where ℓ = ⟨ℓ0, ℓ1, . . . , ℓ=−1⟩, ℓ8 = _(). handle ℎ B 4 [G := 8] ∀8 , : = _GB. handle ℎ � [GB]

According to the rule, we push the handler to be inside the for expression. However, the expression
4 that the handler applies to may have a di�erent type from that of the whole program � [for G : =. 4].
Furthermore, we see that 5C takes the array length = as an input, requiring a form of dependent
types. Therefore, as discussed in §3.3, F? has the following features:

- Each handler is associated with an answer type constructor (§3.2). A handler can be applied to
computations with any types; formally, if the answer type constructor is d , the return clause of
the handler can take any type g , and turn it into type (d g), the result of applying d to g .

- The type system includes value dependent types to support dependency on array length.

In this section, we present F? in detail, as a higher-order polymorphic lambda calculus equipped
with a row e�ect system [Hillerström and Lindley 2016], with proven semantics preservation over
_? and syntactic type soundness.

6.1 Syntax

Fig. 2 presents the syntax of F? . Inside the expressions 4 , the changes compared to _? are highlighted
in gray. Speci�cally, lambdas, for expressions, and perform are now annotated with type and
e�ect information. Expressions are extended with type applications (4 g), and a form of coercion
4 ⊲ g for converting between index types and integers, as we will see. Similarly, values are extended
with type abstractions (Λ0 : ^. E) and coercion (E ⊲ g). Type abstractions have values as bodies,
which is needed for connecting to the untyped semantics (see §6.3).

Types g include type variables 0, type constants 2 (including Int : ★), and dependent function
types (G : g1) →n g2; we write (g1 →n g2) where G ∉ fv(g2). Types further include polymorphic
types (∀0 : ^. g), type applications (g1 g2), index types (Fin =), and arrays (Fin = ⇒ g) with length

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:19

expressions 4 F E | 41 42 | 4 g | handle ℎ 4 | for G : Fin =. 4 | 41.42 | 4 ⊲ g

values E, 5 , =, B F 8 | G | _n G : g . 4 | Λ0 : ^. E | ⟨E0, . . . , E=⟩ | perform op n g | E ⊲ g
handlers ℎ F {return ↦→ 5A , op ↦→ 5? , traverse ↦→ 5C }

types g, f, d F 0 | 2 | (G : g1) →n g2 | ∀0 : ^. g | g1 g2 | Fin = | Fin = ⇒ g

e�ect rows n F 0 | ⟨⟩ | ⟨; | n⟩
kinds ^ F ★ | ^1 → ^2 | e�

type ctxs Γ F • | Γ, G : g | Γ, 0 : ^

e�ect ctxs Σ F { ;8 : { op8 : ∀0 : ^. f1 → f2 } }

Γ ⊢wf g : ^ (Kinding)

k-var

0 : ^ ∈ Γ

Γ ⊢wf 0 : ^

k-const

(2 : ^)

Γ ⊢wf 2 : ^

k-app

Γ ⊢wf g1 : ^1 → ^2 Γ ⊢wf g2 : ^1

Γ ⊢wf g1 g2 : ^2
k-arrow

Γ ⊢wf g1 : ★ Γ, G : g1 ⊢wf g2 : ★ Γ ⊢wf n : e�

Γ ⊢wf (G : g1) →n g2 : ★

k-forall

Γ, 0 : ^ ⊢wf g : ★

Γ ⊢wf ∀0 : ^. g : ★

k-fin

Γ ⊢v = : Int

Γ ⊢wf Fin = : ★

k-array

Γ ⊢wf Fin = : ★ Γ ⊢wf g : ★

Γ ⊢wf Fin = ⇒ g : ★

k-empty

Γ ⊢wf ⟨⟩ : e�

k-row

Γ ⊢wf n : e�

Γ ⊢wf ⟨; | n⟩ : e�

Fig. 2. Syntax and well-formed types of F?

=. Note that index types Fin = can depend on a value =. Combining index types and value dependent
types, we can have a valid type such as (= : Int) →n (Fin = ⇒ Int).

E�ect rows n are either a variable 0, the empty row ⟨⟩, or e�ect concatenation ⟨; | n⟩. Note how
lambdas (_nG : g . 4) and function types (G : g1) →n g2 are annotated with the e�ect information.

We employ a kind system to distinguish di�erent types and to ensure well-formedness of types.
Kinds ^ include the basic kind ★, the arrow kind ^1 → ^2, and the e�ect kind e�. The bottom
of Fig. 2 de�nes well-formedness of types. The judgment Γ ⊢wf g : ^ reads that under the typing
context Γ, the type g has kind ^. Most rules are standard. In rule k-fin, the rule uses the value
typing (⊢v), which we will discuss shortly, to check that = has type Int.
Lastly, the type context Γ maps variables to their types, and type variables to their kinds. And

the e�ect context Σ maps an e�ect label ; to its operation op which, with polymorphic variables 0,
takes an operation argument f1 and returns a result f2.

6.2 Type System

Fig. 3 presents the typing rules for F? . There are three judgments that type-check values (Γ ⊢v E : g),
expressions (Γ ⊢ 4 : g | n), and handlers (Γ ⊢h ℎ : ; | n | d), respectively.
The judgment Γ ⊢v E : g reads that under the type context Γ, the value E has type g . Rule t-lit

type-checks integers. Since F? is explicitly typed, an explicit coercion is needed to convert between
index types and integers. Rule t-fin types literal 8 with Fin = only if we know that 0 ≤ 8 < =.
In rule t-abs, the function type keeps track of the e�ect that can be raised by the body when
the function is applied. Rule t-array type-checks an array of length =, returning the array type
Fin = ⇒ g . Lastly, rule t-perform type-checks perform. The rule �rst gets from the e�ect context
the type of op. It then type-checks that the type arguments g have the expected kinds ^ . The result
type is a function from f1 to f2 with the type variables substituted accordingly. Moreover, perform
carries the e�ect context n , and in the result type the rule adds the label ; to the e�ect.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:20 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

Γ ⊢v E : g (Typing values)

t-var

G : g ∈ Γ

Γ ⊢v G : g

t-lit

Γ ⊢v 8 : Int

t-fin

0 ≤ 8 < =

Γ ⊢v (8 ⊲ Fin =) : Fin =

t-abs

Γ ⊢wf g1 : ★ Γ, G : g1 ⊢ 4 : g2 | n

Γ ⊢v (_
nG : g1. 4) : (G : g1) →n g2

t-tabs

Γ, 0 : ^ ⊢v E : g

Γ ⊢v (Λ0 : ^. E) : ∀0 : ^. g

t-array

Γ ⊢v E8 : g

Γ ⊢v ⟨E0, . . . , E=⟩ : Fin = ⇒ g
t-perform

op : ∀0 : ^. f1 → f2 ∈ Σ(;) Γ ⊢wf g : ^

Γ ⊢v perform op n g : (f1 →⟨; | n⟩ f2) [0 := g]

Γ ⊢ 4 : g | n (Typing expressions)

t-val

Γ ⊢v E : g

Γ ⊢ E : g | n

t-int

Γ ⊢ 4 : Fin = | n

Γ ⊢ (4 ⊲ Int) : Int | n

t-tapp

Γ ⊢ 4 : ∀0 : ^. f | n Γ ⊢wf g : ^

Γ ⊢ 4 g : f [0 := g] | n
t-app1

Γ ⊢ 41 : g1 → n g2 | n Γ ⊢ 42 : g1 | n

Γ ⊢ 41 42 : g2 | n

t-app2

Γ ⊢ 4 : (G : g1) → n g2 | n Γ ⊢v E : g1

Γ ⊢ 4 E : g2 [G := E] | n
t-for

Γ ⊢wf Fin = : ★ Γ, G : Fin = ⊢ 4 : g | n

Γ ⊢ (for G : Fin =. 4) : (Fin = ⇒ g) | n

t-prj

Γ ⊢ 41 : Fin = ⇒ g | n Γ ⊢ 42 : Fin = | n

Γ ⊢ 41 .42 : g | n
t-handle

Γ ⊢h ℎ : ; | n | d Γ ⊢ 4 : f | ⟨; | n⟩

Γ ⊢ handle ℎ 4 : (d f) | n

Γ ⊢h ℎ : ; | n | d (Typing handlers)

t-handler

op : ∀0 : ^. f1 → f2 ∈ Σ(;) Γ ⊢v 5A : ∀0 : ★. 0 →n (d 0) Γ ⊢wf d : ★→ ★

Γ ⊢v 5? : ∀(0 : ^). ∀(1 : ★). f1 → n (f2 →n (d 1)) →n (d 1)
Γ ⊢v 5C : ∀(0 : ★) (1 : ★). (= : Int) →n (Fin = ⇒ (() →n (d 0)))

→n ((Fin = ⇒ 0) →n (d 1)) →n (d 1)

Γ ⊢h {return ↦→ 5A , op ↦→ 5? , traverse ↦→ 5C } : ; | n | d

Fig. 3. Typing rules of F?

We now move to typing expressions. The judgment Γ ⊢ 4 : g | n reads that under the type context
Γ, the expression 4 has type g and may produce e�ects in n . Rule t-val uses ⊢v to type-check values,
which are allowed to have any e�ect annotations. Rule t-int converts from an index into an integer.

There are two rules concerning applications. Rule t-app1 types 41 42, where 42 is an arbitrary
expression, in which case the type of 41 must be g1 →n g2; namely, the argument cannot appear in
types. On the other hand, rule t-app2 types 4 E , where the argument is a value. In such case, 41 can
have type (G : g1) →n g2. The rule then checks that E has type g1, and the result type is g2 [G := E].
Rule t-for type-checks for expressions. Note that (G : Fin =) is added to the context where

checking 4 . The result type is an array Fin = ⇒ g . Rule t-prj projects from an array. The rule
checks that the index 42 has type Fin =, ensuring that there is no out-of-bounds exception.
Rule t-handle takes care of handling. The rule uses ⊢h to get information about the handler

ℎ; more details will be explained together with rule t-handler below. The computation 4 to be
handled has type f , and may produce e�ects in ⟨; | n⟩. The result type is then d f , with e�ect n .

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:21

Lastly, the judgment Γ ⊢h ℎ : ; | n | d reads that under the type context Γ, the handler handles
label ; , with e�ect context n , and, most interestingly, has answer type constructor d . The type
constructor d is unique to our calculus, and is the key to type-check the traverse clause inside the
handler. In this rule, we �rst get the type of the operation from the context Σ(;). Then we check
three clauses with value typing. (1) The return clause 5A takes any type 0 and turns it into type
d 0. (2) The operation clause 5? takes the operation argument f1, and a resumption that waits for
the operation result f2, and returns the result d 1. Here again the operation is polymorphic over
the result 1, but we know from the result clause that the result must have type constructor d . (3)
Finally, the traverse clause 5C takes the length of the array = (using the dependent function type),
the body continuation array Fin = ⇒ (() →n (d 0)), and the resumption that waits for the result
of the for expression Fin = ⇒ 0, and produces the result in d 1.

6.3 Operational Semantics and Semantics Preservation

Since the expressions are now explicitly typed, we can update the operational semantics (Fig. 1) to
be explicitly typed accordingly. The updates are mostly standard and, for space reasons, we put the
typed operational semantics in the appendix. We use −↠ and ↦−→→ (instead of −→ and ↦−→) for the
corresponding evaluation rules in F? .

We can prove that the typed operational semantics preserves the semantics of _? . To this end, we
�rst de�ne an erasure function ⟦·⟧ that erases all type and e�ect information in the input. Below
we present a few interesting cases; the complete de�nition is provided in the appendix:

⟦for G : Fin =. 4⟧ = for G : =. ⟦4⟧ ⟦4 ⊲ g⟧ = ⟦4⟧ ⟦Λ0 : ^. E⟧ = ⟦E⟧ ⟦4 g⟧ = ⟦4⟧

First, notice that erasing a for expression with index type Fin = only erases the Fin, but not the
number = — as we have seen in rule (parallel), the index = plays an role in the operational semantics.
Type information, including in coercion, type abstractions, and type applications, is all erased.

Now it also becomes more evident why type abstractions Λ0 : ^. E have a value body in F? ,
which is needed to ensure semantics preservation over the untyped semantics [Xie et al. 2020].
Speci�cally, if we allow type abstractions over arbitrary expressions, then consider the expression
(_n 5 : f. 4) (Λ0 : ^. perform op n E), where we assume an operation op, and omit some annotations
for clarity. In F? , the argument (Λ0 : ^. perform op n E) is a value, and thus the operation is not
performed until 5 is applied to a type argument inside the expression 4 . On the other hand, with
erasure, we have ⟦Λ0 : ^. perform op n E⟧ = perform op ⟦E⟧, which is not a value, and the
operation will get performed immediately. By restricting type abstractions to have a value body,
we rule out this example. Such a restriction is reminiscent of the value restriction [Wright 1995]. In
practice, it is often the case that we have a function under a type abstraction, so the restriction is of
less practical relevance. More formally, we can prove:

Lemma 6.1 (Type erasure of values). If 4 is a value in F? , then ⟦4⟧ is a value in _? .

We are then ready to prove that the typed semantics preserves of F? the untyped semantics of _? :

Theorem 6.2 (Semantics preservation). If 41 ↦−→→ 42, then either ⟦41⟧ ↦−→ ⟦42⟧, or ⟦41⟧ = ⟦42⟧.

6.4 Type Soundness

We prove that F? enjoys syntactic type soundness. Type preservation is straightforward.

Theorem 6.3 (Type Preservation). Given • ⊢ 4 : g | n , and 4 −→ 4′, then • ⊢ 4′ : g | n .

Next, we establish progress. The following lemma establishes progress with e�ects. When an
expression has e�ects, we must consider the case where the expression gets stuck because of
unhandled operations inside: (1) a pure context with an e�ectful for expression and thus (the typed
version of) rule (parallel) does not apply; or (2) a context without a corresponding handler.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:22 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

Lemma 6.4 (Progress with e�ects). If • ⊢ 4 : g | n , then either 4 is a value, or there exists 4′ such

that 4 ↦−→ 4′, or 4 = � [for 8 : Fin =. 4], or 4 = � [perform op n′ g E] such that op ∉ bop(�).

When expressions are pure, both cases (1) and (2) are impossible, and thus we have:

Theorem 6.5 (Progress). If • ⊢ 4 : g | ⟨⟩, then either 4 is a value, or there exists 4′ such that 4 ↦−→ 4′.

7 Haskell Implementation

We now show the practicality of our design by providing an implementation it as a Haskell library.
Although we build our implementation on top of Haskell’s own interpreter and thus inherit its
execution semantics and type system, our library exhibits the same overall behavior as _? , and
many aspects of F? have Haskell equivalents. We focus here on the key features of our library.

7.1 Representing E�ects as Algebraic Data Types

We represent e�ects using generalized algebraic data types (GADTs) parameterized with their
return value, following the approach of Kiselyov and Ishii [2015]. Example e�ect de�nitions include:

data Reader v r where Ask :: Reader v v

data Except e r where Throw :: forall r. e -> Except e r

data Amb r where Choose :: forall r. [r] -> Amb r

Here Ask :: Reader v v means that the Ask operation is part of the Reader v e�ect, and returns a
result of type v to the continuation. Choose :: [r] -> Amb r means that the Choose operation is
in the Amb e�ect, takes a list [r] of arbitrary type, and returns a single element of that type. (This
means that we identify the e�ect kind e� with the kind ★→ ★ of partially-applied GADTs.)

E�ectful computations occur within a monad PE effs a, where effs is the e�ect row and a is the
result type. The PEmonad is based on the “free-er” extensible e�ect monad Eff of Kiselyov and Ishii
[2015], which we adapt to distinguish between explicit e�ects (represented as Impure (Effect

eff) cont) and parallel traversals (represented as Impure (Traverse body) cont). Individual e�ects
can be performed in an e�ectful context using the function

perform :: Member eff effs => eff r -> PE effs r

Here Member eff effs is a typeclass constraint that ensures the Haskell compiler can identify the
position of eff within the e�ect row for effs and thus relay it to the right handler.

7.2 Defining and Using E�ect Handlers

Users implement new handlers by de�ning instances of a parallel handler typeclass, which includes
an implementation for each handler clause as well as declarations of the types of the handled e�ect,
existing e�ects, handler parameter, and answer type constructor:

class ParallelizableHandler h where

type Effs h :: [Effect]

type Op h :: Effect

type Param h :: Type

type Answer h :: Type -> Type

handleReturn :: h -> Param h -> a -> PE (Effs h) (Answer h a)

handlePerform :: h -> Param h -> Op h a ->

(Param h -> a -> PE (Effs h) (Answer h b)) ->

PE (Effs h) (Answer h b)

handleTraverseRank2 :: Rank2.Traversable struct =>

h -> Param h -> struct (HandledCont h) ->

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:23

(Param h -> struct Identity -> PE (Effs h) (Answer h a)) ->

PE (Effs h) (Answer h a)

Here Effs h is the row of e�ects the handler itself can use, Op h is the e�ect the handler can handle,
Param h is the type of the (optional) handler parameter (which can be () for handlers without
parameters), and �nally Answer h is the answer type constructor (§3.2), which gives the handler
partial control over the handled results.
We use the Rank2.Traversable typeclass from the rank2classes package [Blažević and Lé-

garé 2017] to ensure that handlers preserves the length and types of their input array. The
Rank2.Traversable struct constraint implies that a value of type struct p is (isomorphic to) a
heterogenous collection of values (p a1, p a2, ..., p an) for some types a1, a2, ..., an. The
handler implementation can interact with such a structure using the following heterogenously-
typed generalizations of the ordinary Functor, Foldable, and Traversable typeclass methods:

class Rank2.Functor s where

-- If `f` maps `p a` to `q a` for all `a`, `(f Rank2.<$>)` maps a heterogenous

-- collection of `p a`, `p b`, ... to another collection of `q a`, `q b`, ...

Rank2.(<$>) :: (forall a. p a -> q a) -> s p -> s q

class Rank2.Foldable s where

-- If `f` maps `p a` to a monoid `m` for all `a`, `(Rank2.foldMap f)` aggregates

-- info across a heterogenous collection of `p a`, `p b`, ... into a single `m`.

Rank2.foldMap :: Monoid m => (forall a. p a -> m) -> s p -> m

class (Rank2.Functor s, Rank2.Foldable s) => Rank2.Traversable s where

-- If `f` maps `p a` to `q a` with effects in an applicative `m`,

-- `(Rank2.traverse f)` maps a heterogenous collection of `p a`, `p b`, ... to a

-- heterogenous collection of `q a`, `q b`, ... with effects in `m`.

Rank2.traverse :: Applicative m => (forall b. p a -> m (q a)) -> s p -> m (s q)

The type HandledCont h a is a newtype wrapper around Param h -> PE (Effs h) (Answer h a),
used to embed handled iteration continuations in the rank-2 structure. A value of type struct

(HandledCont h) is conceptually a collection of values of type Param h -> PE (Effs h) (Answer

h a) where a may di�er between elements of the collection.
As a convenience feature, we allow handler implementers to avoid implementing their handler

directly in terms of the Rank-2 typeclass methods, and instead implement the simpler signature

handleTraverseList :: h -> Param h -> [Param h -> PE effs (Answer h a)] ->

(Param h -> [a] -> PE (Effs h) (Answer h b)) ->

PE (Effs h) (Answer h b)

in which case the length and types are checked dynamically using runtime assertions. A handler
de�ned via either method can then be used to handle e�ects using the function

handle :: ParallelizableHandler h =>

h -> Arg h -> PE (Op h : Effs h) r -> PE (Effs h) (Answer h r)

Similar to the corresponding construct in _? , handle takes a handler, an argument, and an e�ectful
computation, and evaluates to a computation with that e�ect handled (represented in the type
system by removing that e�ect from the e�ect row).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:24 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

7.3 Expressing Parallel Computations

We adapt the parallel for i:n e expression into a Haskell function forP [0..n-1] (\i -> e), with
type forP :: Traversable t => t a -> (a -> PE effs b) -> PE effs (t b). This performs a par-
allel e�ectful map over the structure t a, in contrast to the monadic version forM with the same
signature provided by the Haskell standard library, and has the same behavior as for in _? .

As an extension, and motivated by the design considerations in §3.4 we additionally allow users
to directly map over heterogeneous collections using the method

rank2TraverseP :: Rank2.Traversable t =>

(forall a. p a -> PE effs (q a)) -> t p -> PE effs (t q)

which can be applied to any collection type as long as it is an instance of the Rank2.Traversable

typeclass. A particularly interesting and relevant heterogeneous collection is the free applicative
functor of Capriotti and Kaposi [2014], which at its simplest takes the form

data FreeAp p a where

Pure :: a -> FreeAp p a

Ap :: FreeAp p (b -> a) -> p b -> FreeAp p a

De�ning the type alias Indep effs a = FreeAp (PE effs) a, each value of type Indep effs a con-
sists of a heterogeneously-typed list of independent e�ectful subcomputations (each of type PE

effs b for some b and wrapped in the constructor Ap), coupled with a single pure function which

combines their results (wrapped in Pure).6 We provide a lifting function indep :: PE effs a ->

Indep effs a that embeds a single e�ectful computation as a length-one list, and allow users to
combine multiple such expressions using Haskell’s <*> and add postprocessing logic using <$>,
making it possible to build full parallel programs. For instance, a program that collects two results
into a tuple could be written as (,) <$> indep (perform ActionA) <*> indep (perform ActionB).
Importantly, this does not actually run or even combine the computations, and instead simply
holds them in a list inside FreeAp. The computations must be explicitly invoked using the function
runIndep :: Indep effs a -> PE effs a, which evaluates all stored e�ectful subexpressions in
parallel under a single call to rank2TraverseP.
Remarkably, our implementation of runIndep can be implemented using rank2TraverseP alone

without any knowledge of the internals of our system. This means we get applicative-style paral-
lelism “for free”: we can directly combine our handlers with Haskell’s existing syntax and library
support for applicative functors without making any changes to the core semantics. For instance,
using the QualifiedDo and ApplicativeDo extensions [Marlow et al. 2016], we can have GHC auto-
matically parallelize code written in do-notation, so that the following all have the same behavior:

foo = do

[va, vb] <- forP [0,1] $ \i ->

if i==0 then perform ActionA

else perform ActionB

vc <- perform (ActionC va vb)

pure (va, vb, vc)

foo = do

(va, vb) <- runIndep $ do

va <- indep $ perform ActionA

vb <- indep $ perform ActionB

pure (va, vb)

vc <- perform (ActionC va vb)

pure (va, vb, vc)

foo = AutoParallel.do

va <- perform ActionA

vb <- perform ActionB

vc <- perform (ActionC va vb)

pure (va, vb, vc)

We note that the operator (<*>) for Indep effs a is not the same as the operator (<*>) for
PE effs a; the former runs operations in parallel (and is handled by our traverse clause) whereas
Haskell’s monad/applicative laws require the latter to run them sequentially using the monadic bind

6Since our system is agnostic to the actual data representation of FreeAp as long as it can be traversed, in practice we can

use an equivalent but asymptotically more e�cient representation due to Menendez [2013].

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:25

handle

RunAccum

""

handle
 Perform
""

Tell "A"

cont.

"A"

()

handle
 Traverse
"A"

for
0

1

for
0

1

sub-
 handle
""

sub-
 handle
""

handle
 Perform
""

Tell "B"

cont.

"B"

()

handle
 Return
"B"

subresult:

("B", ⟪?⟫)

cont.

"ABCD"

0
join

1

0
join

1

handle
 Perform
""

Tell "C"

cont.

"C"

()

handle
 Perform
"C"

Tell "D"

cont.

"CD"

()

handle
 Return
"CD"

subresult:

("CD", ⟪?⟫)

handle
 Perform
"ABCD"

Tell "E"

cont.

"ABCDE"

()

handle
 Return
"ABCDE"

result:

("ABCDE",
 ⟪?⟫)

Fig. 4. Graph of dependencies generated by our tracing subsystem for a program using our runAccum

handler: do perform (Tell "A"); forP [0,1] (\i -> if i==0 then perform (Tell "B") else

(do perform (Tell "C"); perform (Tell "D"))); perform (Tell "E"). Observe that "B" is

accumulated separately from "C" and "D" (visible as the parameter of each handleReturn), and then

combined a�erward.

(>>=). Indeed, Indep effs a is not a monad at all, and thus the e�ectful subexpressions of Indep
effs a must be independent by construction, which is the key feature enabling parallelization.

7.4 Pure and Concurrent Backends

We provide two execution strategies for e�ectful computations in our library. The �rst, runPure ::

PE '[] r -> r, runs top-level paralellizable expressions using an ordinary map. When the Haskell
program is compiled using the -threaded �ag, this may result in parallel execution, but this
is not guaranteed. The second, runConcurrentIO :: PE '[IO] r -> IO r, runs them by explicitly
forking parallel threads using Haskell’s concurrency primitives [Peyton Jones et al. 1996], yielding
a computation in the IO monad. In general, these execution strategies should always produce the
same result for pure programs.
Additionally, however, our runConcurrentIO handler explicitly embeds the IO monad into the

e�ect row, making it possible for the user code to perform arbitrary IO actions, and, more impor-
tantly, for handler code to perform IO actions as part of handling the e�ects. This makes it possible
to construct alternative implementations for some handlers that can take advantage of Haskell’s
concurrent IO primitives. For instance, we can provide a handler runSharedIO for the SharedState

e�ect which uses the native IO-based MVar synchronization mechanism to mediate access to the
shared state in an opportunistic (and nondeterministic) way, instead of using the deterministic
round-robin strategy discussed in §5.5.

7.5 Visualizing Dependencies Using Runtime Tracing

To help illustrate the behavior of our design, we augment the Haskell implementation with a
runtime tracing subsystem, which transforms an e�ectful computation by intercepting all e�ects,
forP calls, handlers, and continuations, and adding additional metadata to allow reconstructing a
graph of their sequential dependencies. This allows us to automatically construct visualizations of
each of the example e�ects described in §5. Figure 4 shows one example for a program using our
Accum e�ect.

8 Discussion

In this section, we discuss potential extensions and design variants of our design.

8.1 Pairwise Applicative-Style Parallelization

Our calculus _? focuses on =-ary parallelism expressed using for 8 : = expressions. As we have
seen in §3.4 and §7.3, it is possible to extend our system to handle heterogeneous collections, but
this is currently not directly re�ected in our typed semantics F? because all elements of arrays are
assumed to have the same type. An alternative design for our system would be to directly express
parallelism in the style of the applicative <*>. Instead of for expressions and traverse clauses, we
could add 41 ⃝★ 42 expressions and app clauses, with the semantics and handler type given by

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:26 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

(app) handle ℎ B � [41 ⃝★ 42] −→ 50 B :1 :2 :3 if (app ↦→ 50) ∈ ℎ
where :1 = _B. handle ℎ B 41, :2 = _B. handle ℎ B 42, :3 = _B. _G . handle ℎ B � [G]

41 ↦−→ E1, 42 ↦−→ E2

� [41 ⃝★ 42] ↦−→ � [E1 E2]
(parallel′) 50 : ∀(0 : ★) (1 : ★) (2 : ★).

g →n (g →n (d (0 →n 1))) →n (g →n (d 0))
→n (g →n 1 →n (d 2)) →n (d 2)

Such a clause would resemble a hybrid of <*> in an applicative functor and the ordinary op clause
for an e�ect handler. The advantage of this formulation is that it allows one to directly express
parallelism across computations of di�erent types in the semantics. The primary disadvantage is
that handlers would be restricted to combining pairs of e�ectful expressions in isolation, in the
order they appear in the program, and could not make use of potentially-more-e�cient =-way
splits or reductions. More complex variants may also be possible, e.g. incorporating some version
of free applicative functors into _? to support heterogeneous =-ary parallelism.

8.2 Immediately-Invoked Body Continuations

Our traverse clause currently allows handlers to call the elements of the body continuation array
more than once, or to call them outside of a for expression. However, all of our example handlers
call each body continuation exactly once inside a for expression. Thus, an alternative design would
be to always translate the for expression this manner, and then pass the result to the traverse
clause. For unparameterized handlers, such a design leads to the following rule for traverse:

(traverse) handle ℎ � [for G : =. 4] −→ 5C = ℓ : if (traverse ↦→ 5C) ∈ ℎ
where ℓ = for G : =. handle ℎ 4 , : = _GB. handle ℎ � [GB]

A similar rule could be constructed for parameterized handlers, by having the user specify how
to split the handler parameter s across the iterations. One interpretation of such a rule is that all
handlers will be pushed inside the for expression, since ℓ gets immediately handled by the next
handler. The handler ℎ then de�nes how to process the result from ℓ and what gets passed to the
resumption : ; for example, runAccum (§5.1) reduces the accumulated results, while runWeakExcept

(§5.2) may or may not call : depending on the result from ℓ . This new rule could be useful when
the system wants to ensure that each parallel computation always runs once.

8.3 Restricting the Answer Type Constructor

Under our current system, handlers are allowed to directly include a continuation as part of their
result, producing an answer type containing a function type. This can allow handlers to rewrite
the structure of programs in powerful ways. For instance, our shared state e�ect (§5.5) uses this
to introduce synchronization points that enable communication between otherwise-independent
“threads”. This can be useful, but it can also lead to potentially surprising changes in the behavior
of user programs (especially in the presence of other e�ects), and may impede program analysis.

It may be desirable to limit this ability in order to provide stronger guarantees about the behavior
of parallel computations. One way would be to forbid the answer type constructor from including
function types, e�ectively making functions second-class in the e�ect system; this would ensure
that the continuations cannot escape from handlers. This kind of limitation has been explored in
Dex, where e�ects are forbidden from carrying function types to enable ahead-of-time compilation.

9 Related Work

Algebraic e�ect handlers. Algebraic e�ects and handlers have been studied extensively; for most
recent development, see e.g. Ghica et al. [2022] for a C++ e�ect handlers library, Phipps-Costin et al.
[2023] for an e�ect handlers based design for WebAssembly, and Tang et al. [2024] for combining

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:27

e�ect handlers and linear types. E�ect handlers have been implemented for OCaml to support
concurrency [Dolan et al. 2018; Sivaramakrishnan et al. 2021].
More related to our work, Lindley [2014] and Pieters et al. [2020] identi�ed applicative com-

putations, a limited subset of monadic computations that can be handled by applicative handlers.
In applicative computations, there cannot be dynamic data �ow or control �ow between com-
putations. As such, applicative computations can naturally be parallelized. On the other hand,
using an applicative handler requires restricting the expressivity of user code. In contrast, our
design allows both dynamic data- and control-�ow inside for. We use this expressivity throughout
the examples (§5). As an example, the program binomial_times_uniform (§5.3) uses the result of
(perform sampleUniform ()) to determine whether to run (perform accum 1). This work is the
�rst to study the combination of e�ect handlers and parallel (monadic) computations.

Higher-order e�ect handlers. We essentially interpreted for as an e�ect to be handled by a handler.
Such a design corresponds to a form of higher-order e�ects, where the argument to an e�ect
operation is a function (in our case, the body of the for expression). Higher-order e�ects have
been used in the context of scoped e�ects [Piróg et al. 2018; Wu et al. 2014; Yang et al. 2022] which
delimit the scope of an e�ect, as well as latent e�ects [van den Berg et al. 2021] that defer parts of
an e�ectful program. This work provides another kind of higher-order e�ects that serve a di�erent
purpose: they are useful for modelling parallel computations.

Parallelism with monads and applicative functors. For Haskell, Scholz [1995] describes a “con-
currency monad” with threading primitives, and Claessen [1999] introduces a variant with a
continuation-passing Fork operator. These works target an explicitly-concurrent programming
style, where user code must launch threads and collect results. Marlow et al. [2014] show that
applicative functors can be used to automatically parallelize data-access programs in Haskell, by
taking advantage of the independence of (<*>) for a Fetch monad that enables data access. Mar-
low et al. [2016] further implement the ApplicativeDo extension into the GHC compiler, which
rewrites operators in terms of the applicative combinator <*>, enabling parallelism opportunities.

10 Conclusion

In summary, we have presented a design for parallel e�ect handlers, where paralleliable for

expressions are handled by traverse clauses in handlers, and non-e�ectful for expressions can be
evaluated in parallel. We have also shown how a number of interesting handlers can be implemented
in our system. Our design is type-safe and can be easily combined with the existing support for
parallelism and e�ect handling in Haskell, and we are optimistic that our work can provide a
foundation for designing new parallel algebraic e�ect handling systems.

As future work, we are interested in studying more properties of our design. Speci�cally, are there
laws that we should expect all “reasonable” parallel e�ect handlers to satisfy? A strong restriction
would be to require parallel programs to always yield the same results as the corresponding unrolled
programs, but we have already seen that combinations of otherwise-benign e�ects (such as accum
and exc) can yield di�erent results under parallelism, and our PRNG handler also produces di�erent
samples between parallel and unrolled programs. It would be interesting to explore whether there
are weaker restrictions that make the behavior of parallel programs more predictable without
unnecessarily compromising the expressive power of the handlers. Moreover, we are interested in
developing more examples where parallel e�ect handlers can be useful.

Acknowledgments

We thank the anonymous reviewers for helpful comments. Ningning Xie is partially funded by the
Natural Sciences and Engineering Research Council of Canada.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:28 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

A Unparameterized Variants of Example Handlers

Our examples in the main paper use parameterized handlers out of convenience, but they are not
necessary. For instance, below we present an equivalent unparameterized version of the accum

handler:

runAccum = _(<>). _mempty.

handler { return ↦→ _x. (x, mempty), accum ↦→ _x._k. (v, s) ← k (); (v, x <> s),

traverse ↦→ (_n._l._k. pairs ← for i:n. (l.i) ();

(results, outs) ← unzip pairs;

out ← reduce (<>) outs;

(res, out2) ← k results;

(res, out <> out2)) } ()

We also we present the handler for PRNG as an unparameterized handler:

runRandom = _seed. _f.

handle {

return ↦→ _x. (_key. x),

sampleUniform ↦→ (__._k. _key.

⟨key1, key2⟩ ← splitKey key 2;

u ← genUniform key1;

k () u key2),

traverse ↦→ (_n._l._k. _key.

keys ← splitKey key (n + 1);

results ← for i:n. (l.i () keys.i);

k () results key2)

} () (f ()) seed

B Parameterized Typed Parallel E�ect Handlers

expressions 4 F E | 41 42 | 4 g | handle ℎ 41 42 | for G : Fin =. 4 | 41 .42 | 4 ⊲ g

Γ ⊢ 4 : g | n (Typing parameterized handler expressions)

t-handle

Γ ⊢h ℎ : ; | g | n | d Γ ⊢ 41 : g | n Γ ⊢ 42 : f | ⟨; | n⟩

Γ ⊢ handle ℎ 41 42 : (d f) | n

Γ ⊢h ℎ : ; | g | n | d (Typing parameterized handlers)

t-handler

op : ∀0 : ^. f1 → f2 ∈ Σ(;) Γ ⊢v 5A : ∀0 : ★. g →n 0 →n (d 0) Γ ⊢wf d : ★→ ★

Γ ⊢v 5? : ∀(0 : ^). ∀(1 : ★). g →n f1 → n (g →n f2 →n (d 1)) →n (d 1)
Γ ⊢v 5C : ∀(0 : ★) (1 : ★). (= : Int) →n g →n (Fin = ⇒ (g →n (d 0)))

→n (g →n (Fin = ⇒ 0) →n (d 1)) →n (d 1)

Γ ⊢h {return ↦→ 5A , op ↦→ 5? , traverse ↦→ 5C } : ; | g | n | d

C Typed Operational Semantics for Parameterized Handlers

We extend the untyped operation semantics of _? to be fully type annotated:

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:29

(app) (_nG : g . 4) E −↠ 4 [G := E]
(tapp) (Λ0 : ^. E) g −↠ E [0 := g]
(index) ⟨E0, . . . , E=−1⟩.8 −↠ E8
(return) handle ℎ B E −↠ 5A f B E

if (return ↦→ 5A) ∈ ℎ ∧ • ⊢v E : f

(perform) handle ℎ B � [perform op n0 g E] −↠ 5? g f B E :

if op ∉ bop(�) ∧ (op ↦→ 5?) ∈ ℎ
where : = _nB : g . _nG : f2 [0 := g] . handle ℎ B � [G]
⊢ � [perform op n g E] : f | ⟨; | n⟩
⊢h ℎ : ; | g | d | n
op : ∀0 : ^. f1 → f2 ∈ Σ(;)

(traverse) handle ℎ B � [for G : Fin =. 4] −↠ 5C f1 f2 = B ℓ :

if (traverse ↦→ 5C) ∈ ℎ
where ℓ = ⟨ℓ1, ℓ2, . . . , ℓ=⟩

ℓ8 = _n (B : g). handle ℎ B 4 [G := 8 ⊲ Fin =]
: = _n (B : g). _n (GB : Fin = ⇒ f1). handle ℎ B � [GB]
G : Fin = ⊢ 4 : f1 | n
• ⊢ � [for G : =. 4] : f2 | n

4 −↠ 4′

� [4] ↦−→→ � [4′]
(step)

∀ 0 ≤ 8 < =. 4 [G := 8 ⊲ Fin =] ↦−→→ E8

� [for G : Fin =. 4] ↦−→→ � [⟨E0, . . . , E=−1⟩]
(parallel)

D Erasure
⟦41 42⟧ = ⟦41⟧ ⟦42⟧
⟦4 g⟧ = ⟦4⟧

⟦handle ℎ 41 42⟧ = handle ⟦ℎ⟧ ⟦41⟧ ⟦42⟧
⟦for G : Fin =. 4⟧ = for G : =. ⟦4⟧

⟦41.42⟧ = ⟦41⟧.⟦42⟧
⟦4 ⊲ g⟧ = ⟦4⟧
⟦8⟧ = 8

⟦G⟧ = G

⟦_nG : g . 4⟧ = _G. ⟦4⟧
⟦Λ0 : ^. E⟧ = ⟦E⟧

⟦⟨E0, . . . , E=⟩⟧ = ⟨⟦E0⟧, . . . , ⟦E=⟧⟩
⟦perform op n g⟧ = perform op

⟦{return ↦→ 5A , op ↦→ 5? , traverse ↦→ 5C }⟧ = {return ↦→ ⟦5A⟧, op ↦→ ⟦5?⟧, traverse ↦→ ⟦5C⟧}

Lemma 6.1 (Type erasure of values). If 4 is a value in F? , then ⟦4⟧ is a value in _? .

Proof. By a straightforward induction. Note that ⟦Λ0 : ^. E⟧ = ⟦E⟧ is a value by I.H.. □

Lemma D.1. If 41 −↠ 42, then either ⟦41⟧ −→ ⟦42⟧, or ⟦41⟧ = ⟦42⟧.

Proof. By a straightforward induction. We talk about some interesting cases.

• (app). With Lemma 6.1 we have ⟦E⟧ being a value. The goal follows from the substitution property
that ⟦4 [G := E]⟧ = ⟦4⟧[G := ⟦E⟧].
• (tapp). (Λ0 : ^.E) g −↠ E [0 := g]. We have ⟦(Λ0 : ^.E) g⟧ = ⟦E⟧ = ⟦E [0 := g]⟧.

□

Theorem 6.2 (Semantics preservation). If 41 ↦−→→ 42, then either ⟦41⟧ ↦−→ ⟦42⟧, or ⟦41⟧ = ⟦42⟧.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

262:30 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

Proof. By induction on the derivation. The goal follows straightforwardly from I.H. and LemmaD.1.
□

E Type Soundness

Lemma 6.4 (Progress with e�ects). If • ⊢ 4 : g | n , then either 4 is a value, or there exists 4′ such

that 4 ↦−→ 4′, or 4 = � [for 8 : Fin =. 4], or 4 = � [perform op n′ g E] such that op ∉ bop(�).

Proof. By induction on the size of the expression 4 . Most cases follow directly from the induction
hypothesis. We discuss below the interesting cases.

• rule t-val. In this case 4 is a value.
• rule t-table. In this case 4 is a value.
• rule t-prjwhere 41 .42. If 41 or 42 is not a value, then the case follows from the induction hypothesis
(and (step)). Otherwise we have E1 .E2. According to typing, it must be E1 = ⟨E ′0, . . . , E

′
=−1⟩ and

E2 = 8 ⊲ Fin = for some = where 8 < =. Thus E1 .E2 ↦−→ E ′8 according to (index) and (step).
• rule t-for. In this case the third goal is satis�ed.
• rule t-perform. In this case the last goal is satis�ed.
• rule t-handle where 4 = handle ℎ 41 42.
According to induction hypothesis, we know either 41 is a value, or it reduces, or it contains a
for, or it contains an unhandled perform.
– In the case it reduces, the whole expression reduces.
– In the case it contains a for, the whole expression contains a for.
– In the case it contains an unhandled perform, the whole expression contains an unhandled
perform.

– If 41 is a value, then we discuss 42. According to induction hypothesis, either 42 is a value, or it
reduces, or it contains a for, or it contains an unhandled perform.
∗ If 42 is a value, then the whole expression reduces by (return) and (step).
∗ If 42 reduces, then it takes either (step) or (parallel). If it takes (step), then the whole
expression reduces by (step). If it takes (parallel), then the whole expression reduces by
(step) and (traverse).
∗ If 42 contains a for, then the whole expression reduces by (step) and (traverse).
∗ In the last case, 42 contains an unhandled operation. If ℎ handles it, then the expression
reduces by (step) and (perform). Otherwise, the expression satis�es the last case of the goal.

□

Theorem 6.5 (Progress). If • ⊢ 4 : g | ⟨⟩, then either 4 is a value, or there exists 4′ such that 4 ↦−→ 4′.

Proof. By induction on the expression, and the goal follows by Lemma 6.4. Since 4 is pure,
for the third case, we can reduce the for by (traverse) according to I.H., and the fourth case is
impossible. □

Theorem 6.3 (Type Preservation). Given • ⊢ 4 : g | n , and 4 −→ 4′, then • ⊢ 4′ : g | n .

Proof. By induction on the evaluation step. We discuss the interesting cases.

• Case (index).

• ⊢ ⟨E0, . . . , E=⟩ : Fin = ⇒ g | n given
• ⊢ E8 : g | n inversion and rule t-val

• Case (return).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

Parallel Algebraic E�ect Handlers 262:31

• ⊢ handle ℎ B E : d f | n given
• ⊢ B : g | n inversion
• ⊢ E : f | ⟨; | n⟩ inversion
• ⊢v 5A : ∀0 : ★. g →n 0 →n d 0 inversion
• ⊢ E : f | n E is a value and by rule t-val
• ⊢ 5A f B E : d f | n rules t-app and t-tapp

• Case (perform).

• ⊢ handle ℎ B � [perform op n0 g E] : d f | n given
• ⊢ � [perform op n0 g E] : f | ⟨; | n⟩ inversion
• ⊢ B : g | n inversion and B is a value
op : ∀0 : ^. f1 → f2 ∈ Σ(;) inversion
• ⊢wf g : ^ inversion
• ⊢ E : f1 [0 := g] | n inversion and E is a value
• ⊢v 5? : ∀(0 : ^). ∀(1 : ★).

g →n f1 → n (g →n f2 →n (d 1)) →n (d 1) inversion
: = _nB : g . _nG : f2 [0 := g] . handle ℎ B � [G]
• ⊢ : : g →n f2 [0 := g] →n (d f) | n rules t-val, t-abs, and t-tabs

• ⊢ 5? g f B E : : d f | n rules t-tapp and t-app

• Case (traverse).

• ⊢ handle ℎ B � [for G : =. 4] : d f2 | n given
ℓ = ⟨ℓ1, ℓ2, . . . , ℓ=⟩ given
ℓ8 = _n (B : g). handle ℎ B 4 [G := 8 ⊲ Fin =] given
: = _n (B : g). _n (GB : Fin = ⇒ f1). handle ℎ B � [GB] given
G : Fin = ⊢ 4 : f1 | ⟨; | n⟩ inversion
• ⊢ � [for G : =. 4] : f2 | ⟨; | n⟩ inversion
• ⊢ = : Int | n inversion and rule t-val
• ⊢ B : g | n inversion
Γ ⊢v 5C : ∀(0 : ★) (1 : ★).
(= : Int) →n g →n g; →n g: → (d 1) inversion

g; = (Fin = ⇒ (g →n (d 0)))
g: = (g →n (Fin = ⇒ 0) →n (d 1))
• ⊢v ℓ8 : g →n (d 0) rules t-abs and t-handle

• ⊢v ℓ : (Fin = ⇒ (g →n (d 0))) rule t-array
• ⊢v : : (g →n (Fin = ⇒ f1) →n (d f2)) rules t-abs, t-for, and t-handle

• ⊢ 5C f1 f2 = B ℓ : : d f2 | n rules t-app and t-tapp

□

References

Danel Ahman. 2017. Handling �bred algebraic e�ects. Proc. ACM Program. Lang. 2, POPL, Article 7 (dec 2017), 29 pages.

https://doi.org/10.1145/3158095

Mario Blažević and Jacques Légaré. 2017. Packrats parse in packs. In Proceedings of the 10th ACM SIGPLAN International

Symposium on Haskell (Oxford, UK) (Haskell 2017). Association for Computing Machinery, New York, NY, USA, 14–25.

https://doi.org/10.1145/3122955.3122958

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

https://doi.org/10.1145/3158095
https://doi.org/10.1145/3122955.3122958

262:32 Ningning Xie, Daniel D. Johnson, Dougal Maclaurin, and Adam Paszke

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. E�ects as capabilities: e�ect handlers

and lightweight e�ect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (nov 2020), 30 pages. https:

//doi.org/10.1145/3428194

Paolo Capriotti and Ambrus Kaposi. 2014. Free Applicative Functors. In MSFP. https://api.semanticscholar.org/CorpusID:

17313426

Koen Claessen. 1999. A poor man’s concurrency monad. Journal of Functional Programming 9, 3 (1999), 313–323.

Koen Claessen and Michał H. Pałka. 2013. Splittable pseudorandom number generators using cryptographic hashing. In

Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell (Boston, Massachusetts, USA) (Haskell ’13). Association for

Computing Machinery, New York, NY, USA, 47–58. https://doi.org/10.1145/2503778.2503784

Olivier Danvy and Andrzej Filinski. 1990. Abstracting control. In Proceedings of the 1990 ACM Conference on LISP and

Functional Programming (Nice, France) (LFP ’90). Association for Computing Machinery, New York, NY, USA, 151–160.

https://doi.org/10.1145/91556.91622

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and Leo White. 2018.

Concurrent system programming with e�ect handlers. In Trends in Functional Programming: 18th International Symposium,

TFP 2017, Canterbury, UK, June 19-21, 2017, Revised Selected Papers 18. Springer, 98–117.

Richard A. Eisenberg and Stephanie Weirich. 2012. Dependently typed programming with singletons. In Proceedings of the

2012 Haskell Symposium (Copenhagen, Denmark) (Haskell ’12). Association for Computing Machinery, New York, NY,

USA, 117–130. https://doi.org/10.1145/2364506.2364522

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2017. On the expressive power of user-de�ned e�ects:

e�ect handlers, monadic re�ection, delimited control. Proc. ACM Program. Lang. 1, ICFP, Article 13 (aug 2017), 29 pages.

https://doi.org/10.1145/3110257

Dan Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-level e�ect handlers in C++. Proc. ACM

Program. Lang. 6, OOPSLA2, Article 183 (oct 2022), 29 pages. https://doi.org/10.1145/3563445

Google. 2020. JAX PRNG Design. https://github.com/google/jax/blob/main/design_notes/prng.md

Maurice Herlihy. 1991. Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13, 1 (jan 1991), 124–149. https:

//doi.org/10.1145/114005.102808

Daniel Hillerström and Sam Lindley. 2016. Liberating e�ects with rows and handlers. In Proceedings of the 1st International

Workshop on Type-Driven Development (Nara, Japan) (TyDe 2016). Association for Computing Machinery, New York, NY,

USA, 15–27. https://doi.org/10.1145/2976022.2976033

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming (Boston, Massachusetts, USA) (ICFP ’13). Association for Computing Machinery,

New York, NY, USA, 145–158. https://doi.org/10.1145/2500365.2500590

Ohad Kammar and Matija Pretnar. 2017. No value restriction is needed for algebraic e�ects and handlers. Journal of

functional programming 27 (2017), e7.

Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible e�ects. In Proceedings of the 2015 ACM SIGPLAN

Symposium on Haskell (Vancouver, BC, Canada) (Haskell ’15). Association for Computing Machinery, New York, NY,

USA, 94–105. https://doi.org/10.1145/2804302.2804319

Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible e�ects: an alternative to monad transformers. In Proceedings

of the 2013 ACM SIGPLAN Symposium on Haskell (Boston, Massachusetts, USA) (Haskell ’13). Association for Computing

Machinery, New York, NY, USA, 59–70. https://doi.org/10.1145/2503778.2503791

Daan Leijen. 2014. Koka: Programming with Row Polymorphic E�ect Types. In MSFP’14, 5th workshop on Mathematically

Structured Functional Programming. https://doi.org/10.4204/EPTCS.153.8

Sam Lindley. 2014. Algebraic e�ects and e�ect handlers for idioms and arrows. In Proceedings of the 10th ACM SIGPLAN

Workshop on Generic Programming (Gothenburg, Sweden) (WGP ’14). Association for Computing Machinery, New York,

NY, USA, 47–58. https://doi.org/10.1145/2633628.2633636

Sam Lindley and James Cheney. 2012. Row-based e�ect types for database integration. In Proceedings of the 8th ACM SIGPLAN

workshop on Types in language design and implementation (TLDI’12). 91–102. https://doi.org/10.1145/2103786.2103798

Sam Lindley, Connor McBride, and Craig McLaughlin. 2017. Do be do be do. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL’17) (Paris, France). 500–514. https://doi.org/10.1145/3009837.

3009897

Simon Marlow, Louis Brandy, Jonathan Coens, and Jon Purdy. 2014. There is no fork: an abstraction for e�cient, concurrent,

and concise data access. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming

(Gothenburg, Sweden) (ICFP ’14). Association for Computing Machinery, New York, NY, USA, 325–337. https://doi.org/

10.1145/2628136.2628144

Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. 2016. Desugaring Haskell’s do-notation into ap-

plicative operations. In Proceedings of the 9th International Symposium on Haskell (Nara, Japan) (Haskell 2016). Association

for Computing Machinery, New York, NY, USA, 92–104. https://doi.org/10.1145/2976002.2976007

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://api.semanticscholar.org/CorpusID:17313426
https://api.semanticscholar.org/CorpusID:17313426
https://doi.org/10.1145/2503778.2503784
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3563445
https://github.com/google/jax/blob/main/design_notes/prng.md
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/2633628.2633636
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2976002.2976007

Parallel Algebraic E�ect Handlers 262:33

Conor McBride and Ross Paterson. 2008. Applicative programming with e�ects. J. Funct. Program. 18, 1 (jan 2008), 1–13.

https://doi.org/10.1017/S0956796807006326

Dave Menendez. 2013. Free Applicative Functors in Haskell. https://www.eyrie.org/~zednenem/2013/05/27/freeapp.

Accessed: 2024-02-25.

Adam Paszke, Daniel D. Johnson, David Duvenaud, Dimitrios Vytiniotis, Alexey Radul, Matthew J. Johnson, Jonathan Ragan-

Kelley, and Dougal Maclaurin. 2021. Getting to the Point: Index Sets and Parallelism-Preserving Autodi� for Pointful

Array Programming. Proc. ACM Program. Lang. 5, ICFP, Article 88 (Aug. 2021), 29 pages. https://doi.org/10.1145/3473593

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. 1996. Concurrent Haskell. In Proceedings of the 23rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg Beach, Florida, USA) (POPL ’96).

Association for Computing Machinery, New York, NY, USA, 295–308. https://doi.org/10.1145/237721.237794

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar,

and Sam Lindley. 2023. Continuing WebAssembly with E�ect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2, Article

238 (oct 2023), 26 pages. https://doi.org/10.1145/3622814

Ruben P. Pieters, Exequiel Rivas, and Tom Schrijvers. 2020. Generalized monoidal e�ects and handlers. Journal of Functional

Programming 30 (2020).

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio�. 2018. Syntax and Semantics for Operations with Scopes. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18).

Association for Computing Machinery, New York, NY, USA, 809–818. https://doi.org/10.1145/3209108.3209166

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic E�ects. Applied Categorical Structures 11, 1

(2003), 69–94. https://doi.org/10.1023/A:1023064908962

Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic E�ects. In 18th European Symposium on Programming

Languages and Systems (York, UK) (ESOP’09). 80–94. https://doi.org/10.1007/978-3-642-00590-9_7

Matija Pretnar. 2015. An Introduction to Algebraic E�ects and Handlers. Invited Tutorial Paper. Electron. Notes Theor.

Comput. Sci. 319, C (Dec. 2015), 19–35. https://doi.org/10.1016/j.entcs.2015.12.003

Enno Scholz. 1995. A concurrency monad based on constructor primitives: or, being �rst-class is not enough. (1995).

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Ja�er, and Anil Madhavapeddy. 2021. Retro�tting E�ect

Handlers onto OCaml. Association for Computing Machinery, New York, NY, USA, 206–221. https://doi.org/10.1145/

3453483.3454039

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure

distributed programming with value-dependent types. In Proceedings of the 16th ACM SIGPLAN International Conference

on Functional Programming (Tokyo, Japan) (ICFP ’11). Association for Computing Machinery, New York, NY, USA,

266–278. https://doi.org/10.1145/2034773.2034811

Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garrett Morris. 2024. Soundly Handling Linearity. Proc. ACM Program.

Lang. 8, POPL, Article 54 (jan 2024), 29 pages. https://doi.org/10.1145/3632896

Birthe van den Berg, Tom Schrijvers, Casper Bach Poulsen, and Nicolas Wu. 2021. Latent e�ects for reusable language

components. In Asian Symposium on Programming Languages and Systems. Springer, 182–201.

Andrew K Wright. 1995. Simple imperative polymorphism. Lisp and symbolic computation 8, 4 (1995), 343–355.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. E�ect handlers in scope. In Proceedings of the 2014 ACM SIGPLAN

Symposium on Haskell (Gothenburg, Sweden) (Haskell ’14). Association for Computing Machinery, New York, NY, USA,

1–12. https://doi.org/10.1145/2633357.2633358

Ningning Xie, Jonathan Brachthäuser, Phillip Schuster, Daniel Hillerström, and Daan Leijen. 2020. E�ect Handlers,

Evidently. In 25th ACM SIGPLAN International Conference on Functional Programming (ICFP’2020) (Jersey City, NJ).

https://doi.org/10.1145/3408981

Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers. 2022. Structured handling of scoped

e�ects. In European Symposium on Programming. Springer International Publishing Cham, 462–491.

Received 2024-02-28; accepted 2024-06-18

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 262. Publication date: August 2024.

https://doi.org/10.1017/S0956796807006326
https://www.eyrie.org/~zednenem/2013/05/27/freeapp
https://doi.org/10.1145/3473593
https://doi.org/10.1145/237721.237794
https://doi.org/10.1145/3622814
https://doi.org/10.1145/3209108.3209166
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/3632896
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3408981

	Abstract
	1 Introduction
	2 Background
	2.1 Algebraic Effect Handlers
	2.2 Parallelizing Effects With ``for'' Expressions
	2.3 Previous Approaches to Parallelization Through Independence

	3 Key Ideas
	3.1 The Challenge of Parallelizing Effect Handlers
	3.2 Our Approach
	3.3 Type-Checking Parallel Effect Handlers
	3.4 Embedding Parallel Effect Handlers into Haskell
	3.5 Summary

	4 A Calculus of Parallel Effect Handlers
	4.1 Syntax
	4.2 Operational Semantics

	5 Practical Examples
	5.1 Accumulative Writer
	5.2 Weak Exceptions
	5.3 (Pseudo) Random Number Generation
	5.4 Nondeterminism
	5.5 Parallelizable Shared State

	6 Typed Parallel Effect Handlers
	6.1 Syntax
	6.2 Type System
	6.3 Operational Semantics and Semantics Preservation
	6.4 Type Soundness

	7 Haskell Implementation
	7.1 Representing Effects as Algebraic Data Types
	7.2 Defining and Using Effect Handlers
	7.3 Expressing Parallel Computations
	7.4 Pure and Concurrent Backends
	7.5 Visualizing Dependencies Using Runtime Tracing

	8 Discussion
	8.1 Pairwise Applicative-Style Parallelization
	8.2 Immediately-Invoked Body Continuations
	8.3 Restricting the Answer Type Constructor

	9 Related Work
	10 Conclusion
	Acknowledgments
	A Unparameterized Variants of Example Handlers
	B Parameterized Typed Parallel Effect Handlers
	C Typed Operational Semantics for Parameterized Handlers
	D Erasure
	E Type Soundness
	References

