
Effect Handlers in Haskell, Evidently

Ningning Xie
Microsoft Research

USA
nnxie@cs.hku.hk

Daan Leijen
Microsoft Research

USA
daan@microsoft.com

Abstract

Algebraic effect handlers offer an alternative to monads to
incorporate effects in Haskell. In recent work Xie et al. show
how to give semantics to effect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more efficient implementations. Here
we present the first implementation of this technique as a
library for effect handlers in Haskell. We show how the de-
sign naturally leads to a concise effect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.

CCS Concepts: · Software and its engineering → Con-

trol structures; Polymorphism.

Keywords: Algebraic Effects, Handlers, Evidence Passing
Translation

ACM Reference Format:

Ningning Xie and Daan Leijen. 2020. Effect Handlers in Haskell,

Evidently. In Proceedings of the 13th ACM SIGPLAN International

Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3406088.3409022

1 Introduction

Algebraic effects handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] provide an alternative to monads to in-
corporate effectful programs in Haskell [Kammar et al. 2013;
Kiselyov and Ishii 2015;Wu and Schrijvers 2015a]. Effect han-
dlers can express any free monad in a concise and compos-
able way, and can be used to express complex control-flow,
like exceptions, asynchronous I/O, local state, backtracking,
and much more.

In recent work Xie et al. [2020] show how to give seman-
tics to effect handlers in terms of plain polymorphic lambda

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

Haskell ’20, August 27, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8050-8/20/08.

https://doi.org/10.1145/3406088.3409022

calculus through evidence translation. Besides giving pre-
cise semantics, this translation also allows for potentially
more efficient implementations ś a handler is now passed
as evidence to the call site of an operation where it can be
invoked immediately without needing to search for it. Here
we present the first implementation of this technique as a
library for effect handlers in Haskell. In particular,

• We give an implementation of effect handlers based
on the target language Fv in [Xie et al. 2020]. This
implements effect handler semantics faithfully and in
particular enforces the scoped resumptions restriction
(although at runtime only).

• The library interface (Figure 1) is concise and arguably
simpler than other library interfaces for effect handlers.
In particular, effects are defined as a regular data type
with a field for each operation. For example,

data Reader a e ans

= Reader{ ask :: Op () a e ans }

declares a Reader effect with one operation ask from
() to a (in effect context e with answer type ans).
Other libraries typically require GADT’s [Kiselyov and
Ishii 2015], data types à la carte [Swierstra 2008; Wu
et al. 2014], or Template Haskell [Kammar et al. 2013]
to create new effects. Being effect handlers, there are
also of course the usual advantages with respect to a
monadic interface: effects can be composed freely (as
effects always form a freemonad), and there is no need
to lift operations into a particular monad (as they are
all part of the single effect monad).

• Since evidence of each handler is passed explicitly,
we can directly invoke operations on a handler. For
example, the function greet:

greet :: (Reader String :? e) ⇒ Eff e String

greet = do s <- perform ask ()

return ("hello " ++ s)

performs an ask operation. Here the qualified type
Reader String :? e ensures the reader effect is in the
effect context e and its dictionary allows perform to
directly select the actual Reader handler from the effect
context evidence (passed in the effect monad Eff e)
without needing to search for the correct handler. It
then uses ask to select the operation field directly from
the handler data type and invokes it. This is quite dif-
ferent from most effect libraries that typically propa-
gate the operations through a handler stack. Moreover,

95

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3406088.3409022

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

since the evidence supplies the actual handler instance,
we can optimize tail-resumptive operations to evalu-
ate in-place without needing to capture a continuation
(Section 5.3). Since handlers and operations are regular
datatypes, often the compiler can deduce the particular
operation as well and inline the definition.

• The performance of the library is quite good. We give
detailed benchmark results in Section 6, comparing
its performance with the monad transformer library
and other Haskell libraries. We show when combin-
ing multiple effects our library tends to outperform
monads and alternative effect libraries.

• The implementation follows the translation in [Xie et
al. 2020] closelywherewe separate the implementation
of evidence passing (Section 5.2), from the underlying
monad for multi-prompt delimited control (Section 5.1).
Our implementation of multi-prompt delimited con-
trol is type safe except for the generation of unique
markers. The technique of unique markers has been
done before [Dyvbig et al. 2007] but we believe our
implementation is particularly concise.

• Finally, we also show how we can efficiently repre-
sent local isolated state without needing higher ranked
types through handler hiding (Section 4.3 and 5.7).

The source code of our implementation and benchmarks is
available as an artifact and online at https://github.com/
xnning/eveff.

2 A Tour of Reader

Let’s start with an in-depth example of dynamic binding,
also known as the reader effect.

Using evidence based effect handlers is straightforward ś
in contrast to monads, there is no need to create classes or
instances to introduce a new effect. Moreover, the focus is on
the operations of the effect, not the plumbing (in the form of
return and (>>=) for monads). As shown in the introduction,
to define new effects, we just declare a new data type:

data Reader a e ans

= Reader{ ask :: Op () a e ans }

The data declaration defines a new effect Reader with three
type parameters: a for the reader value, and e and ans for the
effect context and answer type where the reader is handled.
The e and ans are always present in effect declarations and
will be explained in detail later. The Reader łeffectž is just a
data type where its constructor Reader has a single operation
field ask with type Op () a e ans which denotes operations
from type () to a (in an effect context e with answer type
ans).

To perform operations, we pass the operation selector ask
with its argument to the perform function. In the introduction
we showed a greeting program which asks for a String and
returns the greeting message:

greet :: (Reader String :? e) ⇒ Eff e String

greet = do s <- perform ask ()

return ("hello " ++ s)

Effectful computations run in the Eff e a monad where e

is the effect context and a the result type. The type class
constraint h :? e indicates that effect handler h is a mem-
ber of the effect context e and can thus be used to perform
operations. In this case, perform ask () returns a value s of
type String, and thus greet is qualified with a string reader
effect, (Reader String :? e).
Operations are given semantics by their handlers. Han-

dlers are defined as instances of effect datatypes, giving im-
plementations for each operation. We can handle a reader
effect in an action using the handler function:

reader :: Eff (Reader String :* e) ans → Eff e ans

reader action

= handler (Reader{ ask = value "world" }) action

The first argument to handler is a concrete Reader data type
with an implementation of the ask operation. In this case we
use value :: a → Op () a e ans to always resume with
a constant value "world" when ask is performed. The value

function is just one way to define operations but there are
various other ways which we discuss in Section 3.4.

The reader action has type Eff (Reader String :* e) ans,
where the type h :* e represents the effect context as a type
level list, which has effect h as the head and effect context
e as the tail. We can view handler as an elimination rule
where the Reader String effect is eliminated from the action
context, resulting in Eff e ans, (i.e., it handles the effect).

Since action has Reader in its effect context, it can perform
operations in the Reader effect ś in particular, we can eval-
uate greet under our reader handler, where the constraint
Reader a :? (Reader a :* e) is satisfied:

helloWorld :: Eff e String

helloWorld = reader greet

Finally, we can run effectful computations using runEff with
type Eff () a → a:

> runEff helloWorld

"hello world"

The empty effect context in Eff () a ensures that we can
only run effect computations where all effects have been
handled.

3 Overview of the Effect Interface

Before we present other common examples, we show a short
overview of the full library interface as defined in Figure 1.

3.1 Defining Effects

We have seen that effects are simply datatypes of a particular
shape. In general, an effect declaration has the general form

data Effect a1 ... an e ans

= Effect { op1 :: forall x1 ... xl. Op b1 c1 e ans

, ...

, opm :: forall x1 ... xk. Op bm cm e ans }

96

https://github.com/xnning/eveff
https://github.com/xnning/eveff

Effect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

data Eff e a, instance Monad (Eff e) – effect monad in an effect context e

data Op a b e ans – operation from a to b (in a context e with answer type ans)

data (h :* e) – handler h in front of e

class (h :? e) – is handler h in e?

runEff :: Eff () a → a

perform :: (h :? e) ⇒ (forall e1 ans1. h e1 ans1 → Op a b e1 ans1) → a → Eff e b

value :: a → Op () a e ans – value operation

function :: (a → Eff e b) → Op a b e ans – function operation

operation :: (a → (b → Eff e ans) → Eff e ans) → Op a b e ans – general operation with resumption

handler :: h e ans → Eff (h :* e) ans → Eff e ans – handle h in an action

handlerRet :: (a → ans) → h e ans → Eff (h :* e) a → Eff e ans

data Local a e ans = Local{ lget :: Op () a e ans, lput :: Op a () e ans } – local state effect

handlerLocal :: a → h (Local a :* e) ans → Eff (h :* e) ans → Eff e ans

handlerLocalRet :: a → (b → a → ans) → h (Local a :* e) ans → Eff (h :* e) b → Eff e ans

Figure 1. The Control.Ev.Eff library interface

which declares an effect Effect a1 ... an with universal
variables a1 ... an, the effect context e and the answer
context ans. Each operation op can have its own universally
quantified variables xs, and has type Op from an argument of
type b to a result of type c, under the same effect and answer
context.

3.2 Performing Operations

Operations are performed by passing the operation selector
and its argument to the perform function:

foo :: (h :? e) ⇒ Eff e a

foo = perform op arg

If op belongs to an effect h, then performing op induces the
constraint h :? e, indicating that h must be in the effect
context of Eff e a, e.g., we can only perform operations that
are handled in our context.

3.3 Defining Operations

There are threeways to create operations of type Op a b e ans:

• value :: a → Op () a e ans. We have seen value

in the Reader example (repeated below for reference).
This is used to create operations that always resume
with a constant value.

Reader{ ask = value "world" }

• function :: (a → Eff e b) → Op a b e ans. In
practice, most effects can be defined using function,
it takes a function from a to b in the effect context e
of the handler. We can define the ask operation of the
reader in terms offunction as well:

Reader{ask = function (\ () → return "world")}

and more generally:

value x = function (\ () → return x)

• operation :: a → (b → Eff e ans) → Eff e ans →

Op a b e ans. This is the most general way to cre-
ate an operation. It takes a function that expects two
arguments: the operation argument of type a and a
resumption of type b → Eff e ans. An operation does
not resume like function but instead returns directly
from the handler. However, it can explicitly call the
resumption to resume to the original call-site with a
result of type b (and possibly multiple times). We can
again define the ask operation in terms of an operation

as well:

Reader{ ask = operation (\ () k → k "world") }

and more generally:

function f = operation (\x k → k (f x))

We call operations that are defined using function (or value)
tail-resumptive. Using function (or value) does not only pro-
vide a more concise way for users to define operation imple-
mentations, it also has a much more efficient implementation
where operations can evaluate in place without needing to
capture a continuation. We will discuss this further in Sec-
tion 5.3.

3.4 Defining Handlers

Handlers are instances of the effect datatypes, providing
concrete implementations for operations. As these are just
normal datatype values, we can take them as inputs, return
them as results, or assign them to variables. There are four
common ways to define a handler:

• handler :: h e ans → Eff (h :* e) ans → Eff e ans.
The handler function takes a concrete handler h e ans

and an action, and installs the handler to handle any

97

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

operations that are performed in the action. The ef-
fect context h :* e of the action signifies that h is the
top handler in the effect context of the action. Han-
dling an effect h eliminates h from the effect context
Eff (h :* e) ans to Eff e ans.
Here we also see that we use a partially applied type
h in the effect context h :* e: the fully applied type
h e ans represents a concrete implementation of a
handler. In contrast, a partially applied h is abstract in
the effect context and answer type where the actual
handler is defined, and can thus be seen as an effect

type (i.e. the abstract interface we can use).
• handlerRet takes an extra argument to transform the
result type of the action from a to ans, where the an-
swer type of the operations in h is now ans. We will
see an example of it in Section 4.1.

• handlerLocal. The handlerLocal function provides lo-
cally isolated state to the operations in handler h. As
apparent from the type, this local state is not exposed
outside the operations of the handler. The local effect
has two operations lget and lput to get and set the
local state. We will see how to use it to define the state
effect in Section 4.2.

• handlerLocalRet is a combination of handlerRet and
handlerLocal where one can transform the result of
an action given the local handler state.

4 Examples

So far we have described the interface of our library and we
have seen how to define the reader effect and its handler.
Now we move on to more complex examples.

4.1 Exception

The exception effect Exn has one operation failurewith type
Op () a e ans for any a.

data Exn e ans

= Exn { failure :: forall a. Op () a e ans }

Here we see the use of a rank-2 type with forall a to define
an operation that is polymorphic in the result type. Using
Exn, we can define partial functions in a type-safe way.

safeDiv :: (Exn :? e) ⇒ Int → Int → Eff e Int

safeDiv x 0 = perform failure ()

safeDiv x y = return (x ‘div‘ y)

Exception handlers are special kinds of handlers that abort
the execution, by discarding the current resumption. There
are different ways to handle exceptions. The following imple-
mentation reifies the exceptions effect to the Maybe monad:

toMaybe :: Eff (Exn :* e) a → Eff e (Maybe a)

toMaybe

= handlerRet Just $ Exn{

failure = operation (\ () _ → return Nothing) }

Here by partial application we leave out the function argu-
ment, which is an effectful computation Eff (Exn :* e) a

with the answer type a. Note that we use handlerRet to at-
tach Just to the program result if it returns normally, which,
consistent with the result Nothing if the program fails, turns
the computation result type to Maybe a.

> runEff (toMaybe $ safeDiv 42 2)

Just 21

> runEff (toMaybe $ safeDiv 42 0)

Nothing

Another common implementation is to return a default value
when the computation fails:

exceptDefault :: a → Eff (Exn :* e) a → Eff e a

exceptDefault x

= handler $

Exn{ failure = operation (\ () _ → return x) }

We can run it in the same examples:

> runEff (exceptDefault 0 $ safeDiv 42 2)

21

> runEff (exceptDefault 0 $ safeDiv 42 0)

0

4.2 State

The state effect comes with an operation get for reading the
state value, and put for setting the state value.

data State a e ans = State { get :: Op () a e ans

, put :: Op a () e ans }

For example, we can get a boolean state value and invert it:

invert :: (State Bool :? e) ⇒ Eff e Bool

invert = do b <- perform get ()

perform put (not b)

perform get ()

The definition of state takes an initial value of the state, and
uses handlerLocal for handling.

state :: a → Eff (State a :* e) ans → Eff e ans

state init

= handlerLocal init $

State{ get = function (\ () → perform lget ())

, put = function (\ x → perform lput x) }

The function handlerLocal offers a local variable, together
with two operations lget and lput that get and set the local
variable (Figure 1). The first argument of handlerLocal is
the initial value and the second argument is the handler
implementation whose operations have Local a in the effect
context (and can thus use lget and lput). In this case, get
and put directly correspond to the local state operations.

> runEff (state True invert)

False

4.3 State as a Function

Of course, we cheated a bit in the state example by using
the builtin Local state. However, we can implement the local
state from scratch as well, where we use the usual monadic
representation of state as a function from the current state
to a final result: s → Eff e a [Kammar and Pretnar 2017]:

98

Effect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

local :: a → Eff (Local a :* e) ans → Eff e ans

local init action

= do f <- handler (Local{

lget = operation (\ () k → return $

\s → do{ r <- k s; r s })

,lput = operation (\ s k → return $

_ → do{ r <- k (); r s })

})

(do x <- action

return (\s → return x))

f init

where f has type a → Eff e ans, and the resumption k has
type a → Eff e (a → Eff e ans). The builtin Local state
has exactly the same semantics as defined here, but is imple-
mented internally more efficiently using an STRef [Peyton
Jones and Launchbury 1995].

This is still not quite the same as handlerLocal though, as
that function also isolates the local state to just the operations
in the handler, and not outside that. This is done using the
more primitive handlerHide function as:

handlerLocal :: a → (h (Local a :* e) ans) →

Eff (h :* e) ans → Eff e ans

handlerLocal init h action

= local init (handlerHide h action)

where handlerHide hides the top most handler h0 (which is
Local a in our example):

handlerHide :: h (h0 :* e) ans → Eff (h :* e) ans →

Eff (h0 :* e) ans

giving locally isolated statewithout needing rank-2 types! [Pey-
ton Jones and Launchbury 1995] We discuss the implemen-
tation of handler hiding further in Section 5.7.

4.4 Ambiguity

We have seen handlers that resume computations once (e.g.,
reader), and handlers that abort computations (e.g., exceptDefault).
In this example, we show handlers that resume computations
more than once.

The Amb effect has one operation flip, which takes a unit
and returns some boolean.

data Amb e ans

= Amb { flip :: Op () Bool e ans }

As an example, we can define the exclusive or of two booleans.

xor :: (Amb :? e) ⇒ Eff e Bool

xor = do x <- perform flip ()

y <- perform flip ()

return ((x && not y) || (not x && y))

The handler decides which boolean value to use. For example,
one implementation can collect all results from both choices:

allResults :: Eff (Amb :* e) a → Eff e [a]

allResults = handlerRet (\x → [x]) (Amb{

flip = operation (\ () k →

do xs <- k True

ys <- k False

return (xs ++ ys)) })

> runEff (allResults xor)

[False,True,True,False]

This handler transforms computations with a single result a
to a computation with a list of all possible results a. Note that
the result type of the resumption function k is also Eff e [a]

and that we need to use a return clause (\x → [x]) to
convert the results to singleton lists (which are appended
inside flip).
Or, we can implement backtracking by first trying True,

and if it fails, we try False:

firstResult :: Eff (Amb :* e) (Maybe a) →

Eff e (Maybe a)

firstResult = handler Amb{

flip = operation (\ () k →

do xs <- k True

case xs of

Just _ → return xs

Nothing → k False) }

4.5 Parser

As a larger example, we show how to implement a parser
combinator. A similar example has been shown in [Wu et
al. 2014] and [Leijen 2017]. Both of them defined one effect
(called Nondet and Many respectively) for handling exceptions
and ambiguity at the same time. Here we do it in a slightly
different way: we simply reuse the existing Exn and Amb ef-
fects.
With Amb we can non-deterministically choose from two

computations:

choice :: (Amb :? e) ⇒ Eff e a → Eff e a → Eff e a

choice p1 p2 = do b <- perform flip ()

if b then p1 else p2

We define the parser combinator many that parses zero or
more p parsers, and many1, which parses one ormore p parsers:

many :: (Amb :? e) ⇒ Eff e a → Eff e [a]

many p = choice (many1 p) (return [])

many1 :: (Amb :? e) ⇒ Eff e a → Eff e [a]

many1 p = do x <- p; xs <- many p; return (x:xs)

For parsing, we define the Parser effect with a satisfy oper-
ation to test if the current input satisfies a predicate:

data Parse e ans = Parse {

satisfy :: forall a.

Op (String → (Maybe (a, String))) a e ans }

A handler for Parser gets a local variable to keep track of the
current input string, and applies the predicate to the input.
If the predicate is satisfied, it then applies the resumption to
the result, or otherwise it fails.

parse :: (Exn :? e) ⇒

String → Eff (Parse :* e) b → Eff e (b, String)

parse input

= handlerLocalRet input (\x s → (x, s)) $

99

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

Parse { satisfy = operation $ \p k →

do input <- perform lget ()

case (p input) of

Nothing → perform failure ()

Just (x, rest) → do perform lput rest

k x }

Note the type signature of parse: it handles Parse, so it trans-
forms the effect from Parse :* e to e; in the meantime parse
itself performs failure, so it requires Exn :? e.

Now we can define basic parsers with predicates for sym-
bols and digits:

symbol :: (Parse :? e) ⇒ Char → Eff e Char

symbol c = perform satisfy (\input → case input of

(d:rest) | d == c → Just (c, rest)

_ → Nothing)

digit :: (Parse :? e) ⇒ Eff e Int

digit = perform satisfy (\input → case input of

(d:rest) | isDigit d → Just (digitToInt d, rest)

_ → Nothing)

Parsers for simple arithmetic expressions are built upon
those basic parsers:

expr :: (Parse :? e, Amb :? e) ⇒ Eff e Int

expr = choice (do i <- term; symbol ’+’; j <- term

return (i + j))

term

term :: (Parse :? e, Amb :? e) ⇒ Eff e Int

term = choice (do i <- factor; symbol ’*’; j <- factor

return (i * j))

factor

factor :: (Parse :? e, Amb :? e) ⇒ Eff e Int

factor = choice (do symbol ’(’; i <- expr; symbol ’)’

return i)

number

number :: (Parse :? e, Amb :? e) ⇒ Eff e Int

number = do xs <- many1 digit

return $ foldl (\n d → 10 * n + d) 0 xs

We have seen that we can handle Exn using toMaybe, and han-
dle Amb using allResults or firstResult. Combining those
handlers, we give one parse strategy that gets all possible
parse results:

solutions :: Eff (Exn :* Amb :* e) a → Eff e [a]

solutions action

= fmap catMaybes (allResults (toMaybe action))

> runEff (solutions (parse "1+2*3" expr))

[(7,""),(3,"*3"),(1,"+2*3")]

We can also change the parse strategy to get only the first
parse result without touching the parse implementation:

eager :: Eff (Exn :* Amb :* e) a → Eff e (Maybe a)

eager action = firstResult (toMaybe action)

> runEff (eager (parse "1+2*3" expr))

Just (7,"")

5 Implementation

Our effect implementation is directly based on the target
language Fv in the formal evidence translation described
by Xie et al. [2020] (Section 5, Figure 9). Their translation
has two parts: an implementation of multi-prompt control
combined with the propagation of evidence in the form of
the effect context. Our library is structured like this where
we build upon a generic implementation of a multi-prompt
control monad. Embedding delimited control in Haskell has
been investigated in much detail [Dyvbig et al. 2007], but
we believe our implementation is particularly concise and
closely based on the definition given by Xie et al. [2020].

5.1 Multi-prompt Control

First, we define a control monad Ctl a for multi-prompt
delimited continuations:

data Ctl a

= Pure { result :: a }

| forall ans b.

Yield{ marker :: Marker ans,

op :: (b → Ctl ans) → Ctl ans,

cont :: b → Ctl a }

The Pure case has a value result, and the Yield case reflects
yielding to a prompt. Yield stores three components: (1) a
unique marker indicating the particular prompt to which it
yields, with the answer type ans for type-safety (we discuss
this shortly); (2) an operation implementation op that is al-
ready partially applied to its operation argument, so it just
needs a resumption (b → Ctl ans) to evaluate its action;
and (3) the partially built up continuation cont. Since cont

is partially built, its result type a can be different from the
final answer type ans. Once the right prompt is reached, the
markers will ensure that at that point a will be equal to ans.
The yield function is a thin wrapper around Yield:

yield :: Marker ans →

((b → Ctl ans) → Ctl ans) → Ctl b

yield m op = Yield m op Pure

and starts with an identity continuation (as Pure). When
yielding to a prompt, the continuation keeps being extended
using theKleisi composition over the controlmonad (kcompose),
which is defined together with the monadic binding of Ctl:

kcompose::(b → Ctl c) → (a → Ctl b) → a → Ctl c

kcompose g f x = (f x >>= g)

instance Monad Ctl where

return x = Pure x – just Pure

(Pure x >>= f) = f x – pass on the result

(Yield m op cont >>= f)

= Yield m op (f ‘kcompose‘ cont) – keep yielding

For efficiency in our library, we expand the definition of
(>>=) in kcompose to break the mutual dependency. When

100

Effect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

binding a Yield, we keep yielding but extend the continua-
tion with the continuation of the bind f.

When we install a prompt, we use an internal freshMarker
function to generate a unique marker as the name of the
current prompt:

prompt :: (Marker ans → Ctl ans) → Ctl ans

prompt action

= freshMarker (\m → mprompt m (action m))

The prompt function connects its answer type ans to its
marker with type Marker ans. It passes the marker on to
mprompt which checks if it is yielded to:

mprompt :: Marker a → Ctl a → Ctl a

mprompt m (Pure x) = Pure x

mprompt m (Yield n op cont)

= let cont’ x = mprompt m (cont x) in

case mmatch m n of

Nothing → Yield n op cont’ – keep yielding

Just Refl → op cont’

In the case of Pure, the action returns a value x, and prompt

simply passes on the value. In the case of Yield, the action
yields to a prompt with marker n, with the operation im-
plementation op and the current continuation cont. In this
case, it first extends the continuation with our own prompt
getting a new continuation cont’. Now we need to decide if
it is yielding to this particular prompt, by checking whether
m is equivalent to n. The function mmatch checks the equality
of two markers. If two markers are not equal (Nothing), then
we keep yielding with cont’. When they are equal (Just),
we are the target of the yield, and our continuation cont’ is
exactly the resumption that op expects, and we directly apply
op cont’. Note that the resumption cont’ resumes under its
own mprompt again, and thus we implement deep handlers
(as opposed to shallow handlers [Kammar et al. 2013]).

However, the astute reader may have noticed that op cont’

cannot type-check: in the Yield definition, op requires an ex-
istential answer type ans, while both cont and cont’ have the
answer type a. The key to ensure type-safety is the markers.
Markers have two important properties: they are unique, and
they carry their answer types. In this case, m is Marker a and
n is Marker ans. When mmatch confirms that two markers are
equal, it also returns the proof term Refl that asserts to the
compiler that these two types are equal via a type equality
a ~ ans. Once we have this type equality in the environ-
ment, the application op cont’ type checks. The creation
of markers freshMarker and the equality check with mmatch

requires unsafe primitives (the full implementation is in the
anonymous supplement).

5.2 Evidence Passing Effects

Now that we have a control monad Ctl for multi-prompt
control, we can proceed to implement the evidence passing
effect monad Eff e a. This is simply a reader monad from
the current effect evidence as an effect context Context e to
a computation Ctl a:

newtype Eff e a = Eff (Context e → Ctl a)

instance Monad (Eff e) where

return x = Eff (\ctx → pure x)

(Eff eff) >>= f = Eff (\ctx → do ctl <- eff ctx

under ctx (f ctl))

under :: Context e → Eff e a → Ctl a

under ctx (Eff eff) = eff ctx

The effect context is a heterogeneous list of pairs of markers
and a corresponding handler, where the top handler is at the
head of the list. We represent the context using a GADT [Xi
et al. 2003]:

data Context e where

CNil :: Context ()

CCons :: Marker ans → h e ans →

Context e → Context (h :* e)

The CNil constructor is an empty context, while CCons takes
a marker, a handler, and the tail of the context. The type con-
structor (:*) is a phantom datatype [Leijen and Meijer 2000]
and has no runtime representation:

data (h :: * → * → *) :* e

The (:*) type constructor is only used to maintain the corre-
spondence between the effect type e and the runtime context
Context e. In particular, we can only CCons a handler h e ans

in front of a Context e where both have the same effect con-
text type e, and the resulting runtime context is now typed
as Context (h :* e). This is reflected in the definition for
handler as:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →

prompt (\m → under (CCons m h ctx) action)

which first installs a prompt for our handler (so it can be
yielded to), and then CCons the resulting marker m and han-
dler h in front of the current context, and evaluates action
under that new context. As such, the effect context type e

in Eff e a always reflects the actual order of the installed
handlers at runtime.
The dual of handling is masking [Biernacki et al. 2017;

Convent et al. 2020; Leijen 2014; Wu et al. 2014], where we
remove the top handler on a sub-computation eff:

mask :: Eff e ans → Eff (h :* e) ans

mask eff = Eff (\ (CCons m h ctx) → under ctx eff)

Note that the type Eff (h :* e) ans guarantees that the
match on CCons never fails.
We call the pair of a marker m and a handler h the evi-

dence, where a handler can be uniquely identified by the
marker. So a context is a list of evidence (called evidence

vector in [Xie et al. 2020]). Returning to the Eff definition,
we see that our effectful computations are evidence passing.
That is, when evaluating effectful computations, we pass the
current evidence down into the computation.

101

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

5.3 Perform

To perform an operation, we need to be able to select the
correct handler from the effect context. The (:?) type class
constraint exposes the subContext function to do exactly
that:

class (h :? e) where

subContext :: Context e → SubContext h

data SubContext h

= forall e. SubContext (Context (h :* e))

We define the instances for subContext further on, but it
selects a tail of the context where h is the current head. We
can use this method to concisely define perform:

perform :: (h :? e) ⇒

(forall e’ ans. h e’ ans → Op a b e’ ans) →

a → Eff e b

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h ctx’) →

case (selectOp h) of

Op f → f m ctx’ x)

Here we apply subContext to the effect context ctx to se-
lect our handler context as CCons m h ctx’. So we know
the handler is h, its prompt marker is m, and it was itself
defined under an effect context ctx’. First we select the de-
sired operation from the handler with selectOp. This func-
tion needs a higher-rank type [Leijen 2008; Peyton Jones et
al. 2007] in the effect context e’ and answer type ans as the
effect context and answer type of the sub context are abstract
(and existentially quantified), and therefore selectOp must
be polymorphic with respect to those.
We define an operation Op as:

data Op a b e ans

= Op (Marker ans → Context e → a → Ctl b)

i.e., just a function that gets the marker, the handler context,
and the argument to the operation. For example, we can
define function as:

function :: (a → Eff e b) → Op a b e ans

function f = Op (\m ctx x → under ctx (f x))

Here we see the advantage of explicit evidence passing: since
the handler is passed down to the call site of perform, we can
skip an expensive yield back to the handler but directly eval-
uate f in-place under the handler context ctx (and ignoring
the marker m). Since all data is explicit, GHC is often able to
fully inline the definition of a function operation completely
using regular compiler optimizations.
For a general operation though, we need to yield back

to the handler. Still, this is efficient as we know the exact
marker m to yield to:

operation :: (a → (b → Eff e ans) → Eff e ans) →

Op a b e ans

operation f

= Op $ \m ctx x →

yield m $ \ctlk →

let k y = Eff (\ctx’ → guard ctx ctx’ ctlk y)

in under ctx (f x k)

As shown in Section 5.1, the yield m op expression yields up
to the prompt marked as m building up a continuation which
is passed to op at that point. Here we receive the resumption
as ctlk. We may think we can pass this directly to f (i.e.,
under ctx (f x ctlk)) but there is one more step: to main-
tain a proper correspondence to effect handler semantics,
the evidence passing translation of effects requires that all
resumptions are scoped resumptions. That is: a resumption
can only be resumed in the same evidence context as the
context of the handler. Therefore, we need to guard the way
the resumption is used, by requiring the context in which it
was captured, ctx, and the context in which it was resumed,
ctx’, are equivalent. Xie et al. [2020] prove that this check
is sufficient to maintain coherent semantics.

guard :: Context e → Context e →

(b → Ctl a) → b → Ctl a

guard ctx1 ctx2 k x

= if ctx1 == ctx2 then k x

else error "unscoped resumption"

5.4 Scoped Resumptions

As argued by Xie et al. [2020], all important effect handlers
in practice can be defined in terms of scoped resumptions
(including all examples in this paper), and they argue little ex-
pressiveness is lost. They also show that guaranteeing scoped
resumptions prevents the construction of difficult to reason
about programs where handlers can change the behaviour
of other handlers even if defined orthogonally. In particular,
they present the follow evil example which exhibits this be-
haviour. Suppose we have the following program that uses a
reader effect together with an as yet unknown Evil effect:

ebody :: (Reader Int :? e, Evil :? e) ⇒ Eff e Int

ebody = do x <- perform ask () – x == 1

perform evil ()

y <- perform ask () – y == 2 !

return (x+y)

We may reason that, if we evaluate this under the previously
defined reader handler, that the two ask operations return
the same value. But such is not always the case if non-scoped
resumptions are allowed. With non-scoped resumptions we
can define a handler for Evil that is fully orthogonal to the
well behaved reader handler, but can still change what value
ask returns:

data Evil e ans = Evil { evil :: Op () () e ans }

hevil :: Eff (Evil :* e) a → Eff e (() → Eff e a)

hevil = handlerRet (\x → (_ → return x)) (Evil{

evil = operation (_ k →

return (_ → do f <- k (); f ()))

})

102

Effect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

The hevil handler captures the current resumption k under
a lambda, and returns that directly as the result. This lambda
can now be used to resume again but this time under a new
reader handler:

nonscoped :: Eff e Int

nonscoped = do f <- reader (1::Int) (hevil ebody)

reader (2::Int) (f ())

In our library, nonscoped fails at runtime in the guard with
a non-scoped resumption exception since the resumption
k that was captured in hevil is resumed under a different
handler context. We refer the reader to Xie et al. [2020] for
further details and examples.

5.5 Selecting a Sub Context

We still need to define an instance for subContext. In princi-
ple, we would like to simply define two instances: one where
the head of the context matches the handler type, and one
where we need to recurse into the tail:

instance (h :? (h :* e)) where

subContext ctx = SubContext ctx

instance (h :? e) ⇒ (h :? (h’ :* e)) where

subContext (CCons _ _ ctx) = subContext ctx

Unfortunately, this does not quite work as we cannot di-
rectly express the type inequality h /= h’ and thus the
instances overlap (and need further extensions as well). How-
ever, this is a known problem in Haskell [Kiselyov et al. 2004]
and many solutions have emerged over the years. Recently,
the use of type families [Schrijvers et al. 2008] to declare
the (in)equality of types helps a lot for type inference and
we use that technique here [Eisenberg 2012; Eisenberg and
Weirich 2012; Xia 2018]. We use the function HEqual as a
type-level equality function for handlers:

type family HEqual (h1 :: * → * → *) h2 where

HEqual h1 h1 = ’True

HEqual h1 h2 = ’False

The type function HEqual h1 h2 returns true only if the
handler types h1 and h2 are equivalent. Datatype promotion
(’) [Yorgey et al. 2012] lifts the boolean values to the type-
level.
We also use a helper class InEq with a single method

subContextEq. Its instances depend on whether h1, the han-
dler we are looking for, and h2, the current head of the con-
text, are equivalent.

class (heq ~ HEqual h1 h2) ⇒ InEq heq h1 h2 e where

subContextEq :: Context (h2 :* e) → SubContext h1

We define a single instance for (:?) in terms of subContextEq:

instance (InEq (HEqual h1 h2) h1 h2 e) ⇒

(h1 :? (h2 :* e)) where

subContext = subContextEq

There are now two instances for InEq that distinguishwhether
h1 and h2 are equivalent:

instance (h1 ~ h2) ⇒ InEq ’True h1 h2 e where

subContextEq (CCons m h ctx) = SubContext m h ctx

instance (’False ~ HEqual h1 h2, h1 :? e) ⇒

InEq ’False h1 h2 e where

subContextEq (CCons _ _ ctx) = subContext ctx

Tricky, but it works well with type inference in our expe-
rience since there are no overlapping instances. Neverthe-
less, having proper row-types [Gaster and Jones 1996; Lei-
jen 2005] would still be preferable in our opinion to this
complex encoding.

5.6 Return Clauses

We have shown the implementation of handler in Section 5.2.
The definition of handlerRet is simply built upon handler:

handlerRet :: (ans → a) → h e a →

Eff (h :* e) ans → Eff e a

handlerRet ret h action

= handler h (do x <- action; return (ret x))

However, this form of return clause is more restricted than
allowed by the full effect handler semantics [Xie et al. 2020],
as a return clause can perform operations and should have
type ans → Eff e a. However, we can not define this as:

handlerRet ret h action

= handler h (do x <- action; ret x)

as that would cause any operation in ret to be potentially
handled by the handler h itself! The correct definition needs
to use mask to mask out the current handler [Biernacki et
al. 2017; Leijen 2018, Section 4.2]:

handlerRetEff :: (ans → Eff e a) → h e a →

Eff (h :* e) ans → Eff e a

handlerRetEff ret h action

= handler h (do x <- action; mask (ret x))

Nevertheless, the generalized definition is almost never needed
in practice and most of the time handlerRet suffices.

5.7 Handler Isolation

As shown in Section 4.3, we used the function handlerHide

to łhidež a handler and only make it available locally. This
proved essential to implement local state isolation. The type
of handlerHide is:

handlerHide :: h (h0 :* e) ans → Eff (h :* e) ans →

Eff (h0 :* e) ans

where the top most handler h0 is only made visible to the
operations in handler h, but not to the action it handles (of
type Eff (h :* e) ans). Unfortunately, we cannot implement
this directly: since the context type of the action is h :* e,
we have a concrete context of the form CCons m h ctx where
ctx :: Context e and h :: h e ans ś which does not
match the required h (h0 :* e) ans. We like to hide the h0

handler, but need to push it back on the context e before we
can handle any of its operations. To do this, we extend the
context datatype with a context transformer :

data Context e where

103

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

CNil :: Context ()

CCons :: Marker ans → h e’ ans →

(Context e → Context e’) →

Context e → Context (h :* e)

The context transformer is a function of type Context e

to Context e’ and we can now use handlers with context
e’ (instead of e). Usually, the transformer is the identity
function where e ~ e’:

handler :: h e ans → Eff (h :* e) ans → Eff e ans

handler h action

= Eff $ \ctx →

prompt (\m → under (CCons m h id ctx) action)

The transformer is applied in perform to transform the evi-
dence context that was passed down into a context that is
required by the handler:

perform selectOp x

= Eff (\ctx → case subContext ctx of

SubContext (CCons m h g ctx’) →

case (selectOp h) of

Op f → f m (g ctx’) x)

Now, we can use the context transformer to implement
handlerHide where we transform the evidence context by
restoring the hidden handler h0 just before handling its op-
erations:

handlerHide :: h (h0 :* e) ans →

Eff (h :* e) ans →

Eff (h0 :* e) ans

handlerHide h action

= Eff $ \ (CCons m’ h’ g’ ctx’) →

prompt $ \m →

let g = CCons m’ h’ g’

in under (CCons m h g ctx’) action

In the actual implementation we do not use a function for
the context transformer but instead represent it explicitly
as a GADT. This is done to improve compiler optimizations
where the explicit constructors allow better inlining. Context
transformers are also essential to implement versions of mask
and handlerHide that are not restricted to the top handler,
but we leave this to future work.

6 Benchmarks

This section evaluates the performance of our library, by
implementing the benchmarks fromKiselyov and Ishii [2015].
We compare the performance of our library (EV) relative to
(1) the latest Extensible Effects library (EE) [Kiselyov and
Ishii 2015]; (2) the latest Fused Effect library (FE), which
follows the techniques described in [Schrijvers et al. 2019;
Wu and Schrijvers 2015b; Wu et al. 2014]; and (3) the monad
transformer libraryMTL.

The benchmark code was compiled using GHC 8.6.5 with
the compile flag -O2. The benchmarks were run on a HP-Z4
workstation with a 4-core Intel Xeon processor at 3.60GHz
and 32 MiB memory. The performance results were collected
using O’Sullivan’s Criterion library.

Figure 2 summarizes our benchmark results.

6.1 Counter

As a basic check, we use the counter benchmark [Kammar et
al. 2013; Kiselyov and Ishii 2015] which recursively counts
down, with 107 as the initial value for the state.

runCount :: (State Int :? e) ⇒ Eff e Int

runCount = do i <- perform get ()

if (i==0) then return i

else do perform put (i - 1)

runCount

The pure implementation of the counter is simply a tight
loop for counting down. The results are given in Figure 2b.
The Pure, MTL, and FE versions are all fully inlined and re-
curse directly over a decreasing parameter. Here we can see
that the state monad is highly optimized in GHC, and that
the build rules in FE are triggered. Our EV implementation
is about 5.5 times slower than those. However, as it uses
internally an STRef for the local state and it performs very
close to a plain runST implementation, it is close to optimal
(and only limited by the performance of updateable refer-
ences in GHC). EV is respectively 7 and 18 times faster than
EE and EV NT. The EV NT is a non tail version: it uses our
library but uses an operation instead of a function to define
state operations. This performs badly here, as every time it
needs to yield up and restore the resumption ś evaluating
tail-resumptive operations in-place is really effective.

6.2 Realistic Counter

The counter benchmark is a bit unrealistic as it can be heavily
optimized as a special case. Kiselyov and Ishii [2015] present
a variation that is perhaps more indicative of performance
in real programs:

runCount5 :: (State Integer :? e) ⇒

Integer → Eff e Integer

runCount5 n = foldM f 1 [n, n - 1 .. 0]

where f acc x | x ‘mod‘ 5 == 0

= do i <- perform get ()

perform put (i+1)

return (max acc x)

f acc x = return (max acc x)

Here the program folds over n numbers to find its maximum,
and performs a get and putwhenever it hits a multiple of five.
This time we use 106 as the initial state. The pure version
models state as a tuple. Figure 2c shows the new results over
this benchmark.

Now the performance of all libraries is more aligned. Our
library EV performs best here, and is about 1.5× faster than
the next contenders EE and EF which perform similarly, and
each about twice as fast as the łpurež version. We usually
expect the direct pure version to be the fastest, but in this case
it needs to fold with an extra state which causes allocation
of tuples.

104

Effect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

(a) Deep Layer Stack

Time Speed

Pure 9 5.44×
MTL 9 5.44×
RunST 41 1.20×
EE 339 0.14×
FE 10 4.90×
EV NT 867 0.06×
EV 49 1.00×

(b) Counter

Time Speed

Pure 247 0.34×
MTL 327 0.25×
RunST 256 0.32×
EE 129 0.64×
FE 136 0.61×
EV NT 99 0.84×
EV 83 1.00×

(c) Counter5

Time Speed

Pure 57.2 1.01×
MTL 62.2 0.93×
EE 61.9 0.93×
FE 59.5 0.97×
EV 57.6 1.00×

(d) Error

Time Speed

MTL 141 4.23×
EE 574 1.04×
FE 229 2.60×
EV 596 1.00×

(e) Pythagorean Triples

Time Speed

MTL 3230 0.39×
EE 1698 0.75×
FE 4974 0.26×
EV 1272 1.00×

(f) Pythagorean Triples (C)

Figure 2. Benchmark Results. Time is in milliseconds, while speed is the relative performance with respect to our libray (EV).

6.3 Multi Layer Counter

Kiselyov and Ishii [2015] use the realistic state counter to
further evaluate performance when there are multiple layers
of effects (handlers or monad transformers). Some imple-
mentations will increase non-linearly in such case.
In the benchmark, we put many Reader layers under or

over the target State layer. For EV, we again tested both the
tail-resumptive version (with value and function), and the
non-tail resumptive one as EV NT.
Figure 2a presents the results, where the layer 0 results

correspond to the previous benchmark. When we put the
state layer at the bottom of the layer stack (the left of Fig-
ure 2a), as we increase the number of the reader layers over
the state layer, our EV runs in constant time, EE runs in
linear time and MTL seems to run in quadratic time. On the
other hand, if we put the state layer at the top of the layer

stack (the right of Figure 2a), as we increase the number of
the reader layers under the state layer, our EV still runs in
constant time, and this time EE also runs in constant time
while MTL seems to run in linear time.

For this benchmark, again EV is faster than the other
alternatives. Notably, there is little extra cost to adding more
reader layers over- or under the target state layer. We believe
this is due to those operations being tail-resumptive, and
thus they are always evaluated in place and never need yield
up. On the other hand, when the reader layers are over the
state, EE and FE still need to yield up to find the target state
layer, which starts to take linear time in the number of reader
layers. In both cases, MTL suffers severely for deep stacks.

6.4 Error Effect

The single error effect benchmark [Kiselyov and Ishii 2015]
calculates the product of 107 copies of one followed by one

105

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

zero, and throws an error when it hits the zero. The pure
version simply returns the product.

runError :: (Except :? e) ⇒ Eff e Int

runError = foldM f 1 (replicate 10000000 1 ++ [0])

where f acc 0 = perform E.throwError (0::Int)

f acc x = return $ acc * x

The results are given in Figure 2d. For the error effect all
versions have similar performance. Note there is no separate
EV NT as exceptions are already not tail-resumptive.

6.5 Non-determinism

The non-determinism benchmark [Kiselyov and Sivaramakr-
ishnan 2017] searches for Pythagorean triples up to 250 with
non-deterministic brute-force.

pyth :: (Choose :? e) ⇒ Int → Eff e (Int, Int, Int)

pyth upbound = do

x <- perform choose upbound

y <- perform choose upbound

z <- perform choose upbound

if (x*x + y*y == z*z) then return (x,y,z)

else perform none ()

Our EV version uses a Choose effect which chooses from 1

to upbound. The MTL version uses the continuation monad
transformer ContT with MonadPlus instance to collect all re-
sults. The EE library provides a (specially implemented) non-
determinism effect NDet. Figure 2e presents the results. The
results show that EV is competitive with EE, while both are
(much) slower than FE and MTL.

Like the Counter benchmark, the plain version is very
amenable to specific GHC optimizations for lists and con-
tinuations. A variant of this benchmark performs one other
operation: it counts the number of all attempted choices us-
ing a state effect. Figure 2f presents the results. This time EV
is quite a bit faster than the alternatives. Again we feel this
is more indicative of real-world performance as one usually
needs to combine various effects.

6.6 Other Approaches

Kammar et al. [2013] describe the łHandlers in action (HIA)ž
implementation of effect handlers. Since their implementa-
tion has only been maintained up to GHC 7.8.2 (released
April 2014), our benchmarks do not support HIA. Instead,
we briefly discuss the benchmark results of EE and HIA
presented in Kiselyov and Ishii [2015] where they show
that EE performs similarly, or slightly faster than HIA for
most benchmarks, except for the state counter and the non-
counting pythagorean triple benchmark (where HIA has
similar performance as MTL). As noted by Kiselyov and Ishii,
this is because GHC is good at optimizing simple CPS code
employed in simple instances of HIA. In this sense, we believe
that like EE, our EV outperforms HIA in most benchmarks
except for those two.

Also note that EE has been evolving after Kiselyov and
Ishii [2015], and our benchmarks run on the latest version of
EE. For example, the curve of EE in the deep layer benchmark
is more smooth than the one in Kiselyov and Ishii [2015].
The eff library [King 2020] is a work-in-progress imple-

mentation of an extensible effect system. The library uses
a fork of the GHC compiler that is extended with native
support for delimited continuations, and there is currently
an open GHC proposal to include the new primitives in GHC
proper. Based upon the primitives, it is shown that the library
is as fast as MTL in the single state benchmark. There is yet
no direct way to run eff on all benchmarks. We are excited
though by the prospect of having native delimited continu-
ations as it possibly enables a more efficient multi-prompt
implementation for our Ctl monad as well.

7 Related Work

Our Haskell library EV follows the formalization of Fv [Xie
et al. 2020]. The most notable difference is that Fv encodes
effects using a row type system which is suitable for Hindley-
Milner style type inference, while EV encodes effects using
a combination of a type list (:*) and type class constraints
(:?). This leads to semantic differences in several aspects.
Unlike EV, in Fv, when there are multiple instances of an
effect, only the first instance is (directly) accessible. For exam-
ple, for a row effect ⟨Reader Int,Reader String⟩, the reader
operation ask always corresponds to the first instance, i.e.,
Reader Int, and thus always returns an integer, without need
for type annotations. In contrast, EV is able to distinguish
same effect of different types. Consider:

greetOrExit::(Reader String :? e, Reader Bool :? e)

⇒ Eff e String

greetOrExit

= do s <- perform ask ()

isExit <- perform ask ()

if isExit then return ("goodbye " ++ s)

else return ("hello " ++ s)

Here we have two asks of different types: s asks for a String
and isExit asks for a Bool. This is also reflected in two type
class constraints Reader String :? e and Reader Bool :? e.
When the reader type is not obvious from the context, by
annotating the return type of ask we can indicate which
reader we want. Multiple reader constraints of the same
type, e.g., multiple Reader Int :? e, are allowed but are the
same as a single constraint. To support multiple readers of
the same type, we can use the standard newtype trick.
Kiselyov et al. [2013] first described the extensible effect

library (EE) implemented as a free monad. It models a list
of effects as open union, but uses overlapping instances and
requires effect components to be Typeable. Kiselyov and
Ishii [2015] improve EE using a freer monad, which removes
these drawbacks. Furthermore, it improves the performance
building the monadic bind continuation as type-aligned se-
quence to accumulate the request continuation. Currently,

106

Effect Handlers in Haskell, Evidently Haskell ’20, August 27, 2020, Virtual Event, USA

this type-aligned sequence is user-facing: when defining
handlers, users get the current sequence and need to explic-
itly accumulate the sequence to ensure the right semantics.
An advantage of our library is that it exposes no internals
of effect handling even to the definition of the operations
(which also guarantees that one cannot deviate from the
effect handler semantics as implemented by our library). It
may be possible to integrate type-aligned sequences into our
Ctl module as well to create continuations more efficiently
but we have not yet investigated this in detail.
Kammar et al. [2013] implement HIA based on a free

monad and a continuation monad. They abstract over oper-
ations and thus one operation can be handled by multiple
effects. However, abstraction over operations requires HIA
to manage both effects and handlers using type class con-
straints which requires all handlers to be top-level. HIA relies
on Template Haskell to generate the boilerplate code of the
type-class encoding for handler definitions, which unfortu-
nately increases the programming barrier.

Wu et al. [2014] implement extensible effects using a Data
types à la carte approach [Swierstra 2008], where handlers
are folds over algebras. This is further developed by Wu
and Schrijvers [2015a] where handlers can be fused together
to avoid constructing intermediate datatypes. Also, like EE,
it exposes the internals of effect handling to the operation
and handler definitions (for example, a handler needs to
propagate other operations explicitly).
Closely related to algebraic effects is the monad trans-

former library (MTL) [Liang et al. 1995]. However, MTL is
not as composable as effects since the semantics is fixed by
the order of the transformers, and it is necessary to explicitly
lift operations through the transformer stack. Implicit lifting
is possible but it is restricted. For example, the type class
MonadReader allows to use the reader operation ask without
specifying its position in the transformer stack. However, it
relies on functional dependency and thus can only support
up to one layer of Reader. See also Kiselyov et al. [2013] for
an extensive comparison between effects and MTL.

8 Conclusion

In this paper, we have introduced a new effect handlers li-
brary in Haskell based on evidence passing, which offers
a concise library interface with good performance. In the
future, we plan to investigate ways to abstract over the re-
peated effect context and answer type when defining an
effect. Also, currently mask and handlerHide are restricted to
the top-level handler and we would like to extend those to
work on arbitrary handlers in the effect.

Acknowledgments

We would like to thank Simon Peyton Jones for the inspiring
discussion on an early version of the Ctlmonad.We also like
to thank the anonymous reviewers for their helpful feedback.

References
Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Dec.

2017. Handle with Care: Relational Interpretation of Algebraic Effects

and Handlers. Proc. ACM Program. Lang. 2 (POPL’17 issue): 8:1ś8:30.

doi:10.1145/3158096.

Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. Jan.

2020. Doo Bee Doo Bee Doo. In the Journal of Functional Programming,

January. To appear in the special issue on algebraic effects and handlers.

R Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. 2007. A

Monadic Framework for Delimited Continuations. Journal of Func-

tional Programming 17 (6). Cambridge University Press: 687ś730.

doi:10.1017/S0956796807006259.

Richard Eisenberg. Dec. 2012. Decidable Propositional Equality in Haskell.

https://typesandkinds.wordpress.com/2012/12/01/decidable-

propositional-equality-in-haskell.

Richard Eisenberg, and Stephanie Weirich. 2012. Dependently

Typed Programming with Singletons. In Proceedings of the 2012

Haskell Symposium, 117ś130. Haskell ’12. Copenhagen, Denmark.

doi:10.1145/2364506.2364522.

Ben R. Gaster, and Mark P. Jones. 1996. A Polymorphic Type System for Exten-

sible Records and Variants. NOTTCS-TR-96-3. University of Nottingham.

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Ac-

tion. In Proceedings of the 18th ACM SIGPLAN International Conference

on Functional Programming, 145ś158. ICFP ’13. ACM, New York, NY,

USA. doi:10.1145/2500365.2500590.

Ohad Kammar, and Matija Pretnar. Jan. 2017. No Value Restriction Is Needed

for Algebraic Effects and Handlers. Journal of Functional Programming

27 (1). Cambridge University Press. doi:10.1017/S0956796816000320.

Alexis King. May 2020. Eff: Screaming Fast Extensible Effects for Less .

https://github.com/hasura/eff.

Oleg Kiselyov, and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects.

In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell, 94ś105.

Haskell’15. Vancouver, BC, Canada. doi:10.1145/2804302.2804319.

Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly Typed

Heterogeneous Collections. In Proceedings of the 2004 ACM SIGPLAN

Workshop on Haskell, 96ś107. Haskell ’04. Association for Computing

Machinery, New York, NY, USA. doi:10.1145/1017472.1017488.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible Effects: An

Alternative to Monad Transformers. In Proceedings of the 2013 ACM SIG-

PLAN Symposium on Haskell, 59ś70. Haskell ’13. Boston, Massachusetts,

USA. doi:10.1145/2503778.2503791.

Oleg Kiselyov, and KC Sivaramakrishnan. Dec. 2017. Eff Directly in OCaml.

In ML Workshop 2016. http://kcsrk.info/papers/caml-eff17.pdf.

Extended version.

Daan Leijen. 2005. Extensible Records with Scoped Labels. In Proceedings of

the 2005 Symposium on Trends in Functional Programming, 297ś312.

Daan Leijen. Sep. 2008. HMF: Simple Type Inference for First-Class Poly-

morphism. In Proceedings of the 13th ACM Symposium of the Interna-

tional Conference on Functional Programming. ICFP’08. Victoria, Canada.

doi:10.1145/1411204.1411245.

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types.

In MSFP’14, 5th Workshop on Mathematically Structured Functional Pro-

gramming. doi:10.4204/EPTCS.153.8.

Daan Leijen. Jan. 2017. Type Directed Compilation of Row-Typed Alge-

braic Effects. In Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages (POPL’17), 486ś499. Paris, France.

doi:10.1145/3009837.3009872.

Daan Leijen. 2018. First Class Dynamic Effect Handlers: Or, Polymorphic

Heaps with Dynamic Effect Handlers. In Proceedings of the 3rd ACM

SIGPLAN International Workshop on Type-Driven Development, 51ś64.

TyDe 2018. St. Louis, MO, USA. doi:10.1145/3240719.3241789.

Daan Leijen, and ErikMeijer. 2000. Domain Specific Embedded Compilers. In

Proceedings of the 2nd Conference on Domain-Specific Languages, 109ś122.

DSL ’99. Austin, Texas, USA. doi:10.1145/331960.331977.

107

https://dx.doi.org/10.1145/3158096
https://dx.doi.org/10.1017/S0956796807006259
https://typesandkinds.wordpress.com/2012/12/01/decidable-propositional-equality-in-haskell
https://typesandkinds.wordpress.com/2012/12/01/decidable-propositional-equality-in-haskell
https://dx.doi.org/10.1145/2364506.2364522
https://dx.doi.org/10.1145/2500365.2500590
https://dx.doi.org/10.1017/S0956796816000320
https://github.com/hasura/eff
https://dx.doi.org/10.1145/2804302.2804319
https://dx.doi.org/10.1145/1017472.1017488
https://dx.doi.org/10.1145/2503778.2503791
http://kcsrk.info/papers/caml-eff17.pdf
https://dx.doi.org/10.1145/1411204.1411245
https://dx.doi.org/10.4204/EPTCS.153.8
https://dx.doi.org/10.1145/3009837.3009872
https://dx.doi.org/10.1145/3240719.3241789
https://dx.doi.org/10.1145/331960.331977

Haskell ’20, August 27, 2020, Virtual Event, USA Ningning Xie and Daan Leijen

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers

and Modular Interpreters. In Proceedings of the 22nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, 333ś343.

POPL ’95. Association for Computing Machinery, New York, NY,

USA. doi:10.1145/199448.199528.

Simon Peyton Jones, and John Launchbury. 1995. State in Haskell. Lisp and

Symbolic Comp. 8 (4): 293ś341. doi:10.1007/BF01018827.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark

Shields. Jan. 2007. Practical Type Inference for Arbitrary-Rank Types.

J. Funct. Program. 17 (1). Cambridge University Press, USA: 1ś82.

doi:10.1017/S0956796806006034.

Gordon D. Plotkin, and John Power. 2003. Algebraic Operations

and Generic Effects. Applied Categorical Structures 11 (1): 69ś94.

doi:10.1023/A:1023064908962.

Gordon D. Plotkin, and Matija Pretnar. 2013. Handling Algebraic Effects.

In Logical Methods in Computer Science, volume 9. 4. doi:10.2168/LMCS-

9(4:23)2013.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulz-

mann. 2008. Type Checking with Open Type Functions. In Proceedings of

the 13th ACM SIGPLAN International Conference on Functional Program-

ming, 51ś62. ICFP ’08. Association for Computing Machinery, New York,

NY, USA. doi:10.1145/1411204.1411215.

Tom Schrijvers,Maciej Piróg, NicolasWu, andMauro Jaskelioff. 2019.Monad

Transformers and Modular Algebraic Effects: What Binds Them Together.

In Proceedings of the 12th ACM SIGPLAN International Symposium on

Haskell, 98ś113. Haskell 2019. Association for Computing Machinery,

New York, NY, USA. doi:10.1145/3331545.3342595.

Wouter Swierstra. Jul. 2008. Data Types à La Carte. Journal of Functional

Programming 18 (4): 423ś436. doi:10.1017/S0956796808006758.

Nicolas Wu, and Tom Schrijvers. 2015a. Fusion for Free: Efficient Alge-

braic Effect Handlers. In Proceedings of the International Conference on

Mathematics of Program Construction. MPC’15. doi:10.1.1.723.5577.

Nicolas Wu, and Tom Schrijvers. 2015b. Fusion for Free: Efficient Algebraic

Effect Handlers. In Proceedings of the 12th International Conference on

Mathematics of Program Construction, 9129:302. Springer, Königswinter,

Germany.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope.

In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, 1ś12.

Haskell ’14. Göthenburg, Sweden. doi:10.1145/2633357.2633358.

Li-yao Xia. Jun. 2018. Heterogeneous Lists with Dependent Types in

Haskell. https://blog.poisson.chat/posts/2018-06-06-hlists-

dependent-haskell.html.

Ningning Xie, Jonathan Brachthäuser, Phillip Schuster, Daniel Hillerström,

and Daan Leijen. Aug. 2020. Effect Handlers, Evidently. In 25th ACM

SIGPLAN International Conference on Functional Programming (ICFP’2020).

Jersey City, NJ. doi:10.1145/3408981.

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recursive

Datatype Constructors. In Proceedings of the 30th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, 224ś235.

POPL ’03. Association for Computing Machinery, New York, NY,

USA. doi:10.1145/604131.604150.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,

Dimitrios Vytiniotis, and José Pedro Magalhães. 2012. Giving Haskell a

Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types

in Language Design and Implementation, 53ś66. TLDI ’12. Association for

Computing Machinery, New York, NY, USA. doi:10.1145/2103786.2103795.

108

https://dx.doi.org/10.1145/199448.199528
https://dx.doi.org/10.1007/BF01018827
https://dx.doi.org/10.1017/S0956796806006034
https://dx.doi.org/10.1023/A:1023064908962
https://dx.doi.org/10.2168/LMCS-9%25284:23%25292013
https://dx.doi.org/10.2168/LMCS-9%25284:23%25292013
https://dx.doi.org/10.1145/1411204.1411215
https://dx.doi.org/10.1145/3331545.3342595
https://dx.doi.org/10.1017/S0956796808006758
https://dx.doi.org/10.1.1.723.5577
https://dx.doi.org/10.1145/2633357.2633358
https://blog.poisson.chat/posts/2018-06-06-hlists-dependent-haskell.html
https://blog.poisson.chat/posts/2018-06-06-hlists-dependent-haskell.html
https://dx.doi.org/10.1145/3408981
https://dx.doi.org/10.1145/604131.604150
https://dx.doi.org/10.1145/2103786.2103795

	Abstract
	1 Introduction
	2 A Tour of Reader
	3 Overview of the Effect Interface
	3.1 Defining Effects
	3.2 Performing Operations
	3.3 Defining Operations
	3.4 Defining Handlers

	4 Examples
	4.1 Exception
	4.2 State
	4.3 State as a Function
	4.4 Ambiguity
	4.5 Parser

	5 Implementation
	5.1 Multi-prompt Control
	5.2 Evidence Passing Effects
	5.3 Perform
	5.4 Scoped Resumptions
	5.5 Selecting a Sub Context
	5.6 Return Clauses
	5.7 Handler Isolation

	6 Benchmarks
	6.1 Counter
	6.2 Realistic Counter
	6.3 Multi Layer Counter
	6.4 Error Effect
	6.5 Non-determinism
	6.6 Other Approaches

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

