
Literature Review of GHC Core

Ningning Xie
xnningxie@gmail.com

June 27, 2018

1 Introduction

This document aims at giving an rough overview of the evolution of GHC Core,
System FC, through publications. The motivation of this document is to aid
developers who hack into GHC Core in gaining a theoretical understanding of
each design choice involved in the type system.

Note that this document is not supposed to be a stand-alone literature;
that is, it is impossible to understand all type systems solely by reading this
document. Instead, it is supposed to be read along with the papers. It gives
a summary of each type system’s motivation, and highlights points that are
important or different from previous type systems, which is expected to help
the process of paper reading.

Assumed background: Types and Programming Languages (Pierce, 2002).

2 System FC

System F with Type Equality Coercions, TLDI’07 (Sulzmann et al., 2007).

2.1 Motivation

Language designers have begun to experiment with a variety of type systems
that are difficult or impossible to translate into System F, such as functional
dependencies, generalized algebraic data types (GADTs), and associated types.

This paper presents System FC, which extends System F with 1) explicit
equality witnesses; 2) non-parametric type functions.

2.2 Notes

• The role of coercion in typing:

Γ `e e : σ1 Γ `CO γ : σ1 ∼ σ2
Γ `e e I γ : σ2

fc-typing-Cast

1

mailto:xnningxie@gmail.com

• The systems merges types and coercions.

– Types have judgment Γ `TY σ : κ

– Coercions have judgment Γ `CO γ : σ1 ∼ σ2. Homogeneous.

• Kinds κ ::= ∗ | κ1 → κ2 | σ1 ∼ σ2.

• Sorts δ ::= TY | CO.

– TY for kind ∗ and κ1 → κ2;

– CO for σ1 ∼ σ2 and γ1 ∼ γ2.

• Coercions γ are types, σ1 ∼ σ2 are kinds, CO are sorts. γ :: σ1 ∼ σ2 :: CO.

• The meaning of type function is given by axioms.

• Type functions are required to be saturated.

3 System F ↑C
Giving Haskell a Promotion, TLDI’12 (Yorgey et al., 2012).

3.1 Motivation

The kind system in Haskell is too 1) permissive: type-level programming in
Haskell is almost entirely untyped, because the type system has too few kinds
(∗, ∗ → ∗, and so on); 2) restrictive: It lacks polymorphism.

This paper presents System F ↑
C , which extends System FC with

• Automatic promotion of datatypes to be kinds and data constructors to
be types.

data Nat = Zero | Succ Nat

data Vec :: * -> Nat -> * where

VNil :: Vec a ’Zero

VCons :: a -> Vec a n -> Vec a (’Succ n)

Type Nat is used as a kind, and data constructors Zero and Succ are used
as types, with a quote notation to avoid ambiguity.

• Kind polymorphism, for kinds, types, and terms.

data EqRefl a b where

Refl :: EqRefl a a

Previously, EqRefl:: ∗ → ∗ → ∗, with kind polymorphism we have EqRefl::
∀X .X → X → ∗

2

3.2 Notes

• The formalization distinguish expressions, types, coercions and kinds, but
in implementation they are combined.

• Expressions now include kind abstraction and kind application.

• Kinds κ ::= ∗ | κ1 → κ2 | Constraint | X | ∀X .κ | Tκ , where T is pro-

moted type constant.

• Only one sort Γ `k κ : �

• Types σ ::= ... | K | ∀X .σ | σ κ |∼ , where K is promoted data construc-

tors, and ∼ is equality.

• Important rules for promotion:

K : σ ∈ Γ ∅ ` σ κ

Γ `TY K : κ
fc-kind-KLift

In this rule, a data constructor K is treated as a type and has a kinding
rule. ∅ ` σ κ turns a type into a kind.

Γ `k κ1 : � .. Γ `k κn : � ∅ `TY T : ∗n → ∗
Γ `k Tκ : �

kind-valid-KV-Lift

In this rule, a type constructor T is treated as a kind constructor. This
rule is relatively restrictive since the type of T takes all arguments of kind
∗ and it needs to be fully saturated.

• System F ↑
C turns the equality from System FC into a type constructor

with polymorphic kind:

Γ `TY∼: ∀X .X → X → Constraint
fc-kind-KEq

• Coercions are homogeneous, having type σ1 ∼ σ2, which has kind Constraint.

• Design principle: no kind equalities.

4 Deferred Type Errors

Equality Proofs and Deferred Type Errors, ICFP’12 (Vytiniotis et al., 2012).

3

4.1 Motivation

Based on System F ↑
C , the coercion type σ1 ∼ σ2 is now an ordinary type.

Therefore, we can have ordinary values of this type, and the value can be passed
to or returned from arbitrary terms. This proofs-as-values approach opens up
an entirely new possibility, that of deferring type errors to runtime.

foo = (True, ’a’ && False)

foo = let (c : Char ∼ Bool) = error ’Cound’t ...’

in (True, (cast ’a’ c) && False)

Here we manually define an evidence c : Char ∼ Bool which actually emits
an error, which can be used to type check the program and defer the error to
runtime.

4.2 Notes

• The original erasable type constructor ∼ is renamed to ∼#, and the kind
Constraint is renamed to Constraint#.

• There are two kinds of coercions

– ∼#, the type for primitive coercions γ. Erasable.

– ∼, the type of evidence generated by the type inference engine. Can-
not be erased. Defined as a GADT

data a ∼ b where

Eq# :: (a ∼# b) -> a ∼ b

∼ : forall X. X -> X -> *

Eq# : forall X. forall (a : X). forall (b : X). (a ∼# b) -> (a ∼ b)

• Then we can define the function cast. Each use of cast forces evaluation
of the coercion, via the case expression, which in the case of a deferred
type error, triggers the runtime failure.

cast : forall (a b : *). a -> (a ∼ b) -> b

cast = ∧(a b : *). \(x:a). \(eq:a ∼ b).

case eq of

Eq# (c: a ∼# b) -> x |> c

• The relation between ∼# and ∼ is analogous to that between int and
int#. Refer to Jones and Launchbury (1991) for more details.

• How it works: during constraint generation, we generate a type-equality
constraint even for unifications that are unsolvable. We emit a warning,
and create a value binding for the constraint valuable, which binds it to a
call to error, applied to the error message string.

• The optimization uses wrapper, and re-boxing, so that most equality evi-
dences can be optimized away.

4

5 Explicit Kind Equality

System FC with Explicit Kind Equality, ICFP’13 (Weirich et al., 2013).

5.1 Motivation

System FC lacks kind equality proofs, as mentioned in Section 3. This paper
presents an approach based on dependent type systems with heterogeneous
equality and the Type-in-Type axiom, yet it preserves the metatheoretic prop-
erties of FC.

It enables

• Kind-indexed GADT: the datatype is indexed by both kind and type in-
formation.

data TyRep :: \/ k. k -> * where

TyInt :: TyRep Int

Ty Bool :: TyRep Bool

TyMaybe :: TyRep Maybe

TyApp :: TyRep a -> TyRep b -> TyRep (a b)

zero :: \/ (a : *). TyRep a -> a

zero TyInt = 0

zero TyBool = False

zero (TyApp TyMaybe _) = Nothing

• Promoted GADT: GADT are allowed to be used an as index.

data Kind = Star | Arr Kind Kind

data Ty :: Kind -> * where

TInt :: Ty Star

TBool :: Ty Star

TMaybe :: Ty (Arr Star Star)

TApp :: Ty (Arr k1 k2) -> Ty k1 -> Ty k2

data TyRep (k :: Kind) (t :: Ty k) where

TyInt :: TyRep Star TInt

TyBool :: TyRep Star TBool

TyMaybe :: TyRep (Arr Star Star) TMaybe

TyApp :: TyRep (Arr k1 k2) a -> TyRep k1 b -> TyRep k2 (TApp a b)

• Kind family

5

kind family IK (k :: Kind)

kind instance IK Star = *

kind instance IK (Arr k1 k2) = IK k1 -> IK k2

5.2 Notes

• In this work, the syntax of types and kinds are unified, allowing us to
reuse type coercions as kind coercions, with axoim ∗ : ∗.
σ, κ ::= ∀a : κ.σ | ... | ∀c : φ.σ | σ I γ | σ γ
The type of coercion φ is now separated from types. Namely coercion
abstractions are separated from arrow types.
φ ::= σ1 ∼ σ2

• Equalities are now heterogeneous. In the definition of type equalities σ1 ∼
σ2, the type σ1 and σ2 could have kinds κ1 and κ2 that have no syntactic
relation to each other. A proof γ of σ1 ∼ σ2 implies not only that σ1 and
σ2 are equal, but also that their kinds are equal.

• Coercions are irrelevant to both the operational semantics and type equiv-
alence.

• Important kinding rule:

Γ `TY σ : κ1 Γ `CO γ : κ1 ∼ κ2 Γ `TY κ2 : ∗
Γ `TY σ I γ : κ2

fc-kind-KCast

Important coercion coherence rule:

Γ `CO γ : σ1 ∼ σ2 Γ `TY σ1 I γ
′ : κ

Γ `CO γ I γ′ : σ1 I γ
′ ∼ σ2

fc-co-CT-COH

The use of kind coercions can be ignored when proving type equalities.

Γ `CO γ : σ1 ∼ σ2 Γ `TY σ1 : κ1 Γ `TY σ2 : κ2

Γ `CO kind γ : κ1 ∼ κ2
fc-co-CT-EXT

The new coercion form kind γ extracts the proof of κ1 ∼ κ2 from γ.

• A tricky S_KPUSH rule.

6 Safe Zero-cost Coercions for Newtypes

Safe Zero-cost Coercions for Haskell, ICFP’14 (Breitner et al., 2014), JFP’16
(Breitner et al., 2016).

This work itself is built on Generative Type Abstraction and Type-level
Computation, POPL’11 (Weirich et al., 2011).

6

6.1 Motivation

Consider to define a newtype HTML

newtype HTML = MkHTML String

unHTML :: HTML -> String

unHTML (MkHTML s) = s

linesH :: HTML -> [HTML]

linesH h = map MkHTML (lines (unHTML h))

The runtime cost of linesH is inevitable. To avoid that, this paper describes
safe coercions, with the constraint Coercible and the function

coerce :: Coercible a b => a -> b

Then String -> [String] and HTML -> [HTML] would be coercible and
the function can be rewritted to

linesH :: HTML -> [HTML]

linesH = coerce lines

Coercible is translated into System FC, augmented with roles.

6.2 Notes

• Coercible s t: s and t have bit-for-bit identical run-time representation.

• For every type constructor, each type parameter has a role, determined
by the way in which the parameter is used in the definition of the type
constructor.

– representational: type parameters of ordinary newtypes and datatypes

– phantom: it does not occur in the definition of the type, or it occurs
only as a phantom parameter of another type constructor.

– nominal: parameters that possibly affect the run-time representation
of a type, including parameters of a type/data family, non-uniform
parameters to GADTs, type classes.
Parameters of type variables are always nominal.

– Users can specify the roles via annotation, and the compiler ensures
that role annotations cannot violate type safety.

type role Map nominal representational

• To decide whether two types are coercible:

7

– unwrapping rule: for every newtype NT = MkNT t,
we have Coercible t NT.
This rule is available only if the corresponding newtype data con-
structor is in scope.

– lifting rule: for every type constructor TC r p n,
if Coercible r1 r2,
we have Coercible (TC r1 p1 n) (TC r2 p2 n).

– Coercible is an equivalence relation: reflexivity, symmetry, transitiv-
ity.

– decomposition rule: given non-newtype T,
if Coercible (T r1 p1 n1) (T r2 p2 n2),
then Coercible r1 r2, and n1 ∼ n2.

– type application rule: If Coercible t1 t2, where t1, t2 :: k1 -> k2,
then Coercible (t1 x) (t2 x).

• The type system in the paper is more like the one in Section 3: types and
kinds are not unified and coercions are homogeneous.

• New form of coercion: Γ `CO γ : σ1 ∼κρ σ2

– Nominal equality, written ∼N.

∗ The equality that the source Haskell type checker reasons about.

∗ Type families introduce new nominal equalities.

– Representational equality, written ∼R.

∗ The equality holds between two types that share the same run-
time representation.

∗ A subset of nominal equality.

∗ A Coercible constraint corresponds to a proposition of repre-
sentational equality.

∗ New types introduce new representational roles.

– Phantom equality, written ∼P, holds between any two types.

• Important type-safe cast:

Γ `e e : σ1 Γ `CO γ : σ1 ∼κR σ2

Γ `e e I γ : σ2
fc-typing-Cast-R

The coercion γ must be a proof of representational equalities.

7 Levity Polymorphism

Levity Polymorphism, PLDI’17 (Eisenberg and Peyton Jones, 2017).

8

7.1 Motivation

bTwice :: forall a. Bool -> a -> (a -> a) -> a

bTwice b x f = case b of True -> f (f x)

False -> x

Polymorphic function is supposed to work for any type of argument x. How-
ever, the type of x influences the calling convention, and hence the executable
code. For example, for list x, the function would be passed in a register pointing
into the heap; for a float x, it would be passed in a special floating-point register.

One simple but very slow solution: represent every value uniformly, as a
pointer to a heap-allocated object.

Most languages also support unboxed values that are represented by the
value itself rather than a pointer. Haskell classifies types by kinds. Lifted types
have kind Type, while unlifted types have kind #.

Current Instantiation Principle: all polymorphic type variables have kind
Type. However it introduces several problems. For example,

-> :: Type -> Type -> Type

means Int# -> Int# -> Int# is ill-typed. The current design is sub-kinding:

Type <: OpenKind

<: OpenKind

-> :: OpenKind -> OpenKind -> Type

which is awkward and unprincipled.
The idea of this paper is to replace sub-kinding with kind polymorphism. The

main idea is

-- primitive

TYPE :: Rep -> Type

-- definitions

type Rep = [UnaryRep] -- a type-level list

data UnaryRep = PtrRep -- boxed, lifted

| UPtrRep -- boxed, unlifed

| IntRep -- unboxed ints

| FloatRep -- unboxed floats

| DoubleRep -- unboxed doubles

| ...etc...

type Lifted = ’[PtrRep]

type Type = TYPE Lifted

9

7.2 Notes

boxed: represented by a
pointer into the heap

unboxed: represented by
the value itself

lifted: lazy; has one extra
element beyond the usual
ones representing a non-
terminating computation
(call by need)

Int, Bool (Haskell represents lazy
computation as thunks, so
lifted can only be boxed)

unlifted: strict (call by
value)

ByteArray# Int#, Char#

• Any type that classifies values has kind TYPE r for some r :: Rep. The
type Rep specifies how a value of that type is represented, by giving a
list of UnaryRep. A UnaryRep specifies how a single values is represented.
Examples:

Int :: TYPE ’[PrtRep], TYPE Lifted, Type

Int# :: TYPE ’[IntRep]

Float# :: TYPE ’[FloatRep]

(Int, Bool) :: Type

Maybe Int :: Type

Maybe :: Type -> Type

• Levity polymorphism: an abstraction over only the levity (lifted vs. un-
lifted) of a type.

(->) :: forall (r1 :: Rep) (r2 :: Rep).

TYPE r1 -> TYPE r2 -> Type

• Restrict the use of levity polymorphism so that it can be compiled:

– Disallow levity-polymorphic binders.

– Disallow levity-polymorphic function arguments.

• The correctness of levity polymorphism is proved by 1) defining L: a
variant of System F that supports levity polymorphism 2) defining M: a
λ-calculus in A-normal form, with operational semantics working with an
explicit stack and heap; 3) a type-erasing compilation from L toM, with
correctness proofs.

8 Implementation

System FC, as implemented in GHC, Technical Report (Eisenberg, 2015).

10

This technical report gives an overview as how in practice System FC is
implemented in GHC. This report is expected to be read along with the real
code.

References

Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and Stephanie
Weirich. Safe zero-cost coercions for haskell. In Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’14.
ACM, 2014.

Joachim Breitner, Richard A Eisenberg, Simon Peyton Jones, and Stephanie
Weirich. Safe zero-cost coercions for haskell. Journal of Functional Program-
ming, 26, 2016.

Richard A Eisenberg. System fc, as implemented in ghc. 2015.

Richard A Eisenberg and Simon Peyton Jones. Levity polymorphism. In Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 525–539. ACM, 2017.

Simon L Peyton Jones and John Launchbury. Unboxed values as first class cit-
izens in a non-strict functional language. In Conference on Functional Pro-
gramming Languages and Computer Architecture, pages 636–666. Springer,
1991.

Benjamin C. Pierce. Types and programming languages. MIT press, 2002.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin
Donnelly. System f with type equality coercions. In Proceedings of the 2007
ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, TLDI ’07, pages 53–66. ACM, 2007.

Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhães. Equality
proofs and deferred type errors: A compiler pearl. ACM SIGPLAN Notices,
47(9):341–352, 2012.

Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve
Zdancewic. Generative type abstraction and type-level computation. In Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’11, pages 227–240. ACM, 2011.

Stephanie Weirich, Justin Hsu, and Richard A Eisenberg. System fc with explicit
kind equality. In ACM SIGPLAN Notices, volume 48, pages 275–286. ACM,
2013.

Brent A Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dim-
itrios Vytiniotis, and José Pedro Magalhães. Giving haskell a promotion. In
Proceedings of the 8th ACM SIGPLAN workshop on Types in language design
and implementation, pages 53–66. ACM, 2012.

11

	Introduction
	System FC
	Motivation
	Notes

	System FC"3222378
	Motivation
	Notes

	Deferred Type Errors
	Motivation
	Notes

	Explicit Kind Equality
	Motivation
	Notes

	Safe Zero-cost Coercions for Newtypes
	Motivation
	Notes

	Levity Polymorphism
	Motivation
	Notes

	Implementation

