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Algebraic effect handlers are a powerful way to incorporate effects in a programming language. Sometimes

perhaps even too powerful. In this article we define a restriction of general effect handlers with scoped

resumptions. We argue one can still express all important effects, while improving reasoning about effect

handlers. Using the newly gained guarantees, we define a sound and coherent evidence translation for effect

handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and

coherence of the translation into plain lambda calculus. The evidence in turn enables efficient implementations

of effect operations; in particular, we showwe can execute tail-resumptive operations in place (without needing

to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with

a constant offset.
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1 INTRODUCTION

Algebraic effects [Plotkin and Power 2003] and the extension with handlers [Plotkin and Pret-
nar 2013], are a powerful way to incorporate effects in programming languages. Algebraic effect
handlers can express any free monad in a concise and composable way, and can be used to express
complex control-flow, like exceptions, asynchronous I/O, local state, backtracking, and many more.
Even though there are many language implementations of algebraic effects, like Koka [Lei-

jen 2014], Eff [Pretnar 2015], Frank [Lindley et al. 2017], Links [Lindley and Cheney 2012], and
Multicore OCaml [Dolan et al. 2015], the implementations may not be as efficient as one might
hope. Generally, handling effect operations requires a linear search at runtime to the innermost
handler. This is a consequence of the core operational rule for algebraic effect handlers:

handlem h E[perform op v] −→ f v k
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requiring that (op→ f ) is in the handler h and that op is not in the bound operations in the
evaluation context E (so the innermost handler gets to handle the operation). The operation clause f
gets passed the operation argument v and the resumption k = 𝜆x . handlem h E[x]. The reduction
rule suggests that implementations need to search through the evaluation context to find the
innermost handler, capture the context up to that point as the resumption, and can only then invoke
the actual operation clause f . This search often is linear in the size of the stack, or in the number
of intermediate handlers in the context E.

In prior work, it has been shown that the vast majority of operations can be implemented more
efficiently, often in time constant in the stack size. Doing so, however, requires an intricate runtime
system [Dolan et al. 2015; Leijen 2017a] or explicitly passing handler implementations, instead of
dynamically searching for them [Brachthäuser et al. 2018; Zhang and Myers 2019]. While the latter
appears an attractive alternative to implement effect handlers, a correspondence between handler
passing and dynamic handler search has not been formally established in the literature.
In this article, we make this necessary connection and thereby open up the way to efficient

compilation of effect handlers. We identify a simple restriction of general effect handlers, called
scoped resumptions, and show that under this restriction we can perform a sound and coherent
evidence translation for effect handlers. In particular:

• The ability of effect handlers to capture the resumption k as a first-class value is very powerful
ś perhaps too powerful as it can interfere with the ability to reason about the program. We
define the notion of scoped resumptions (Section 2.2) as a restriction of general effect handlers
where resumptions can only be applied in the very scope of their original handler context.
We believe all important effect handlers can be written with scoped resumptions, while at
the same time ruling out many łwildž applications that have non-intuitive semantics. In
particular, it rules out handlers that change semantics of other operations than the ones it
handles itself. This improves the ability to reason about effects, and the coherence of evidence
translation turns out to only be preserved under scoped resumptions (more precisely: an
evidence translated program does not get stuck if resumptions are scoped). In this paper,
we focus on the evidence translation and use a dynamic check in our formalism. We show
various designs on how to check this property statically, but leave full exploration of such a
check to future work.
• To open up the way to more efficient implementations, we define a type-directed evidence

translation (Section 4) where a vector of handlers is passed down as an implicit parame-
ter to all operation invocations; similar to the dictionary translation in Haskell for type
classes [Jones 1992], or capability passing in Effekt [Brachthäuser et al. 2020]. This turns
out to be surprisingly tricky to get right, and we describe various pitfalls in Section 4.2. We
prove that our translation is sound (Theorem 4 and 7) and coherent (Theorem 8), and that the
evidence provided at runtime indeed always corresponds exactly to the dynamic innermost
handler in the evaluation context (Theorem 5). In particular, on an evaluation step:

handlem h E[perform op ev v] −→ f v k with op ̸∈ bop(E) ∧ (op→ f ) ∈ h

the provided evidence ev will be exactly the pair (m, h), uniquely identifying the actual
(dynamic) handler m and its implementation h. This is the essence to enabling further
optimizations for efficient algebraic effect handlers.

Building on the coherent evidence translation, we describe various techniques for more efficient
implementations (Section 6):

• In practice, the majority of effects is tail resumptive, that is, their operation clauses have
the form op→ 𝜆x .𝜆k. k e with k ̸∈ fv(e). That is, they always resume once in the end with
the operation result. Note that e may use x or perform operations itself, as it has already
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captured (closed over) the specific evidence it needs when the handler was instantiated. We
can execute such tail resumptive operation clauses in place, e.g.

perform op (m, h) v −→ f v (𝜆x . x) (optail→ f ) ∈ h

This is an important optimization that enables truly efficient effect operations at a cost similar
to a virtual method call (since we can implement handlers h as a vector of function pointers
where op is at a constant offset such that f = h.op).
• Generally, evidence is passed as an evidence vector w where each element is the evidence
for a specific effect. That means we still need to select the right evidence at run-time which
is a linear time operation (much like the dynamic search for the innermost handler in the
evaluation context). We show that by keeping the evidence vectors in canonical form, we
can index the evidence in the vector at a constant offset for any context where the effect is
non-polymorphic.
• Since the evidence provides the handler implementation directly, it is no longer needed in
the context. We can follow Brachthäuser and Schuster [2017] and implement handlers using
multi-prompt delimited continuations [Dyvbig et al. 2007; Gunter et al. 1995] instead. Given
evidence (m, h), we directly yield to a specific prompt m:

handlem h E[perform op (m, h) v]

⇝

promptm E[yieldm (𝜆k. (h.op) v k)]

We define a monadic multi-prompt translation (Section 5) from an evidence translated pro-
gram (in Fev) into standard call-by-value polymorphic lambda calculus (Fv) where the monad
implements the multi-prompt semantics, and we prove that this monadic translation is sound
(Theorem 10) and coherent (Theorem 11). Such translation is very important, as it provides
the missing link between traditional implementations based on dynamic search for the
handler [Dolan et al. 2015; Leijen 2014; Lindley et al. 2017] and implementations of lexical
effect handlers using multi-prompt delimited control [Biernacki et al. 2019; Brachthäuser
and Schuster 2017; Zhang and Myers 2019]. Since all effects become explicit, we can compile
programs with a standard backend applying the usual optimizations that would not hold
under algebraic effect semantics, directly. For example, as all handlers become regular data
types, and evidence is a regular parameter, standard optimizations like inlining can often
completely inline the operation clauses at the call site without any special optimization rules
for effect handlers [Pretnar et al. 2017]. Moreover, no special runtime system for capturing
the evaluation context is needed anymore, such as split-stacks [Dolan et al. 2015] or stack
copying [Leijen 2017a], and we can generate code directly for any host platform (including
C or WebAssembly). In particular, recent advances in compilation guided reference count-
ing [Ullrich and Moura 2019] can readily be used. Such reference counting transformations
cannot be applied to traditional effect handler semantics since any effect operation may
not resume (or resume more than once), making it impossible to track the reference counts
directly.

We start by giving an overview of algebraic effects and handlers and their semantics in an untyped
calculus 𝜆𝜖 (Section 2), followed by a typed polymorphic formalization F𝜖 (Section 3) for which we
prove various theorems like soundness, preservation, and the meaning of effect types. In Section 4
we define an extension of F𝜖 with explicit evidence vector parameters, called Fev , define a formal
evidence passing translation, and prove this translation is coherent and preserves the original
semantics. Using the evidence translated programs, we define a coherent monadic translation in
Section 5 (based onmulti-prompt semantics) that translates into standard call-by-value polymorphic
lambda-calculus (called Fv). Section 6 discusses various immediate optimization techniques enabled
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Expressions
e ::= v (value)

| e e (application)
| handle h e (handling)

Values
v ::= x (variables)

| 𝜆x . e (functions f )
| handler h (effect handler)
| perform op (operation)

Handlers h ::= {op1→ f1, . . ., opn→ fn } (operation clauses)
Evaluation Context F ::= □ | F e | v F (pure evaluation)

E ::= □ | E e | v E | handle h E (effectful computation)

(app) (𝜆x . e) v −→ e[x:=v]
(handler) (handler h) v −→ handle h · v ()
(return) handle h · v −→ v

(perform) handle h · E · (perform op) v −→ f v k iff op ̸∈ bop(E) ∧ (op→ f ) ∈ h

where k = 𝜆x . (handle h · E · x)

e −→ e′

E · e ↦−→ E · e′
[step]

bop(□) = ∅

bop(E e) = bop(E)
bop(v E) = bop(E)
bop(handle h E)= bop(E) ∪ { op | (op→ f ) ∈ h }

Fig. 1. 𝜆𝜖 : Untyped Algebraic Effect Handlers

by evidence passing, in particular tail-resumption optimization, effect-selective monadic translation,
and bind-inlining to avoid explicit allocation of continuations.

For space reasons, all evaluation context type rules and the full proofs of all stated lemmas and
theorems can be found in a separate extended technical report [Xie et al. 2020], which also includes
further discussion of possible extensions.

2 UNTYPED ALGEBRAIC EFFECT HANDLERS

We begin by formalizing a minimal calculus of untyped algebraic effect handlers, called 𝜆𝜖 . The
formalization helps introducing the background, sets up the notations used throughout the paper,
and enables us to discuss examples in a more formal way.
The formalization of 𝜆𝜖 is given in Figure 1. It essentially is a standard call-by-value lambda

calculus extended with syntax to perform operations and to handle them. It corresponds closely to
the untyped semantics of Forster et al. [2019], and the effect calculus presented by Leijen [2017c].
Sometimes, effect handler semantics are given in a form that does not use evaluation contexts, e.g.
[Kammar and Pretnar 2017; Pretnar 2015], but in the end both formulations are equivalent (except
that using evaluation contexts turns out to be convenient for our proofs).

There are two differences to earlier calculi: we leave out return clauses (for simplicity) and instead
of one handle h expression we distinguish between handle h e (as an expression) and handler h (as
a value). A (handler h) v evaluates to handle h (v ()) and just invokes its given function v with
a unit value under a handle h frame. As we will see later, handler is generative and instantiates
handle frames with a unique marker. As such, we treat handle as a strictly internal frame that only
occurs during evaluation.
The evaluation contexts consist of pure evaluation contexts F and effectful evaluation contexts

E that include handle h E frames. We assume a set of operation names op. The (perform op) v
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construct calls an effect operation op by passing it a value v. Operations are handled by handle h e

expressions, which can be seen in the (perform) rule. Here, the condition op ̸∈ bop(E) ensures
that the innermost handle frame handles an operation. Evaluation continues with the body of the
operation clause (op→ f ), passing the argument value v and the resumption k to f . Note that f v k

is not evaluated under the handler h, while the resumption always resumes under the handler h
again; this describes the semantics of deep handlers and correspond to a fold in a categorical sense,
as opposed to shallow handlers that are more like a case [Kammar et al. 2013].

For conciseness, we often use dot notation to decompose and compose evaluation contexts, which
also conveys more clearly that an evaluation context essentially corresponds to a runtime stack.
Dot notation is defined as:

E · e � E[e]
□ e · E� E e

v □ · E � v · E � v E
handle h □ · E � handle h · E � handle h E

For example, we would write v · handle h · E · e as a shorthand for v (handle h (E[e])).

2.1 Examples

Here are some examples of common effect handlers. Many practical uses of effect handlers are a
variation of these.

Exception: Assuming we have data constructors just and nothing, we can define a handler for
exceptions that converts any exceptional computation e to either just v or nothing:

handler { throw→ 𝜆x . 𝜆k. nothing } (𝜆_. just e)

For example using e = perform throw () evaluates to nothing while e = 1 evaluates to just 1.
Reader: In the exception example we just ignored the argument and the resumption of the

operation but the reader effect uses the resumption to resume with a result:

handler { get → 𝜆x . 𝜆k. k 1 } (𝜆_. perform get () + perform get ())

Here we handle the get operation to always return 1 so the evaluation proceeds as:

handler { get → 𝜆x . 𝜆k. k 1 } (𝜆_. perform get () + perform get ())

↦−→∗ handle h · perform get () + perform get ()

↦−→∗ (𝜆x . handle h · (□ + perform get ()) · x) 1
↦−→ handle h · (□ + perform get ()) · 1
↦−→∗ handle h · (1 + □) · 1
↦−→∗ 2

State: We present three variants of how to encode state using effect handlers. The first variant is
quite involved as we return functions from the operation clauses ś like the state monad (variant 1):

h = { get → 𝜆x . 𝜆k. (𝜆y. k y y), set → 𝜆x . 𝜆k. (𝜆y. k () x) }

(handler h (𝜆_. (perform set 21; x ← perform get (); (𝜆y. x + x))) 0

Here we assume x ← e1; e2 as a shorthand for (𝜆x . e2) e1, and e1; e2 for (_← e1; e2). The evaluation
of an operation clause now always returns directly with a function that takes the current state as
its input; which is then used to resume with:

(handler h (𝜆_. perform set 21; x ← perform get (); (𝜆y. x + x) )) 0
↦−→∗ (□ 0) · handle h · (□; x ← perform get (); (𝜆y. x + x)) · perform set 21
↦−→∗ (□ 0) · (𝜆y. k () 21) with k = 𝜆x . handle h · (□; x ← perform get (); (𝜆y. x + x)) · x

= (𝜆y. k () 21) 0
↦−→ k () 21
↦−→ (handle h · (□; x ← perform get (); (𝜆y. x + x)) · ()) 21
= (□ 21) · handle h · (() ; x ← perform get () ; (𝜆y. x + x))

↦−→∗ 42
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Clearly, defining local state as a function is quite cumbersome, so usually one allows for parameter-

ized handlers [Bauer and Pretnar 2015a; Leijen 2017c; Pretnar 2010] that keep a local parameter p
with their handle frame, where the evaluation rules become:

phandler h v ′ v −→ phandle h v ′ · v ()

phandle h v ′ · E · perform op v −→ f v ′ v k iff op ̸∈ bop(E) ∧ (op→ f ) ∈ h

where k = 𝜆y x . (phandle h y · E · x). Here the handler parameter v ′ is passed to the operation
clause f and later restored in the resumption which now takes a fresh parameter y besides the
result value x. With a parameterized handler the state effect can be concisely defined as (variant 2):

h = { get → 𝜆y x k. k y y, set → 𝜆y x k. k x () }

phandler h 0 (𝜆_. perform set 21; x ← perform get (); x + x)

Another important advantage in this implementation is that the state effect is now tail resumptive

which is beneficial for performance (as shown in the introduction).
Finally, there is another elegant way to implement local state by Biernacki et al. [2017], who

define get and set operations in separate handlers (variant 3):

h1 = { get → 𝜆_ k. k 0 }
h2 = { set → 𝜆x k. handler { get → 𝜆_ k. k x } (𝜆_. k ()) }
handler h1 (𝜆_. handler h2 (𝜆_. perform set 42; x ← perform get (); x + x))

Every set operation installs a fresh handler for the get operation and resumes under that (so the
innermost get handler always contains the latest state). Even though elegant, there are some
drawbacks to this encoding: a naïve implementation may use n handler frames for n set operations,
typing this example is tricky and usually requires masking [Biernacki et al. 2017; Hillerström and
Lindley 2016], and, as we will see, it does not use scoped resumptions and thus cannot be used with
evidence translation.
Backtracking: By resuming more than once, we can implement backtracking using algebraic

effects. For example, the amb effect handler collects all possible results in a list by resuming the
flip operation first with true as result, and later again with false as result

handler { flip→ 𝜆_ k. xs← k true; ys← k false; xs ++ ys }
(𝜆_. x ← perform flip (); y← perform flip (); [x && y])

returning the list [true, false, false, false] in our example. A similar technique can also be used to
express probabilistic programming [Kiselyov and Shan 2009] with effect handlers.
Async: We can use resumptions k as first-class values and for example store them into a queue

to implement cooperative threads [Dolan et al. 2017] or asynchronous I/O [Leijen 2017b]. Assuming
we have a state handler hqueue that maintains a queue of pending resumptions, we can implement a
scheduler as:

hasync = { fork → 𝜆f k. perform enqueue k; schedule f ; next ()
yield→ 𝜆_ k. perform enqueue k; next () }

next = 𝜆_. k← perform dequeue (); k ()

Here, we assume enqueue enqueues a resumption k, and dequeue () returns one, or returns an
identity function if the queue is empty. The schedule function runs a new action f under the async
handler:

schedule= 𝜆f . handler hasync (𝜆_. f ())
async = 𝜆f . handler hqueue (𝜆_. schedule f )

The main wrapper async schedules an action under a fresh scheduler queue handler hqueue , which
is shared by all forked actions under it.
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2.2 Scoped Resumptions

The ability of effect handlers to capture the resumption as a first-class value is very powerful ś
and can be considered as perhaps too powerful. In particular, it can be (ab)used to define handlers
that change the semantics of other handlers that were defined and instantiated orthogonally. Take
for example an operation op1 that is expected to always return the same result, say 1. We can now
define another operation opevil that changes the return value of op1 after it is invoked! Consider
the following program where we leave f and hevil undefined for now:

h1 = { op1→ 𝜆x k. k 1 }
e = perform op1 (); perform opevil (); perform op1 ()

f (handler h1 (𝜆_. handler hevil (𝜆_. e)))

Even though h1 is defined as a pure reader effect and defined orthogonal to any other effect, the
opevil operation can still cause the second invocation of op1 to return 2 instead of 1! In particular,
we can define f and hevil as

1:

hevil = { opevil → 𝜆x k. k }

h2 = { op1→ 𝜆x k. k 2 }
f = 𝜆k. handler h2 (𝜆_. k ())

The trick is that the handler hevil does not directly resume but instead returns the resumption k as

is, after unwinding through h1 it is passed to f which now invokes the resumption k under a fresh
handler h2 for op1 causing all subsequent op1 operations to be handled by h2 instead.
We consider this behavior undesirable in practice as it limits the ability to do local reasoning.

In particular, a programmer may not expect that calling opevil changes the semantics of op1. Yet
there is no way to forbid it. Moreover, it also affects static analysis and it turns out for example
that efficient evidence translation (with its subsequent performance benefits) is not possible if we
allow resumptions to be this dynamic.
The solution we propose in this paper is to limit resumptions to be scoped only: that is, a

resumption can only be applied under the same handler context as it was captured. The handler context
is the evaluation context where we just consider the handler frames, e.g. for any evaluation context
E of the form F0 · handle h1 · F1 · . . . · handle hn · Fn, the handler context, hctx(E), is h1 · h2 · . . . · hn.
In particular, the evil example is rejected as it does not use a scoped resumption: k is captured
under h1 but applied under h2.

Our definition of scoped resumption is minimal in the sense that it is the minimal requirement
needed in the proofs to maintain coherence of evidence translation. In this paper, we guarantee
scoped resumptions using a dynamic runtime check in evidence translated programs (called guard),
but it is also possible to check it statically. It is beyond the scope of this paper to give a particular
design, but some ways of doing this are:

• Lexical scoping: a straightforward approach is to syntactically restrict the use of the resump-
tion to be always in the lexical scope of the handler: i.e. fully applied within the operation
clause and no occurrences under a lambda (so it cannot escape or be applied in nested handler).
This can perhaps already cover all reasonable effects in practice, especially in combination
with parameterized handlers2.
• A more sophisticated solution could use generative types for handler names, together with a
check that those types do not escape the lexical scope as described by Zhang andMyers [2019]
and also used by Biernacki et al. [2019] and Brachthäuser et al. [2020]. Another option could

1Note that this example is fine in 𝜆𝜖 but cannot be typed in F𝜖 as is ś we discuss a properly typed version in Section 4.5.
2The lexical approach could potentially be combined with an łunsafež resumption that uses a runtime check as done in this

article to cover any remaining situations.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 99. Publication date: August 2020.



99:8 Xie, Brachthäuser, Hillerström, Schuster, and Leijen

be to use rank-2 types to prevent the resumption from escaping the lexical scope in which
the handler is defined [Leijen 2014; Peyton Jones and Launchbury 1995].

In the seminal work on algebraic effect handlers by Plotkin and Pretnar [2013] the resumptions k
are in a separate syntactic class, always fully applied, and checked under a context K separate from
Γ. However, they still allow occurrences under a lambda, allowing a resumption to escape. If we
would adapt just the lambda rule to check the premise under an empty environment K , then all
resumptions are scoped (implementing the lexical scoping rule).

2.3 Expressiveness

Scoped resumptions bring easier-to-reason control flow, and, as we will see, open up new design
space for algebraic effects compilation. However, one might worry about the expressiveness of
scoped resumptions. We believe that all important effect handlers in practice can be defined in
terms of scoped resumptions. In particular, note that it is still allowed for a handler to grow its
context with applicative forms, for example:

handler { tick→ 𝜆x k. 1 + k () } (𝜆_. perform tick (); perform tick (); 1)

evaluates to 3 by keeping (1 + □) frames above the resumption. In this example, even though the
full context has grown, k is still a scoped resumption as it resumes under the same (empty) handler
context. Similarly, the async scheduler example that stores resumptions in a stateful queue is also
accepted since each resumption is applied under the same handler context (with the state queue
handler on top). Multiple resumptions as in the backtracking example are also admitted.

We identify three classes of programs that cannot be expressed with scoped resumptions. First,
the state variant 3 based on two separate handlers does not use scoped resumptions since the set
resumption resumes always under a handler context extended with a get handler. However, we can
always use, and due to the reasons we havementionedwemay actually prefer, the normal state effect
or the parameterized state effect. Second, shallow handlers do not resume under their own handler
and as a result generally resume under a different handler context than they captured. Fortunately,
any program with shallow handler can be expressed with deep handlers as well [Hillerström and
Lindley 2018; Kammar et al. 2013] and thus avoid the unscoped resumptions. Finally, Kiselyov
et al. [2006] show an example of code migration that resumes locally captured continuations on
another host, possibly under different handlers.

3 EXPLICITLY TYPED EFFECT HANDLERS IN SYSTEM F𝜖

To prepare for a type directed evidence translation, we first define a typed version of the untyped
calculus 𝜆𝜖 called System F𝜖 ś a call-by-value effect handler calculus extended with (higher-rank
impredicative) polymorphic types and higher kinds à la System F𝜔 , and row based effect types.
Figure 2 defines the extended syntax and evaluation rules with the syntax of types and kinds
in Figure 3. System F𝜖 serves as an explicitly typed calculus that can be the target language of
compilers and, for this article, serves as the basis for type directed evidence translation.
Being explicitly typed, we now have type applications e[𝜎] and abstractions Λ𝛼k . v. Also,

𝜆𝜖 x :𝜎.e, handle𝜖 h e, handler𝜖 h, and perform𝜖 op 𝜎 all carry an effect type 𝜖 . Effect types are
(extensible) rows of effect labels l (like exn or state). In the types, every function arrow 𝜎1→ 𝜖 𝜎2
takes three arguments: the input type 𝜎1, the output type 𝜎2, and its effects 𝜖 when it is evaluated.
When 𝜖 is an empty row, we often omit the effect annotation.

Since we have effect rows, effect labels, and regular value types, we use a basic kind system to
keep them apart and to ensure well-formedness (⊢wf) of types (as defined in the technical report [Xie
et al. 2020]).
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Expressions
e ::= v (value)

| e e (application)
| e[𝜎] (type application)
| handle h e (handler instance)

Values
v ::= x (variables)

| 𝜆𝜖x :𝜎. e (abstraction)

| Λ𝛼k . v (type abstraction)
| handler𝜖 h (effect handler)
| perform𝜖 op 𝜎 (operation)

Handlers h ::= {op1→ f1, . . ., opn→ fn }

Evaluation Context F ::= □ | F e | v F | F [𝜎]
E ::= □ | E e | v E | E [𝜎] | handle𝜖 h E

(app) (𝜆𝜖x :𝜎. e) v −→ e[x:=v]

(tapp) (Λ𝛼k . v) [𝜎] −→ v [𝛼 :=𝜎]
(handler) (handler𝜖 h) v −→ handle𝜖 h · v ()
(return) handle𝜖 h · v −→ v

(perform) handle𝜖 h · E · perform op 𝜎 v −→ f [𝜎] v k iff op ̸∈ bop(E) ∧ (op→ f ) ∈ h

where op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)

k = 𝜆𝜖x :𝜎2 [𝛼 :=𝜎] . handle
𝜖 h · E · x

Fig. 2. System F𝜖 : explicitly typed algebraic effect handlers. Figure 3 defines the types.

Types

𝜎 ::= 𝛼k (type variables of kind k)

| ck 𝜎 . . . 𝜎 (type constructor of kind k)
| 𝜎 → 𝜖 𝜎 (function type)

| ∀𝛼k . 𝜎 (quantified type)

Kinds
k ::= ∗ (value type)

| k→ k (type constructors)
| eff (effect type (𝜇,𝜖))
| lab (basic effect (l))

Effect signature sig ::= { op1 : ∀𝛼1. 𝜎1→ 𝜎 ′1, . . ., opn : ∀𝛼n . 𝜎n→ 𝜎 ′n}

Effect signatures Σ ::= {l1 : sig1, . . ., ln : sign }
Type Constructors ⟨⟩ : eff empty effect row (total)

⟨_ | _⟩ : lab→ eff→ eff effect row extension

Syntax ⟨l1, . . ., ln⟩ � ⟨l1 | . . . | ⟨ln | ⟨⟩⟩ . . . ⟩

⟨l1, . . ., ln | 𝜇⟩ � ⟨l1 | . . . | ⟨ln | 𝜇⟩ . . . ⟩

𝜖 ::= 𝜎eff , 𝜇 ::= 𝛼eff , l ::= clab

Fig. 3. System F𝜖 : types

𝜖 ≡ 𝜖
[refl]

l1 ≠ l2 𝜖1 ≡ 𝜖2

⟨l1, l2 | 𝜖1⟩ ≡ ⟨l2, l1 | 𝜖2⟩
[eq-swap]

𝜖1 ≡ 𝜖2 𝜖2 ≡ 𝜖3

𝜖1 ≡ 𝜖3
[eq-trans]

𝜖1 ≡ 𝜖2

⟨l | 𝜖1⟩ ≡ ⟨l | 𝜖2⟩
[eq-head]

Fig. 4. Equivalence of row-types.
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3.1 Effect Rows

An effect row is either empty ⟨⟩ (the total effect), a type variable 𝜇 (of kind eff), or an extension
⟨l | 𝜖⟩ where 𝜖 is extended with effect label l. We call effects that end in an empty effect closed, i.e.
⟨l1, . . ., ln⟩; and effects that end in a polymorphic tail open, i.e. ⟨l1, . . ., ln | 𝜇⟩. Following Leijen [2014]
and Biernacki et al. [2017], we use simple effect rows where labels can be duplicated, and where an
effect ⟨l, l ⟩ is not equal to ⟨l ⟩. We consider rows equivalent up to the order of the labels as defined
in Figure 4. Note rule eq-swap only swaps distinct labels. Following Leijen [2014], we disallow
polymorphism over labels. There exists a complete and sound unification algorithm for these row
types [Leijen 2005] and thus these are also very suitable for Hindley-Milner style type inference.
We consider using simple row-types with duplicate labels a suitable choice for a core calculus

since it extends System F typing seamlessly as we only extend the notion of equality between
types. There are other approaches to typing effects but all existing approaches depart from standard
System F typing in significant ways. Row typing without duplicate labels leads to the introduction
of type constraints, as in T-REX for example [Gaster and Jones 1996], or kinds with presence
variables (Rémy style rows) as in Links for example [Hillerström and Lindley 2016; Rémy 1994].
Another approach is using effect subtyping [Bauer and Pretnar 2014] but that requires a subtype
relation between types instead of simple equality.
The reason we need equivalence between row types up to order of effect labels is due to poly-

morphism. Suppose we have two functions that each use different effects:

f1 : ∀𝜇. () → ⟨l1 | 𝜇⟩ () f2 : ∀𝜇. () → ⟨l2 | 𝜇⟩ ()

We would still like to be able to express choose f1 f2 where choose : ∀𝛼. 𝛼 → 𝛼 → 𝛼 . Using row
types we can type this naturally as:

Λ𝜇. choose[() → ⟨l1, l2 | 𝜇⟩ ()] (f1 [⟨l2 | 𝜇⟩]) (f2 [⟨l1 | 𝜇⟩])

where the types of the arguments are now equivalent ⟨l1 | ⟨l2 | 𝜇⟩⟩ ≡ ⟨l2 | ⟨l1 | 𝜇⟩⟩ (without needing
subtype constraints or polymorphic label flags).

Similarly, duplicate labels can easily arise due to type instantiation. For example, a catch handler
for exceptions can have type:

catch : ∀𝜇 𝛼. (() → ⟨exn | 𝜇⟩ 𝛼) → (string→ 𝜇 𝛼) → 𝜇 𝛼

where catch takes an action that can raise exceptions, and a handler function that is called when
an exception is caught. Suppose though an exception handler itself raises an exception, and has
type h : ∀𝜇. string→ ⟨exn | 𝜇⟩ int. The application catch action h is then explicitly typed as:

Λ𝜇. catch[⟨exn | 𝜇⟩, int] action h[𝜇]

where the type application gives rise to the type:

catch[⟨exn | 𝜇⟩, int] : (() → ⟨exn, exn | 𝜇⟩ int) → (string→ ⟨exn | 𝜇⟩ int) → ⟨exn | 𝜇⟩ int

naturally leading to duplicate labels in the type. As we will see, simple row types also correspond
naturally to the shape of the runtime evidence vectors that we introduce in Section 4.1 (where
duplicated labels correspond to nested handlers).

3.2 Operations

We assume that every effect l has a unique set of operations op1 to opn with a signature sig that gives
every operation its input and output types, opi : ∀𝛼 i . 𝜎i → 𝜎 ′i . There is a global map Σ that maps
each effect l to its signature. Since we assume that each op is uniquely named, we use the notation
op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) to denote the type of op that belongs to effect l, and also op ∈ Σ(l) to
signify that op is part of effect l. Moreover, we use the notation h : Σ(l) to mean that h corresponds
to l (for any op ∈ h, op ∈ Σ(l)).
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Note that we allow operations to be polymorphic. Therefore perform op 𝜎 v contains the instan-
tiation types 𝜎 which are passed to the operation clause f in the evaluation rule for (perform)
(Figure 2). This means that operations can be used polymorphically, but the handling clause itself
must be polymorphic in the operation types (and use them as abstract types).

3.3 Quantification and Equivalence to the Untyped Dynamic Semantics

Erasing types from System F𝜖 should not affect operational semantics, i.e.

Theorem 1. (System F𝜖 has untyped dynamic semantics)
If e1 −→ e2 in System F𝜖 , then either e∗1 −→ e∗2 or e

∗
1 = e∗2 .

where e∗ stands for the term e with all types, type abstractions, and type applications removed.
This seems an obvious property but there is a subtle interaction with quantification. Suppose we
(wrongly) allow quantification over expressions instead of values, like Λ𝛼. e, then consider:

h = { tick→ 𝜆x : () k : (() → ⟨⟩ int). 1 + k () }

handle h ((𝜆x :∀𝛼. int . x [int] + x [bool]) (Λ𝛼. tick (); 1))

In the typed semantics, this would evaluate the argument x at each instantiation (since the whole
Λ𝛼. tick (); 1 is passed as a value), resulting in 4. On the other hand, if we perform type erasure, the
untyped dynamic semantics evaluates to 3 instead (evaluating the argument before applying). Not
only do we lose untyped dynamic semantics, but we also break parametricity (as we can observe
instantiations). So, it is quite important to only allow quantification over values, much like the ML
value restriction [Kammar and Pretnar 2017; Pitts 1998; Wright 1995]. In the proof of Theorem 1
we use in particular the following (seemingly obvious) lemma:

Lemma 1. (Type erasure of values)
If v is a value in System F𝜖 then v∗ is a value in 𝜆𝜖 .

Not all systems in the literature adhere to this restriction; for example Biernacki et al. [2017]
and Leijen [2017c] allow quantification over expressions as Λ𝛼. e, where both ensure soundness
of the effect type system by disallowing type abstraction over effectful expressions. However, we
believe that this remains a risky affair since Lemma 1 does not hold; and thus a typed evaluation
may take more reduction steps than the type-erased term, i.e. seemingly shared argument values
may be computed more than once.

3.4 Type Rules for System F𝜖

Figure 5 defines the typing rules for System F𝜖 . The rules are of the form Γ ;w ⊢ e : 𝜎 | 𝜖 ⇝ e′ for
expressions where the variable context Γ and the effect 𝜖 are inherited (↑), and 𝜎 is synthesized (↓).
The gray parts define the evidence translation, which we describe in Section 4, and can be ignored
for now. Values are not effectful and are typed as Γ ⊢val v : 𝜎 ⇝ v ′ . Since effects are inherited,
lambda expressions need an effect annotation that is passed to the body derivation (abs). In the
rule app we use standard equality between types and require that all effects match. The val rule
goes from a value to an expression (opposite of abs) and allows any inherited effect. The handler

rule takes an action with effect ⟨l | 𝜖⟩ and handles l leaving effect 𝜖 . The handle rule is similar, but
is defined over an expression e and types e under an extended effect ⟨l | e⟩ in the premise. In the
rule ops, we implicitly assume {op1, . . ., opn} = Σ(l).
See the technical report [Xie et al. 2020] for the full type rules for evaluation contexts. The

judgement Γ ⊢ec E : 𝜎1→ 𝜎2 | 𝜖 signifies that a context E can be typed as a function from a term
of type 𝜎1 to 𝜎2 where the resulting expression has effect 𝜖 . These rules are not needed to check
programs but are very useful in proofs and theorems. In particular,
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Γ
↑
; w
↑
Fev

⊢ e
↑
F𝜖

: 𝜎
↓
| 𝜖
↑
⇝ e′

↓
Fev

Γ
↑
⊢val v

↑
F𝜖

: 𝜎
↓
⇝ v ′

↓
Fev

Γ
↑
⊢ops h

↑
F𝜖

: 𝜎
↓
| l
↓
| 𝜖
↑
⇝ h′

↓
Fev

x :𝜎 ∈ Γ

Γ ⊢val x : 𝜎 ⇝ x
[var]

Γ ⊢val v : 𝜎 ⇝ v ′

Γ ;w ⊢ v : 𝜎 | 𝜖 ⇝ v ′
[val]

Γ, x :𝜎1 ; z ⊢ e : 𝜎2 | 𝜖 ⇝ e′ fresh z

Γ ⊢val 𝜆𝜖 x :𝜎1. e : 𝜎1→
𝜖 𝜎2 ⇝ 𝜆𝜖z : evv 𝜖, x : ⌈𝜎1⌉ . e

′
[abs]

Γ ⊢val v : 𝜎 ⇝ v ′ k ≠ lab

Γ ⊢val Λ𝛼k . v : ∀𝛼k . 𝜎 ⇝ Λ𝛼k . v ′
[tabs]

Γ ;w ⊢ e1 : 𝜎1→ 𝜖 𝜎 | 𝜖 ⇝ e′1
Γ ;w ⊢ e2 : 𝜎1 | 𝜖 ⇝ e′2

Γ ;w ⊢ e1 e2 : 𝜎 | 𝜖 ⇝ e′1 w e′2
[app]

Γ ;w ⊢ e : ∀𝛼k . 𝜎1 | 𝜖 ⇝ e′ ⊢wf 𝜎 : k

Γ ;w ⊢ e[𝜎] : 𝜎1 [𝛼 :=𝜎] | 𝜖 ⇝ e′[⌈𝜎⌉]
[tapp]

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) 𝛼 ̸∈ ftv(Γ)

Γ ⊢val perform𝜖 op 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎] ⇝ perform𝜖 op 𝜎
[perform]

opi : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) 𝛼 ̸∩ ftv(𝜖 𝜎)
Γ ⊢val fi : ∀𝛼. 𝜎1→ 𝜖 ((𝜎2→ 𝜖 𝜎) → 𝜖 𝜎) ⇝ f ′i

Γ ⊢ops { op1→ f1, . . ., opn→ fn } : 𝜎 | l | 𝜖 ⇝ { opi → f ′i }
[ops]

Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h ′

Γ ⊢val handler𝜖 h : (() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎 ⇝ handler𝜖 h′
[handler]

Γ ⊢ops h : 𝜎 | l | 𝜖 ⇝ h′ Γ ; ⟨⟨l : (m, h′) | w⟩⟩ ⊢ e : 𝜎 | ⟨l | 𝜖⟩ ⇝ e′ m fresh

Γ ; w ⊢ handle𝜖 h e : 𝜎 | 𝜖 ⇝ handlewm h′ e′
[handle]

Fig. 5. Type Rules for System F𝜖 combined with type directed evidence translation to Fev (in gray.)

Lemma 2. (Evaluation context typing)
If ∅⊢ec E : 𝜎1→ 𝜎 | 𝜖 and ∅ ⊢ e : 𝜎1 | ⟨⌈E⌉

𝑙 | 𝜖⟩, then ∅ ⊢ E[e] : 𝜎 | 𝜖 .

where ⌈E⌉ l extracts all labels l from a context in reverse order:

⌈F0 · handle h1 · F1 · . . . · handle hn · Fn⌉
l
= ⟨ln, . . ., l1⟩ iff hi : Σ(li)

The above lemma shows we can plug well-typed expressions in a suitable context. The next lemma
uses this to show the correspondence between the dynamic evaluation context and the static effect
type:

Lemma 3. (Effect corresponds to the evaluation context)
If∅ ⊢ E[e] : 𝜎 | 𝜖 then there exists𝜎1 such that∅ ⊢ec E : 𝜎1→ 𝜎 | 𝜖 , and∅ ⊢ e : 𝜎1 | ⟨⌈E⌉

𝑙 | 𝜖⟩ .

Here we see that the rules guarantee that exactly the effects ⌈E⌉𝑙 in e are handled by the context E.

3.5 Progress and Preservation

We establish two essential lemmas about the meaning of effect types. First, in any well-typed total
System F𝜖 expression, all operations are handled (and thus, evaluation cannot get stuck):
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Lemma 4. (Well typed operations are handled)
If ∅ ⊢ E[perform op 𝜎 v] : 𝜎 | ⟨⟩ then E has the form E1 · handle

𝜖 h · E2 with op ̸∈ bop(E2) and
op→ f ∈ h.

Moreover, effect types are meaningful in the sense that an effect type fully reflects all possible
effects that may happen during evaluation:

Lemma 5. (Effects types are meaningful)
If ∅ ⊢ E[perform op 𝜎 v] : 𝜎 | 𝜖 with op ̸∈ bop(E), then op ∈ Σ(l) and l ∈ 𝜖 , i.e. effect types
cannot be discarded without a handler.

Using these lemmas, we can show that evaluation can always make progress and that the typings
are preserved during evaluation.

Theorem 2. (Progress)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ then either e1 is a value, or e1 ↦−→ e2.

Theorem 3. (Preservation)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

4 POLYMORPHIC EVIDENCE TRANSLATION TO SYSTEM Fev

Having established a sound explicitly typed core calculus, we are ready to present evidence transla-
tion. The goal of evidence translation is to pass handler implementations as part of an evidence
vector. The handler implementation is passed from the point where the handler was introduced to
the point where the effect operation is performed. Passing evidence explicitly will in turn enable
other optimizations (as described in Section 6) since we can now locally inspect the evidence instead
of searching in the dynamic evaluation context.
Following Brachthäuser and Schuster [2017], we represent evidence ev for an effect l as a pair
(m, h), consisting of a unique marker m and the corresponding handler implementation h. The
markers uniquely identify each handler frame in the context which is nowmarked as handlem h. The
reason for introducing the separate handler h construct is now apparent: it instantiates handlem h

frames with a uniquem. This representation of evidence allows for two important optimizations: (1)
We can change the operational rule for perform to directly yield to a particular handler identified
by m (instead of needing to search for the innermost one), shown in Section 5.1, and (2) It allows
local inspection of the actual handler h so we can evaluate tail resumptive operations in place,
shown in Section 6.

However, passing the evidence to each operation turns out to be surprisingly tricky to get right
and we took quite a few detours before arriving at the current solution. At first, we thought we
could represent evidence for each label l in the effect of a function as separate argument ev l. For
example,

f1 : ∀𝜇. int → ⟨l1 | 𝜇⟩ int = Λ𝜇. 𝜆x . perform op1 x

would be translated as:

f1 : ∀𝜇. ev l1→ int → ⟨l1 | 𝜇⟩ int = Λ𝜇. 𝜆ev. 𝜆x . perform op1 ev x

This does not work though as type instantiation can now cause the runtime representation to
change as well! For example, if we instantiate 𝜇 to ⟨l2⟩ as f1 [⟨l2⟩] the type becomes int → ⟨l1, l2⟩ int
which now takes two evidence parameters. Even worse, such instantiation can be inside arbitrary
types, like a list of such functions, where we cannot construct evidence transformers in general.
Another design that does not quite work is to regard evidence translation as an instance of

qualified types [Jones 1992] and use a dictionary passing translation. In essence, in the theory of
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Expressions
e ::= v (value)

| e[𝜎] (type application)
| e w e (evidence application)
| handlewm h e (handler instance)

Values
v ::= x (variables)

| 𝜆𝜖z : evv 𝜖, x :𝜎. e (evidence abstraction)

| Λ𝛼k . v (type abstraction)
| handler𝜖 h (effect handler)
| perform𝜖 op 𝜎 (operation)
| guardw E 𝜎 (guarded abstraction)

Type Constructors marker : eff→ ∗ → ∗ handler instance marker (m)
evv : eff→ ∗ evidence vector (w,z)
ev : lab→ ∗ evidence (ev)

Evidence Syntax m : marker 𝜖 𝜎 handler instance marker
(m, h) : ev l evidence
⟨⟨ ⟩⟩ : evv ⟨⟩ empty evidence vector
⟨⟨l1 : ev1, . . ., ln : evn⟩⟩ : evv ⟨l1, . . ., ln⟩ evidence vector, with li ⩽ li+1

(app) (𝜆𝜖z : evv 𝜖, x :𝜎. e) w v −→ e[z:=w, x:=v]

(tapp) (Λ𝛼k . v) [𝜎] −→ v [𝛼 :=𝜎]
(handler) (handler𝜖 h) w v −→ handlewm h (v ⟨⟨l : (m, h) | w⟩⟩ ())

where m is unique and h : Σ(l)
(return) handlewm h · v −→ v

(perform) handlewm h · E · perform𝜖 op 𝜎 w ′ v

−→ f [𝜎] w v w k iff op ̸∈ bop(E) ∧ (op→ f ) ∈ h

where op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)

k = guardw (handlewm h · E) (𝜎2 [𝛼 :=𝜎])
(guard) (guardw E 𝜎) w v −→ E[v]

Fig. 6. System Fev Typed operational semantics with evidence

qualified types, the qualifiers are scoped over monomorphic types, which does not fit well with
effect handlers. Suppose we have a function foo with a qualified evidence types as:

foo : Ev l1⇒ (int → ⟨l1⟩ int) → ⟨l1⟩ int

Note that even though foo is itself qualified, the argument it takes is a plain function int → ⟨l1⟩ int

and has already resolved its own qualifiers. That is too eager for our purposes. For example, if
we apply foo (f1 [⟨⟩]), under dictionary translation we would get foo ev1 (f1 [⟨⟩] ev1). However, it
may well be that foo itself applies f1 under a new handler for the l1 effect and thus needs to pass
different evidence than ev1! Effectively, dictionary translation may partially apply functions with
their dictionaries which is not legal for handler evidence. The qualified type we really require for
foo uses higher-ranked qualifiers, something like Ev l1⇒ (Ev l1⇒ int → ⟨l1⟩ int) → ⟨l1⟩ int.

4.1 Evidence Vectors

The design we present here instead passes all evidence as a single evidence vector to each (effectful)
function: this keeps the runtime representations stable under type instantiation, and we can ensure
syntactically that functions are never partially applied to evidence.
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Figure 6 defines our target language Fev as an explicitly typed calculus with evidence passing.
All applications are now of the form e1 w e2 where we always pass an evidence vector w with the
original argument e2. Therefore, all lambdas are of the form 𝜆𝜖 z : evv 𝜖, x :𝜎. e and always take an
evidence vector z besides their regular parameter x. Also, handlem frames now carry the evidences
and become handlewm. We also extend application forms in the evaluation context to take evidence
parameters. The double arrow notation is used do denote the type of these łtupledž lambdas:

𝜎1⇒ 𝜖 𝜎2 � evv 𝜖 → 𝜎1→ 𝜖 𝜎2

During evidence translation, every effect type 𝜖 on an arrow is translated to an explicit runtime
evidence vector of type evv 𝜖 , and we translate type annotations as:

⌈·⌉ : k→ k

⌈∀𝛼.𝜎⌉ = ∀𝛼. ⌈𝜎⌉ ⌈𝛼⌉ = 𝛼

⌈𝜏1→ 𝜖 𝜏2⌉ = ⌈𝜏1⌉ ⇒ 𝜖 ⌈𝜏2⌉ ⌈c 𝜏1 . . . 𝜏n⌉= c ⌈𝜏1⌉ . . . ⌈𝜏n⌉

Evidence vectors ⟨⟨l1 : ev1, . . ., ln : evn⟩⟩ are essentially a map from effect labels to evidence. Later we
want to be able to select evidence from a vector with a constant offset instead of searching for the
label, so we are going to keep them in a canonical form ordered by the effect types l. That is, we
have every li ⩽ li+1. We also use the notation ⟨⟨l : ev, w⟩⟩ to decompose an evidence vector into a
head label l with evidence ev and a tail evidence vector w (maintaining canonical forms). An empty
evidence vector is denoted as ⟨⟨ ⟩⟩.
During evaluation we need to be able to select evidence from an evidence vector, and to insert

new evidence when a handler is instantiated, and we define the following two operations:

_.l : ∀𝜇. evv ⟨l | 𝜇⟩ → ev l (select evidence from a vector)
⟨⟨l : _ | _⟩⟩ : ∀𝜇. ev l→ evv 𝜇→ evv ⟨l | 𝜇⟩ (evidence insertion)

Where we assume the following two laws that relate selection and insertion:

⟨⟨l : ev | w⟩⟩.l = ev

⟨⟨l′ : ev | w⟩⟩.l= w.l iff l ≠ l′

The evidence insertion operation inserts an evidence into an evidence vector in an ordered way:

⟨⟨l : _ | _⟩⟩ : ∀𝜇. ev l→ evv 𝜇→ evv ⟨l | 𝜇⟩
⟨⟨l : ev | ⟨⟨⟩⟩⟩⟩ = ⟨⟨l : ev⟩⟩
⟨⟨l : ev | ⟨⟨l′ : ev ′, w⟩⟩⟩⟩= ⟨⟨l′ : ev ′, ⟨⟨l : ev | w⟩⟩⟩⟩ iff l > l′

⟨⟨l : ev | ⟨⟨l′ : ev ′, w⟩⟩⟩⟩= ⟨⟨l : ev, l′ : ev ′, w⟩⟩ iff l ⩽ l′

Note how the dynamic representation as vectors of labeled evidence nicely corresponds to the
static effect row-types, in particular with regard to duplicate labels, which correspond to nested
handlers at runtime. Here we see why we cannot swap the position of equal effect labels as we need
the evidence to correspond to their actual order in the evaluation context. Inserting all evidence in
a vector w1 into another vector w2 is defined inductively as following. We reuse the same notation
of inserting a single evidence.

⟨⟨⟨⟨⟩⟩ | w2⟩⟩ = w2

⟨⟨⟨⟨l : ev,w1⟩⟩ | w2⟩⟩= ⟨⟨l : ev | ⟨⟨w1 | w2⟩⟩⟩⟩

and evidence selection can be defined as:

_.l : ∀𝜇. evv ⟨l | 𝜇⟩ → ev l
⟨⟨l : ev, _⟩⟩.l = ev

⟨⟨l′ : ev,w⟩⟩.l= w.l iff l ≠ l′

⟨⟨ ⟩⟩.l = (cannot happen)
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4.2 Evidence Translation

The evidence translation is already defined in Figure 5, in the gray parts of the rules. The full rules
for expressions are of the form Γ;w ⊢ e : 𝜎 | 𝜖 ⇝ e′ where given a context Γ, the expression e

has type 𝜎 with effect 𝜖 . The rules take the current evidence vector w for the effect 𝜖 , of type evv 𝜖 ,
and translate to an expression e′ of System Fev .

The translation in itself is straightforward where we only need to ensure extra evidence is passed
during applications and abstracted again on lambdas. The abs rule abstracts fully over all evidence
in a function as 𝜆𝜖z : evv 𝜖, x :𝜎1. e

′, where the evidence vector is abstracted as z and passed to its
premise. Note that since we are translating, z is not part of Γ here (which scopes over F𝜖 terms).
The type rules for Fev , discussed below, do track such variables in the context. The dual of this is
rule app which passes the effect evidence w as an extra argument to every application as e′1 w e′2.
To prove preservation and coherence of the translation, we also include a translation rule for

handle, even though we assume these are internal. Otherwise there are no surprises here and the
main difficulty lies in the operational rules, which we discuss in detail in Section 4.4.

To prove additional properties about the translated programs, we define a more restricted set of
typing rules directly over System Fev in Figure 9 of the form Γ;w ⊩ e : 𝜎 | 𝜖 (ignoring the gray
parts), such that Γ ⊢ w : evv 𝜖 . Using this, we prove that the translation is sound:

Theorem 4. (Evidence translation is Sound in Fev)
If ∅; ⟨⟨⟩⟩ ⊢ e : 𝜎 | ⟨⟩ ⇝ e′ then ∅; ⟨⟨⟩⟩ ⊩ e′ : ⌈𝜎⌉ | ⟨⟩.

4.3 Correspondence

The evidence translation maintains a strong correspondence between the effect types, the evidence
vectors, and the evaluation contexts. To make this precise, we define the (reverse) extraction of all
handlers in a context E as ⌈E⌉ where:

⌈F1 · handle
w1
m1

h1 · . . . · Fn · handle
wn
mn

hn · F⌉ = ⟨⟨ln : (mn, hn) | . . . | l1 : (m1, h1)⟩⟩ iff hi : Σ(li)

⌈F1 · handle
w1
m1

h1 · . . . · Fn · handle
wn
mn

hn · F⌉
𝑙
= ⟨ln, . . ., l1⟩

⌈F1 · handle
w1
m1

h1 · . . . · Fn · handle
wn
mn

hn · F⌉
𝑚
= {mn, . . ., m1}

With this we can characterize the correspondence between the evaluation context and the evidence
used at perform:

Lemma 6. (Evidence corresponds to the evaluation context)
If ∅;w ⊩ E[e] : 𝜎 | 𝜖 then for some 𝜎1 we have ∅; ⟨⟨⌈E⌉ | w⟩⟩ ⊩ e : 𝜎1 | ⟨⌈E⌉

𝑙 | 𝜖⟩,
and ∅;w ⊩ E : 𝜎1→ 𝜎 | 𝜖 .

Lemma 7. (Well typed operations are handled)
If ∅; ⟨⟨⟩⟩ ⊩ E[perform op 𝜎 v] : 𝜎 | ⟨⟩ then E has the form E1 · handle

w
m h · E2 with op ̸∈ bop(E2)

and op→ f ∈ h.

These brings us to our main theorem which states that the evidence passed to an operation
corresponds exactly to the innermost handler for that operation in the dynamic evaluation context:

Theorem 5. (Evidence Correspondence)

If ∅; ⟨⟨⟩⟩ ⊩ E[perform op 𝜎 w v] : 𝜎 | ⟨⟩ then E has the form E1 · handle
w′

m h · E2 with op ∈ Σ(l),
op ̸∈ bop(E2), op→ f ∈ h, and the evidence corresponds exactly to dynamic execution context
such that w.l = (m, h).
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4.4 Operational Rules of System Fev

The operational rules for System Fev are defined in Figure 6. Since every application now always
takes an evidence vector argument w the new (app) and (handler) rules now only reduce when
both arguments are present (and the syntax does not allow for partial evidence applications).
The (handler) rule differs from System F𝜖 in two significant ways. First, it saves the current

evidence in scope (passed as w) in the handle frame itself as handlewm. Secondly, the evidence vector
it passes on to its action is now extended with its own unique evidence, as ⟨⟨l : (m, h) | w⟩⟩.
In the (perform) rule, the operation clause (op→ f ) ∈ h is now translated itself, and we need

to pass evidence to f . Since it takes two arguments, the operation payload x and its resumption k,
the application becomes (f [𝜎] w x) w k. The evidence we pass to f is the evidence of the original
handler context saved as handlew in the (handler) rule. In particular, we should not pass the evidence
w ′ of the operation, as that is the evidence vector of the context in which the operation itself
evaluates (and an extension of w). In contrast, we evaluate each clause under their original context
and need the evidence vector corresponding to that. In fact, we can even ignore the evidence vector
w ′ completely for now as we only need to use it later for implementing optimizations.

4.5 Guarded Context Instantiation and Scoped Resumptions

The definition of the resumption k in the (perform) rule differs quite a bit from the original definition
in System F𝜖 (Figure 2), which was:

k = 𝜆𝜖x :𝜎2 [𝛼 :=𝜎] . handle
𝜖 h · E · x

while the Fev definition now uses:

k = guardw (handlewm h · E) (𝜎2 [𝛼 :=𝜎])

where we use a the new Fev value term guardw E 𝜎 . Since k has a regular function type, it now
needs to take an extra evidence vector, and we may have expected a more straightforward extension
without needing a new guard rule, something like:

k = 𝜆𝜖z : evv 𝜖, x :𝜎2 [𝛼 :=𝜎] . handle
𝜖 h · E · x

but then the question becomes what to do with that passed in evidence z? This is the point where
it becomes more clear that resumptions are special and not quite like a regular lambda since they
restore a captured context. In particular, the context E that is restored has already captured the

evidence of the original context in which it was captured (as w), and thus may not match the evidence

of the context in which it is resumed (as z)!
The new guarded application rule makes this explicit and only restores contexts that are resumed

under the exact same evidence, in other words, only scoped resumptions are allowed:

(guardw E 𝜎) w v −→ E[v]

If the evidence does not match, the evaluation is stuck in Fev .
As an example of how this can happen, we return to our evil example in Section 2.2 which uses

non-scoped resumptions to change the meaning of op1. Since we are now in a typed setting, we
modify the example to return a data type of results to make everything well-typed:

data res = again : (() → ⟨one⟩ res) → res

| done : int → res

Σ = { one : { op1 : () → int }, evil : { opevil : () → () } }

with the following helper definitions:

h1 = { op1→ 𝜆x k. k 1 } f (again k)= handler h2 (𝜆_. k ()); 0
h2 = { op1→ 𝜆x k. k 2 } f (done x) = x

hevil= { opevil → 𝜆x k. (again k) }
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body = perform op1 (); perform opevil (); perform op1 (); done 0

and where the main expression is evidence translated as:

f (handler h1 (𝜆_. handler hevil (𝜆_. body)))
⇝ f ⟨⟨⟩⟩ (handler h1 ⟨⟨⟩⟩ (𝜆z, _. handler hevil z
(𝜆z : evv ⟨one, evil⟩, _. perform op1 z (); perform opevil z (); perform op1 z (); done 0)))

Starting evaluation in the translated expression, we can now derive:

↦−→∗ f ⟨⟨⟩⟩ · handle
⟨⟨⟩⟩
m1

h1 · handle
w1
m2

hevil · (□; perform op1 w2 (); done 0) · perform opevil w2 ()

with w1 = ⟨⟨one : (m1, h1)⟩⟩, w2 = ⟨⟨evil : (m2, hevil), one : (m1, h1)⟩⟩

↦−→∗ f ⟨⟨⟩⟩ · handle
⟨⟨⟩⟩
m1

h1 · (𝜆z x z k. (again k)) w1 () w1 k

with k = guardw1 (handlew1
m2

hevil · (□; perform op1 w2 (); done 0))

↦−→∗ f ⟨⟨⟩⟩ · handle
⟨⟨⟩⟩
m1

h1 · (again k)

↦−→∗ f ⟨⟨⟩⟩ (again k)

↦−→ handler h2 ⟨⟨⟩⟩ (𝜆z _. k z ())

↦−→∗ handle
⟨⟨⟩⟩
m3

h2 · k w3 () with w3 = ⟨⟨one : (m3, h2)⟩⟩

= handle
⟨⟨⟩⟩
m3

h2 · guard
w1 (handlew1

m2
hevil · (□; perform op1 w2 (); done 0)) w3 ()

At this point, the guard rule gets stuck as we have captured the context originally under evidence
w1, but we try to resume with evidence w3, and w1 = ⟨⟨one : (m1, h1)⟩⟩ ≠ ⟨⟨one : (m3, h2)⟩⟩ = w3.
If we allow the guarded context instantiation anyways we get into trouble when we try to

perform op1 again:

↦−→ handle
⟨⟨⟩⟩
m3

h2 · handle
w1
m2

hevil · (() ; perform op1 w2 (); done 0)

↦−→∗ handle
⟨⟨⟩⟩
m3

h2 · handle
w1
m2

hevil · (□; done 0) · perform op1 w2 ()

in that case the innermost handler for op1 is now h2 while the evidence w2 .l is (m1, h1) and it
no longer corresponds to the dynamic context! (and that would void our main correspondence
Theorem 5 and in turn invalidate optimizations based on this).

4.6 Uniqueness of Handlers

It turns out that to guarantee coherence of the translation to plain polymorphic lambda calculus,
as discussed in Section 5, we need to ensure that all m’s in an evaluation context are always
unique. This is a tricky property; for example, uniqueness of markers does not hold for arbitrary
Fev expressions: markers may be duplicated inside lambdas outside of the evaluation context, and
we can also construct an expression manually with duplicated markers, e.g. handlewm · handle

w
m · e.

However, we can prove that if we only consider initial Fev expressions without handlewm, or any
expressions reduced from that during evaluation, then it is guaranteed that all m’s are always
unique in the evaluation context ś even though the (handler) rule introduces handlewm during
evaluation, and the (app) rule may duplicate markers.

Definition 1. (Handle-safe expressions)
A handle-safe Fev expression is a well-typed closed expression that either (1) contains no handlewm
term; or (2) is itself reduced from a handle-safe expression.

Theorem 6. (Uniqueness of handlers)
For any handle-safe Fev expression e, if e = E1 · handle

w1
m1

h · E2 · handle
w2
m2

h · e0, then m1 ≠ m2.

4.7 Preservation and Coherence

As exemplified above, the guard rule is also essential to prove the preservation of evidence typings
under evaluation. In particular, we can show:
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Theorem 7. (Preservation of evidence typing)
If ∅; ⟨⟨⟩⟩ ⊩ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅; ⟨⟨⟩⟩ ⊩ e2 : 𝜎 | ⟨⟩.

e1 e2 e3

e′3

e′2 e′′3

e′1 e′′2 e′′′3

stuck

F𝜖 F𝜖

�
F𝑒𝑣

� �
F𝑒𝑣 F𝑒𝑣

Fig. 7. Coherence

Even more important though is to show that our translation is
coherent, that is, if we take an evaluation step in System F𝜖 , the
evidence translated expression will take a similar step such that
the resulting expression is again a translation of the reduced F𝜖

expression:

Theorem 8. (Evidence translation is coherent)
If ∅; ⟨⟨⟩⟩ ⊢ e1 : 𝜎 | ⟨⟩ ⇝ e′1 and e1 ↦−→ e2, and (due to preserva-
tion) ∅; ⟨⟨⟩⟩ ⊢ e2 : 𝜎 | ⟨⟩ ⇝ e′2, then there exists a e′′2 , such that
e′1 ↦−→ e′′2 and e′′2 � e′2.

Interestingly, the theorem states that the translated e′2 is only co-
herent under an equivalence relation � to the reduced expression
e′′2 , as illustrated in Figure 7. The reason that e′2 and e′′2 are not
directly equal is due to guard expressions only being generated by

reduction. In particular, if we have a F𝜖 reduction of the form:

handle𝜖 h · E · perform op 𝜎 v −→ f 𝜎 v k with k = 𝜆𝜖x :𝜎 ′. handle𝜖 h · E · x

then the translation takes the following Fev reduction:

handlewm h · E′ · perform op ⌈𝜎⌉ w ′ v ′ −→ f ′ ⌈𝜎⌉ w v ′ w k′ with k′ = guardw (handlewm h′ · E′) 𝜎 ′

At this point the translation of f 𝜎 v k will be of the form f ′ ⌈𝜎⌉ w ′ v ′ w ′ k′′ where

k′′ = 𝜆𝜖z : evv 𝜖, x . handle𝜖 h′ · E′′ · x

i.e. the resumption k is translated as a regular lambda now and not as guard! Also, since E is
translated now under a lambda, the resulting E′′ differs in all evidence terms w in E′ which will be
z instead.
However, we know that if the resumption k′ is ever applied, the argument is either exactly w,

in which case E′′[z:=w] = E′, or not equal to w in which case the evidence translated program
gets stuck. This is captured by � relation which is the smallest transitive and reflexive congruence
among well-typed Fev expressions, up to renaming of unique markers, satisfying the eq-guard rule,
which captures the notion of guarded context instantiation.

e[z:=w] � E[x]

𝜆𝜖z, x :𝜎. e � guardw E 𝜎
[eq-guard]

Now, is this definition of equivalence strong enough? Yes, because we can show that if two translated
expressions are equivalent, then they stay equivalent under reduction (or get stuck):

Lemma 8. (Operational semantics preserves equivalence, or gets stuck)
If e1 � e2, and e1 −→ e′1, then either e2 is stuck, or we have e

′
2 such that e2 −→ e′2 and e′1 � e′2.

This establishes the full coherence of our evidence translation: if a translated expression reduces
under Fev without getting stuck, the final value is equivalent to the value reduced under System F𝜖 .
Moreover, the only way an evidence translated expression can get stuck is if it uses non-scoped
resumptions.

Note that the evidence translation never produces guard terms, so the translated expression can
always take an evaluation step; however, subsequent evaluation steps may lead to guard terms, so
after the first step, it may get stuck if a resumption is applied under a different handler context
than where it was captured.
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Expressions e ::= v | e e | e[𝜎]

Values v ::= x | 𝜆x :𝜎. e | Λ𝛼k . v

(app) (𝜆𝜖x :𝜎. e) v −→ e[x:=v]

(tapp) (Λ𝛼k . v) [𝜎] −→ v [𝛼 :=𝜎]

Context F ::= □ | F e | v F | F [𝜎]
E ::= F

x : 𝜎 ∈ Γ

Γ ⊢F x𝜎 : 𝜎
[fvar]

Γ ⊢F v : 𝜎

Γ ⊢F Λ𝛼k . v : ∀𝛼k . 𝜎
[ftabs]

Γ, x :𝜎1 ⊢F e : 𝜎2

Γ ⊢F 𝜆x :𝜎1. e : 𝜎1→ 𝜎2
[fabs]

Γ ⊢F e1 : 𝜎1→ 𝜎 Γ ⊢ e2 : 𝜎

Γ ⊢F e1 e2 : 𝜎
[fapp]

Γ ⊢F e : ∀𝛼k . 𝜎1 ⊢wf 𝜎 : k

Γ ⊢F e[𝜎] : 𝜎1 [𝛼 :=𝜎]
[ftapp]

Fig. 8. System Fv : explicitly typed (higher kinded) polymorphic lambda calculus with strict evaluation. Types

as in Figure 3 with no effects on the arrows.

5 TRANSLATION TO CALL-BY-VALUE POLYMORPHIC LAMBDA CALCULUS

Now that we have a strong correspondence between evidence and the dynamic handler context, we
can translate System Fev expressions all the way to the call-by-value polymorphic lambda calculus,
System Fv . This is important in practice as it removes all the special evaluation and type rules
of algebraic effect handlers; this in turn means we can apply all the optimizations that regular
compilers perform, like inlining, known case expansion, common sub-expression elimination etc.
as usual without needing to keep track of effects. Moreover, it means we can compile directly to
most common host platforms, like C or WebAssembly without needing a special runtime system to
support capturing the evaluation context.

There has been previous work that performs such translation [Forster et al. 2019; Hillerström et
al. 2017; Leijen 2017c], as well as various libraries that embed effect handlers as monads [Kammar
et al. 2013; Wu et al. 2014] but without evidence translation such embeddings require either a
sophisticated runtime system [Dolan et al. 2017 2015; Leijen 2017a], or are not quite as efficient
as one might hope. The translation presented here allows for better optimization as it maintains
evidence and has no special runtime requirements (it is just F!).

5.1 Translating to Multi-Prompt Delimited Continuations

As a first step, we show that we do not need explicit handle frames anymore that carry around the
handler operations h, but can translate to multi-prompt delimited continuations [Brachthäuser and
Schuster 2017]. Gunter, Rémy, and Riecke [1995] present the set and cupto operators for named
prompts m with the following łcontrol-uptož rule:

set m in · E · cupto m as k in e −→ (𝜆k. e) (𝜆x . E · x) m ̸∈ ⌈E⌉𝑚

This effectively exposes łshallowž multi-prompts: the continuation bound to k is not delimited by
m. For our purposes, we always need łdeepž handling where the resumption evaluates under the
same prompt again and we define

promptm e � set m in e

yieldm f � cupto m as k in (f (𝜆x . set m in (k x)))

which gives us the following derived evaluation rule:

promptm · E · yieldm f −→ f (𝜆x . promptm · E · x) m ̸∈ ⌈E⌉𝑚
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Γ
↑
; w
↑
Fev

;w ′
↑
Fv

⊩ e
↑
Fev

: 𝜎
↓
| 𝜖
↑
⇝ e′
↓
Fv

Γ
↑
⊩val v

↑
Fev

: 𝜎
↓
⇝ v ′

↓
Fv

Γ
↑
⊩ops h

↑
Fev

: 𝜎
↓
| l
↓
| 𝜖
↑
⇝ h′

↓
Fv

x :𝜎 ∈ Γ

Γ ⊩val x : 𝜎 ⇝ x
[mvar]

Γ ⊩val v : 𝜎 ⇝ v ′

Γ ⊩val Λ𝛼. v : ∀𝛼. 𝜎 ⇝ Λ𝛼. v ′
[mtabs]

(Γ, z : evv 𝜖, x :𝜎1); z ; z ⊩ e : 𝜎2 | 𝜖 ⇝ e′

Γ ⊩val 𝜆𝜖z : evv 𝜖, x :𝜎1. e : 𝜎1⇒ 𝜖 𝜎2 ⇝ 𝜆z x . e′
[mabs]

Γ ⊩val v : 𝜎 ⇝ v ′

Γ;w ;w ′ ⊩ v : 𝜎 | 𝜖 ⇝ pure[⌊𝜎⌋] v ′
[mval]

Γ;w ;w ′ ⊩ e : ∀𝛼. 𝜎1 | 𝜖 ⇝ e′

Γ;w ;w ′ ⊩ e[𝜎] : 𝜎1 [𝛼 :=𝜎] | 𝜖 ⇝ e′ ▷ (𝜆x . pure (x [⌊𝜎⌋]))
[mtapp]

Γ;w ;w ′ ⊩ e1 : 𝜎2⇒ 𝜖 𝜎 | 𝜖 ⇝ e′1 Γ;w ;w ′ ⊩ e2 : 𝜎2 | 𝜖 ⇝ e′2

Γ;w ;w ′ ⊩ e1 w e2 : 𝜎 | 𝜖 ⇝ e′1 ▷ (𝜆f . (e
′
2 ▷ f w ′))

[mapp]

Γ;w ;w ′ ⊩ec E : 𝜎1→ 𝜎2 | 𝜖 ⇝ e′ Γ ⊩val w : evv 𝜖 ⇝ w ′

Γ ⊩val guardw E 𝜎1 : 𝜎1⇒ 𝜖 𝜎2 ⇝ guard w ′ e′
[mguard]

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)

Γ ⊩val perform𝜖 op 𝜎 : 𝜎1 [𝛼 :=𝜎] ⇒ ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎] ⇝ performop [⟨l | 𝜖⟩, ⌊𝜎⌋]
[mperform]

opi : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) 𝛼 ̸∩ ftv(𝜖 𝜎)
Γ ⊩val fi : ∀𝛼. 𝜎1⇒ 𝜖 (𝜎2⇒ 𝜖 𝜎) ⇒ 𝜖 𝜎 ⇝ f ′i

Γ ⊩ops { op1→ f1, . . ., opn→ fn } : 𝜎 | l | 𝜖 ⇝ { op1→ f ′1 , . . ., opn→ f ′n }
[mops]

Γ ⊩ops h : 𝜎 | l | 𝜖 ⇝ h′

Γ ⊩val handler𝜖 h : (() ⇒ ⟨l | 𝜖⟩ 𝜎) ⇒ 𝜖 𝜎 ⇝ handler l [𝜖, ⌊𝜎⌋] h′
[mhandler]

Γ ⊩ops h : 𝜎 | l | 𝜖 ⇝ h′

Γ; ⟨⟨l : (m, h) | w⟩⟩; ⟨⟨l : (m, h′) | w ′⟩⟩ ⊩ e : 𝜎 | ⟨l | 𝜖⟩ ⇝ e′

Γ;w ;w ′ ⊩ handlewm h e : 𝜎 | 𝜖 ⇝ prompt [𝜖, ⌊𝜎⌋] m w ′ e′
[mhandle]

Fig. 9. Monadic translation to System-Fv . ((▷) is monadic bind).

Additionally, our control operators also need to take evidence w into account and use guard instead
of a plain lambda to apply the resumption, i.e.,

promptwm · E · yieldm f −→ f w (guardw (promptwm · E)) m ̸∈ ⌈E⌉𝑚

Therefore, we take prompt and yield as primitive control operators with the above evaluation rule.
Using the correspondence property (Theorem 5), we can use evidence to locally inspect the

handler on perform and no longer need to keep it in the handle frame. We can now translate both
perform op v w and handlewm h in terms of the simpler yieldm and promptwm, as:

⌈handlewm h⌉ = promptwm
⌈perform op w′ v⌉= yieldm (𝜆w k. f w v w k) with (m, h) = w ′.l and (op→ f ) ∈ h
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We prove that this is a sound interpretation of effect handling:

Theorem 9. (Evidence Translation to Multi-Prompt Delimited Continuations is Sound)
For any evaluation step e1 ↦−→ e2 in Fev , we have ⌈e1⌉ ↦−→

∗ ⌈e2⌉ with multi-prompt delimited
continuations.

Dolan et al. [2015] describe the multi-core OCaml runtime system with split stacks; in such setting
we could use the pointers to a split point as markers m, and directly yield to the correct handler
with constant time capture of the context.

5.2 Monadic Multi-Prompt Translation to System Fv

With the relation to multi-prompt delimited control established, we can now translate Fev to Fv in
a monadic style, where we use standard techniques [Dyvbig et al. 2007] to implement the delimited
control as a monad. Assuming notation for data types and matching, we can define a multi-prompt
monad mon as follows:

data mon 𝜇 𝛼 =

| pure : 𝛼 → mon 𝜇 𝛼

| yield : ∀𝛽 r 𝜇 ′. marker 𝜇 ′ r → (evv 𝜇 ′→ (evv 𝜇 ′→ 𝛽 → mon 𝜇 ′ r) → mon 𝜇 ′ r)

→ (mon 𝜇 𝛽 → mon 𝜇 𝛼) → mon 𝜇 𝛼

pure x = pure x
yield m clause = yield m clause id

The pure case is used for value results, while the yield implements yielding to a prompt. A
yield m f cont has three arguments, (1) the marker m : marker 𝜇 ′ r bound to a prompt in some
context with effect 𝜇 ′ and answer type r ; (2) the operation clause which receives the resumption
(of type 𝛽 → mon 𝜇 ′ r) where 𝛽 is the type of the operation result; and finally (3) the current
continuation cont which is the runtime representation of the context. When binding a yield, the
continuation keeps being extended until the full context is captured:

(f ◦ g) x = f (g x) (function composition)
(f • g) x = g x ▷ f (Kleisli composition)
(pure x) ▷ g = g x (monadic bind)
(yield m f cont) ▷ g = yield m f (g • cont)

The hoisting of yields corresponds closely to operation hoisting as described by Bauer and Pret-
nar [2015b]. The prompt operation has three cases to consider:

prompt : ∀𝜇 𝛼. marker 𝜇 𝛼 → evv 𝜇→ mon ⟨l | 𝜇⟩ 𝛼 → mon 𝜇 𝛼

prompt m w (pure x) = pure x
prompt m w (yield m′ f cont) = yield m′ f (prompt m w ◦ cont) if m ≠ m′

prompt m w (yield m f cont) = f w (guard w (prompt m w ◦ cont))

In the pure case, we are at the (value) rule and return the result as is. If we find a yield that yields
to another prompt we also keep yielding but remember to restore our prompt when resuming in its
current continuation, as (prompt m w ◦ cont). The final case is when we yield to the prompt itself,
in that case we are in the (yield) transition and continue with f passing the context evidence w
and a guarded resumption3.
The guard operation simply checks if the evidence matches and either continues or gets stuck:

guard w1 cont w2 x= if (w1 == w2) then cont (pure x) else stuck

3Typing the third case needs a dependent match on the markersm′ : marker 𝜇′ r andm = marker 𝜇 𝛼 where their equality

implies 𝜇 = 𝜇′ and r = 𝛼 . This can be done in Haskell with the Equal GADT, or encoded in Fv using explicit equality

witnesses [Baars and Swierstra 2002].
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Note that due to the uniqueness property (Theorem 6) we can check the equalityw1 == w2 efficiently
by only comparing the markers m (and ignoring the handlers). The handle and perform can be
translated directly into prompt and yield as shown in the previous section, where we generate a

handler l definition per effect l, and a performop for every operation:

handler l : ∀𝜇 𝛼. hndl 𝜇 𝛼 → evv 𝜇→ (evv ⟨l | 𝜇⟩ → () → mon ⟨l | 𝜇⟩ 𝛼) → mon 𝜇 𝛼

performop : ∀𝜇 𝛼. evv ⟨l | 𝜇⟩ → 𝜎1→ mon ⟨l | 𝜇⟩ 𝜎2 with op :∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)

handler l h w f = freshm (𝜆m→ prompt m w (f ⟨⟨l : (m, h) | w⟩⟩ ()))

performop w x = let (m, h) = w.l in yield m (𝜆w k. ((h.op) w x ▷ (𝜆f . f w k)))

The handler creates a fresh marker and passes on new evidence under a new prompt. The perform
can now directly select the evidence (m, h) from the passed evidence vector and yield to m directly.
The function passed to yield is a bit complex since each operation clause is translated normally and
has a nested monadic type, so we need to bind the first partial application to x before passing the
continuation k.

Finally, for every effect signature l : sig ∈ Σ we declare a corresponding data type hndl 𝜖 r that
is a record of operation clauses:

l : { op1 : ∀𝛼1. 𝜎1→ 𝜎 ′1, . . ., opn : ∀𝛼n . 𝜎n→ 𝜎 ′n }

⇝ data hndl 𝜇 r = hndl { op1 : ∀𝛼1. op 𝜎1 𝜎
′
1 𝜇 r, . . ., opn : ∀𝛼n . op 𝜎n 𝜎

′
n 𝜇 r }

where operations op are a type alias defined as:

alias op 𝛼 𝛽 𝜇 r � evv 𝜇→ 𝛼 → mon 𝜇 (evv 𝜇→ (evv 𝜇→ 𝛽 → mon 𝜇 r) → mon 𝜇 r)

With these definitions in place, we can do a straightforward type directed translation from Fev to
Fv by just lifting all operations into the prompt monad, as shown in Figure 9. Types are translated
by making all effectful functions monadic:

⌊∀𝛼. 𝜎⌋ = ∀𝛼. ⌊𝜎⌋ ⌊𝜎1⇒ 𝜖 𝜎2⌋ = evv 𝜖 → ⌊𝜎1⌋ → mon 𝜖 ⌊𝜎2⌋

⌊𝛼⌋ = 𝛼 ⌊c 𝜎1 . . . 𝜎n⌋ = c ⌊𝜎1⌋ . . . ⌊𝜎n⌋

We prove that these definitions are correct, and that the resulting translation is fully coherent,
where a monadic program evaluates to the same result as a direct evaluation in Fev .

Theorem 10. (Monadic Translation is Sound)
If ∅; ⟨⟨⟩⟩; ⟨⟨⟩⟩ ⊩ e : 𝜎 | ⟨⟩ ⇝ e′, then ∅ ⊢F e′ : mon ⟨⟩ ⌊𝜎⌋.

Theorem 11. (Coherence of the Monadic Translation)
If∅; ⟨⟨⟩⟩; ⟨⟨⟩⟩ ⊩ e1 : 𝜎 | ⟨⟩ ⇝ e′1 and e1 −→ e2, then∅; ⟨⟨⟩⟩; ⟨⟨⟩⟩ ⊩ e2 : 𝜎 | ⟨⟩ ⇝ e′2 where e

′
1 −→

∗ e′2.

Together with earlier results we establish full soundness and coherence from the original typed effect
handler calculus F𝜖 to the evidence based monadic translation into plain call-by-value polymorphic
lambda calculus Fv . See Figure 10 for how our theorems relate these systems to each other.

6 OPTIMIZATIONS

With a fully coherent evidence translation to plain polymorphic lambda calculus in hand, we can
now apply various transformations in that setting to optimize the resulting programs.

6.1 Partially Applied Handlers

In the current performop implementation, we yield with a function that takes evidence w to pass on
to the operation clause f , as:

𝜆w k. ((h.op) w x ▷ (𝜆f . f w k))
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𝜆𝜖

F𝜖

Fev

Fv

e∗1 e∗2

Γ;𝑤 ⊢ e1 :𝜎 | 𝜖

(Fig. 5)

Γ;𝑤 ⊢ e2 :𝜎 | 𝜖

Preservation (Thm. 3)

Γ;𝑤 ⊩ e′1 : ⌈𝜎 ⌉ | 𝜖

(Fig. 9)

Γ;𝑤 ⊩ e′′′2 : ⌈𝜎 ⌉ | 𝜖

Preservation (Thm. 7)
Γ;𝑤 ⊩ e′2 : ⌈𝜎 ⌉ | 𝜖�

(Fig. 7)

Coherence (Thm. 8)

Γ ⊢F e′′1 :mon 𝜖 ⌊𝜎 ⌋

(Fig. 8)
Γ ⊢F e′′2 :mon 𝜖 ⌊𝜎 ⌋

𝜎

𝑤

▷

steps to (Fig. 2)

Progress (Thm. 2)

steps to (Fig. 6)

Soundness (Thm. 4) Soundness (Thm. 4)

erase∗ erase∗

steps to (Fig. 1) or =

Correspondence (Thm. 1)

Soundness (Thm. 10) Soundness (Thm. 10)

steps to (Fig. 8)

Coherence (Thm. 11)
*

Fig. 10. An overview how the various theorems establish the relations between the different calculi

However, the w that is going to be passed in is always that of the handlewm frame, as explained in
Section 4.4. When we instantiate the handlewm we can in principle map the w in advance over all
operation clause so these can be partially evaluated over the evidence vector:

handler l h w f = freshm (𝜆m→ prompt m w (f ⟨⟨l : (m, pmapl w h | w⟩⟩ ()))

pmapl w (hndl f1 . . . fn)= phndl (partial w f1) . . . (partial w fn)

partial : evv 𝜇→ op 𝛼 𝛽 𝜇 r → pop 𝛼 𝛽 𝜇 r

partial w f = 𝜆x k. (f w x ▷ (𝜆f ′. f ′ w k))

The pmapl function creates a new handler data structure phndl where every operation is now
partially applied to the evidence which results in simplified type for each operation (as expressed
by the pop type alias):

alias pop 𝛼 𝛽 𝜇 r � 𝛼 → (evv 𝜇→ 𝛽 → mon 𝜇 r) → mon 𝜇 r

The perform is now simplified as well as it no longer needs to bind the intermediate application:

performop w x= let (m, h) = w.l in yield m (𝜆k. (h.op) x k)

Finally, the prompt case where the marker matches no longer needs to pass evidence as well:

. . .

prompt m w (yield m f cont) = f (guard w (prompt m w ◦ cont))

By itself, the impact of this optimization will be modest, just allowing inlining of evidence in f

clauses, but it opens up the way to do tail resumptive operations in-place.

6.2 Evaluating Tail Resumptive Operations In Place

In practice, almost all important effects are tail-resumptive. The main exceptions we know of are
asynchronous I/O (but that is dominated by I/O anyways) and the ambiguity effect for resuming
multiple times. As such, we expect the vast majority of operations to be tail-resumptive, and being
able to optimize them well is important. We can extend the partially evaluated handler approach to
optimize tail resumptions as well. First we extend the pop type to be a data type that signifies if an
operation clause is tail resumptive or not:

data pop 𝛼 𝛽 𝜇 r = tail : (𝛼 → mon 𝜇 𝛽) → pop 𝛼 𝛽 𝜇 r

| normal : (𝛼 → (evv 𝜇→ 𝛽 → mon 𝜇 r) → mon 𝜇 r) → pop 𝛼 𝛽 𝜇 r
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The partial function now creates tail terms for any clause f that the compiler determined to be tail
resumptive (i.e. of the form 𝜆x k. k e with k ̸∈ fv(e)):

partial w f = tail (𝜆x . (f w x ▷ (𝜆f ′. f ′ w pure)) if f is tail resumptive
partial w f = normal (𝜆x k. (f w x ▷ (𝜆f ′. f ′ w k)) otherwise

Note that even if f is tail resumptive, it may still use x. Moreover, since f has already captured its
evidence w, it can still perform operations itself.
Instead of passing in an łrealž resumption function k, we just pass pure directly, leading to

𝜆x . (e ▷ pure) ś and such clause we can now evaluate in-place without needing to yield and
capture our resumption context explicitly. The performop can directly inspect the form of the
operation clause from its evidence, and evaluate in place when possible:

performop w x = let (m, h) = w.l in case h.op of | tail f → f x

| normal f → yield m (f x)

Moreover, if a known handler is applied over some expression, regular optimizations like inlining
and known-case evaluation, can often inline the operations fully. As everything has been translated
to regular functions and regular data types without any special evaluation rules, there is no need
for special optimization rules for handlers either.

6.3 Using Constant Offsets in Evidence Vectors

The performop operation is now almost as efficient as a virtual method call for tail resumptive
operations (just check if it is tail and do in indirect call), except that it still needs to do a dynamic
lookup for the evidence as w.l.

The idea is to take advantage of the canonical order of the evidence in a vector, where the location
of the evidence in a vector of a closed effect type is fully determined. In particular, for any evidence
vector w of type evv ⟨l | 𝜖⟩ where 𝜖 is closed, we can replace w.l by a direct index w [ofs] where
(l in 𝜖) = ofs, defined as:

l in ⟨⟩ = 0
l in ⟨l′ | 𝜖⟩= l in 𝜖 iff l ⩽ l′

l in ⟨l′ | 𝜖⟩= 1 + (l in 𝜖) iff l > l′

This means for any functions with a closed effect, the offset of all evidence is constant. Only
functions that are polymorphic in the effect tail need to index dynamically. Details are beyond
the scope of this paper and are left to future work, but we believe that even in those cases we can
index by a direct offset: following the same approach as TREX [Gaster and Jones 1996], we can
use qualified types internally to propagate (l in 𝜇) constraints where the łdictionaryž is simply the
offset in the evidence vector (and these constraints can be hidden from the user as we can always
solve them).

6.4 Reducing Continuation Allocation

The monadic translation still produces inefficiencies as it captures the continuation at every
point where an operation may yield. For example, when calling an effectful function foo, as in
x ← foo (); e, the monadic translation produces a bind which takes an allocated lambda as a second
argument to represent the continuation e explicitly, as foo () ▷ (𝜆x . e).
First of all, we can do a selective monadic translation [Leijen 2017c] where we leave out the

binds if the effect of a function can be guaranteed to never produce a yield, e.g. total functions (like
arithmetic), all effects provided by the host platform (like I/O), and all effects that are statically
guaranteed to be tail resumptive (called linear effects). It turns out that many (leaf) functions satisfy
this property so this removes the vast majority of binding.
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Secondly, since we expect the vast majority of operations to be tail resumptive, almost always
the effectful functions will not yield at all. It therefore pays off to always inline the bind operation
and perform a direct match on the result and inline the continuation directly, e.g., we can expand
x ← foo (); e to:

case foo () of | yield m f cont → yield m f ((𝜆x . e) • cont)

| pure x → e

This can be done very efficiently, and is close to what a C or Go programmer would write: returning
a (yielding) flag from every function and checking the flag before continuing. Of course, this is also
a dangerous optimization as it duplicates the expression e, and more research is needed to evaluate
the impact of code duplication and finding a good inlining heuristic.
As a closing remark, the above optimization is why we prefer the monadic approach over

continuation passing style (CPS). With CPS, our example would pass the continuation directly
as foo () (𝜆x . e). This style may be more efficient if one often yields (as the continuation is more
efficiently composed versus bubbling up through the binds [Ploeg and Kiselyov 2014]) but it prohibits
our optimization where we can inspect the result of foo (without knowing its implementation) and
to only allocate a continuation if it is really needed.

6.5 Implementation

We have an initial implementation of the evidence-passing translation in the Koka language [Lei-
jen 2019] using the JavaScript backend4. The original runtime implementation uses a combination
of CPS translation [Leijen 2017c] and an internal shadow stack of handlers where the operations
propagate through this stack. The runtime part is about 1000 lines of JavaScript. The new imple-
mentation based on evidence-passing translation requires just a few primitives though (about 100
lines of JavaScript to handle evidence vectors efficiently).

While a systematic evaluation of efficient implementation strategies using evidence translation
is beyond the scope of this paper, the initial benchmark results look promising. In particular, using
benchmarks by Kiselyov et al. [2013] and Kammar et al. [2013], we compiled the same source
with the original compiler (runtime) and with the new evidence translating compiler (evidence),
and compare against the direct implementation of the benchmark that uses no handlers. We
summarize the benchmark results in the following table. The table presents the relative speed of
each implementation compared to the runtime compiler5.

runtime evidence direct description

counter 1.00× 1.94× 2.14× A counter in a loop.
count-mod5 1.00× 1.28× 0.83× Fold over a list and increment a counter on

every 5th element.
layered 1.00× 2.23× 2.34× Use a state handler above five other reader

effect handlers.
nqueens 1.00× 46.09× 76.20× The n-queens problem.

In counter, evidence is almost twice as fast as runtime, executing the tail resumptive increment in
place. It is also getting close to direct. In count-mod5, the improvement is more modest. Note that
direct is slower here due to the need to propagate the counter explicitly as an extra argument. The
layered benchmark can impact performance if searching linearly for a handler. This time evidence
is more than twice as fast, and again close to direct. Finally, on nqueens, evidence is much faster

4In the dev-ev branch in the Koka repository [Leijen 2019].
5The relative speed is adjusted for any speed differences between the direct versions with the runtime and evidence compiler.

This compensates for any other differences in optimizations between the compiler versions (where the evidence compiler is

usually a tad faster on the direct version).
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and about two thirds the speed of direct. Since evidence translation as such does not speed up
the capturing and restoring of backtracking resumptions as used in nqueens, this result is a bit
surprising. We conjecture that the explicit representation of continuations and evidence also helps
the JavaScript compiler to optimize well, while the internal shadow stack handling in the runtime

implementation may prohibit such optimizations here.

7 RELATED WORK

Throughout the paper, we compare with most related work, inline. Here, we discuss closely relevant
work related to explicit passing of handlers.

Recent work by Biernacki et al. [2019] introduces labeled effect handlers, allowing handlers to
being explicitly referred to by name; the generative semantics with labels l is similar to our runtime
markers m, but these labels are not guaranteed to be unique in the evaluation context (and they
use the innermost handler in such case). Biernacki et al. also distinguish between the generative
handler (as handlea), and the expression form handlem (as handlel).
Brachthäuser et al. use capability passing to perform operations directly on a specific han-

dler [Brachthäuser and Schuster 2017; 2018; Brachthäuser et al. 2020; Schuster et al. 2020]. This is
also similar to the work of Zhang and Myers [2019] where handlers are passed by name as well.
While they pass evidence individually for each handler, we uniformly pass a vector of handlers. Both
of these approaches can be viewed as programming within an explicit evidence passing calculus.

The work by Forster et al. [2019] is close to our work as it shows how delimited control, monads,
and effect handlers can express each other. They show in particular a monadic semantics for effect
handlers, but also prove that there does not exist a typed translation in their monomorphic setting.
They conjecture a polymorphic translation may exist, and this paper proves that such translation is
indeed possible.

Finally, we present a Haskell library [Xie and Leijen 2020] of effect handlers based on the evidence
translation technique as described in this paper. While in this paper we encode effects using a
row type system, the Haskell library encodes effects using a combination of a type list and type
class constraints. It is shown that the library delivers good performance, and tends to outperform
monads and alternative Haskell libraries when combining multiple effects.

8 CONCLUSION

We have shown a full formal and coherent translation from a polymorphic core calculus for effect
handlers (F𝜖 ) to a polymorphic lambda calculus (Fv) based on evidence translation (through Fev),
and we have characterized the relation to multi-prompt delimited continuations precisely. Besides
giving a new framework to reason about semantics of effect handlers, we are also hopeful that these
techniques will be used to create efficient implementations of effect handlers in practice. Moreover,
from a language design perspective, we expect that the restriction to scoped resumptions will be
more widely adopted. Currently we are working on an efficient backend for the Koka language to C
code using evidence translation. As part of that work, we are investigating an extension of evidence
translation that can potentially handle non-scoped resumptions as well. As future work, we are
also interested in a systematic evaluation of efficient implementation strategies using evidence
translation.
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