
Union Types with Disjoint Switches
Baber Rehman !

The University of Hong Kong

Xuejing Huang !

The University of Hong Kong

Ningning Xie !

University of Cambridge

Bruno C. d. S. Oliveira !

The University of Hong Kong

Abstract
Union types are nowadays a common feature in many modern programming languages. This paper
investigates a formulation of union types with an elimination construct that enables case analysis
(or switches) on types. The interesting aspect of this construct is that each clause must operate on
disjoint types. By using disjoint switches, it is possible to ensure exhaustiveness (i.e. all possible
cases are handled), and that none of the cases overlap. In turn, this means that the order of the cases
does not matter and that reordering the cases has no impact on the semantics, helping with program
understanding and refactoring. While implemented in the Ceylon language, disjoint switches have
not been formally studied in the research literature, although a related notion of disjointness has
been studied in the context of disjoint intersection types.

We study union types with disjoint switches formally and in a language independent way. We
first present a simplified calculus, called the union calculus (λu), which includes disjoint switches
and prove several results, including type soundness and determinism. The notion of disjointness
in λu is in essence the dual notion of disjointness for intersection types. We then present a more
feature-rich formulation of λu, which includes intersection types, distributive subtyping and a simple
form of nominal types. This extension reveals new challenges. Those challenges require us to depart
from the dual notion of disjointness for intersection types, and use a more general formulation of
disjointness instead. Among other applications, we show that disjoint switches provide an alternative
to certain forms of overloading, and that they enable a simple approach to nullable (or optional)
types. All the results about λu and its extensions have been formalized in the Coq theorem prover.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Union types, switch expression, disjointness, intersection types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.25

Supplementary Material ECOOP 2022 Artifact Evaluation approved artifact available at: https:
//github.com/baberrehman/disjoint-switches

Acknowledgements We thank the anonymous reviewers for their helpful and constructive comments.
This research was funded by the University of Hong Kong and Hong Kong Research Grants Council
projects number 17209519, 17209520 and 17209821.

1 Introduction

Most programming languages support some mechanism to express terms with alternative
types. Algol 68 [54, 55] included a form of tagged unions for this purpose. With tagged unions
an explicit tag distinguishes between different cases in the union type. Such an approach
has been adopted by functional languages, like Haskell, ML, or OCaml, which allow tagged
unions (or sum types [48]), typically via either algebraic datatypes [15] or variant types [32].
Languages like C or C++ support untagged union types where values of the alternative

© Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 25; pp. 25:1–25:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baber@cs.hku.hk
https://orcid.org/0000-0002-9458-8428
mailto:xjhuang@cs.hku.hk
https://orcid.org/0000-0002-8496-491X
mailto:xnningxie@gmail.com
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://github.com/baberrehman/disjoint-switches
https://github.com/baberrehman/disjoint-switches
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Union Types with Disjoint Switches

types are simply stored at the same memory location. However, there is no checking of types
when accessing values of such untagged types. It is up to the programmer to ensure that
the proper values are accessed correctly in different contexts; otherwise the program may
produce errors by accessing the value at the incorrect type.

Modern OOP languages, such as Scala 3 [44], Flow [24], TypeScript [13], and Ceylon [39],
support a form of untagged union types. In such languages a union type A ∨ B denotes
expressions which can have type A or type B. Union types have grown to be quite popular
in some of these languages. A simple Google search on questions regarding union types on
StackOverflow returns around 6620 results (at the time of writing), many of which arising
from TypeScript programmers. Union types can be useful in many situations. For instance,
union types provide an alternative to some forms of overloading and they enable an approach
to nullable types (or explicit nulls) [34, 43].

To safely access values with union types, some form of elimination construct is needed.
Many programming languages often employ a language construct that checks the types of the
values at runtime for this purpose. Several elimination constructs for (untagged) union types
have also been studied in the research literature [10, 29, 22]. Typically, such constructs take
the form of a type-based case analysis expression.

A complication is that the presence of subtyping introduces the possibility of overlapping
types. For instance, we may have a Student and a Person, where every student is a person (but
not vice-versa). If we try to eliminate a union using such types we can run into situations
where the type in one branch can cover a type in a different branch (for instance Person

can cover Student). More generally, types can partially overlap and for some values two
branches with such types can apply, whereas for some other values only one branch applies.
Therefore, the design of such elimination constructs has to consider what to do in situations
where overlapping types arise. A first possibility is to have a non-deterministic semantics,
where any of the branches that matches can be taken. However, in practice determinism is a
desirable property, so this option is not practical. A second possibility, which is commonly
used for overloading, is to employ a best-match semantics, where we attempt to find the
case with the type that best matches the value. Yet another option is to use a first-match
semantics, which employs the order of the branches in the case. Various existing elimination
constructs for unions [10, 22] employ a first-match approach. All of these three options have
been explored and studied in the literature.

The Ceylon language [39] is a JVM-based language that aims to provide an alternative
to Java. The type system is interesting in that it departs from existing language designs, in
particular with respect to union types and method overloading. The Ceylon designers had
a few different reasons for this. They wanted to have a fairly rich type system supporting,
among others: subtyping; generics with bounded quantification; union and intersection types;
and type-inference. The aim was to support most features available in Java, as well as a few
new ones. However the Ceylon designers wanted to do this in a principled way, where all
the features interacted nicely. A stumbling block towards this goal was Java-style method
overloading [2]. The interaction of overloading with other features was found to be challenging.
Additionally, overloaded methods with overlapping types make reasoning about the code
hard for both tools and humans. Algorithms for finding the best match for an overloaded
method in the presence of rich type system features (such as those in Ceylon) are challenging,
and not necessarily well-studied in the existing literature. Moreover allowing overlapping
methods can make the code harder to reason for humans: without a clear knowledge of
how overloading resolution works, programmers may incorrectly assume that a different
overloaded method is invoked. Or worse, overloading can happen silently, by simply reusing

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:3

the same name for a new method. These problems can lead to subtle bugs. For these reasons,
the Ceylon designers decided not to support Java-style method overloading.

To counter the absence of overloading, the Ceylon designers turned to union types instead,
but in a way that differs from existing approaches. Ceylon includes a type-based switch
construct where all the cases must be disjoint. If two types are found to be overlapping, then
the program is statically rejected. Many common cases of method overloading, which are
clearly not ambiguous, can be modelled using union types and disjoint switches. By using
an approach based on disjointness, some use cases for overloading that involve Java-style
overloading with overlapping types are forbidden. However, programmers can still resort to
creating non-overloaded methods in such a case, which arguably results in code easier to
reason about. Disjointness ensures that it is always clear which implementation is selected
for an “overloaded” method, and only in such cases overloading is allowed1. In the switch
construct, the order of the cases does not matter and reordering the cases has no impact
on the semantics, which can also aid program understanding and refactoring. Finally, from
the language design point of view, it would be strange to support two mechanisms (method
overloading and union types), which greatly overlap in terms of functionality.

While implemented in the Ceylon language, disjoint switches have not been studied
formally. To our knowledge, the work by Muehlboeck and Tate [42] is the only work
where Ceylon’s switch construct and disjointness are mentioned. However, their focus is
on algorithmic formulations of distributive subtyping with unions and intersection types.
No semantics of the switch construct is given. Disjointness is informally defined in various
sentences in the Ceylon documentation. It involves a set of 14 rules described in English [1].
Some of the rules are relatively generic, while others are quite language specific. Interestingly,
a notion of disjointness has already been studied in the literature for intersection types [45].
That line of work studies calculi with intersection types and amerge operator [49]. Disjointness
is used to prevent ambiguity in merges, which can create values with types such as Int ∧ Bool.
Only values with disjoint types can be used in a merge.

In this paper, we study union types with disjoint switches formally and in a language
independent way. We present the union calculus (λu), which includes disjoint switches
and union types. The notion of disjointness in λu is interesting in the sense that it is the
dual notion of disjointness for intersection types. We prove several results, including type
soundness, determinism and the soundness and completeness of algorithmic formulations
of disjointness. We also study several extensions of λu. In particular, the first extension
(discussed in Section 4) adds intersection types, nominal types and distributive subtyping
to λu. It turns out such extension is non-trivial, as it reveals a challenge that arises for
disjointness when combining union and intersection types: the dual notion of disjointness
borrowed from disjoint intersection types no longer works, and we must employ a novel, more
general, notion instead. Such change also has an impact on the algorithmic formulation of
disjointness, which must change as well. We also study two other extensions for parametric
polymorphism and a subtyping rule for a class of empty types in the extended version of this
paper. We prove that all the extensions retain the original properties of λu. Furthermore,
for our subtyping relation in Section 4 we give a sound, complete and decidable algorithmic
formulation by extending the algorithmic formulation employing splittable types by Huang
and Oliveira [36].

To illustrate the applications of disjoint switches, we show that they provide an alternative
to certain forms of overloading, and they enable a simple approach to nullable (or optional)

1 Ceylon does allow dynamic type tests, which in combination with switches can simulate some overlapping.

ECOOP 2022

25:4 Union Types with Disjoint Switches

types. All the results about λu and its extensions have been formalized in the Coq theorem
prover. In summary, the contributions of this paper are:

The λu calculus: We present a simple calculus with union types, nullable types and
a disjoint switch construct. We then present a richer extension of λu with intersection
types, distributive subtyping and nominal types. In addition, in the extended version of
the paper, we study extensions with parametric polymorphism and a subtyping rule to
detect empty types. All calculi and extensions are type sound and deterministic.
Sound, complete and decidable formulations of disjointness and subtyping: We
present two formulations of disjointness, which are general and language independent. The
second formulation is novel and more general, and can be used in a calculus that includes
intersection types as well. We also extend a previous subtyping relation [36] to include
nominal types. For both disjointness and subtyping we show that the specifications are
sound, complete and decidable and present the corresponding algorithmic formulations.
Mechanical formalization: The results about λu and its extensions have been formal-
ized in the Coq theorem prover and can be found in the supplementary materials, together
with an extended version of the paper.

2 Overview

This section provides some background on union types and some common approaches to
eliminate union types. Then it describes the Ceylon approach to union types, and discusses a
few applications of union types. Finally, it presents the key ideas and challenges in our work.

2.1 Tagged Union Types
We start with a brief introduction to union types. An expression has a union type A∨B, if it
can be considered to have either type A or type B. Many systems model tagged union types
(also called sum types or variants types), where explicit tags are used to construct terms with
union types, as in languages with algebraic datatypes [15] or (polymorphic) variants [32]. In
their basic form, there are two introduction forms: inj1 : A → A ∨ B turns the type of an
expression from A into A ∨ B; and inj2 : B → A ∨ B turns the type of an expressions from B
into A∨B. Using tagged union types, we can implement a safe integer division function, as2:
String | Int safediv (x : Int) (y : Int) =

if (y == 0) then inj1 " Divided by zero" else inj2 (x / y) // uses tags

Here the intention is to have a safe (integer) division operation that detects division by
zero errors, and requires clients of this function to handle such errors. The return type
String | Int denotes that the function can either return an error message (a string), or an
integer, when division is performed without errors.

Elimination form for tagged union types. Tagged union types are eliminated by some form
of case analysis. For consistency with the rest of the paper, we use a syntactic form with
switch expressions for such case analysis. For example, the following program tostring has
different behaviors depending on the tag of x, where show takes an Int and returns back its
string representation.

2 Throughout this paper, we write union types as A | B in code, since this is widely adopted in program-
ming languages (e.g., Ceylon, Scala, and TypeScript), and as A ∨ B in the formal calculi, which is more
frequently used in the literature.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:5

String tostring (x: String | Int) = switch (x)
inj1 str -> str
inj2 num -> show num

2.2 Type-directed Elimination forms for Union Types

While tags are useful to make it explicit which type a value belongs to, they also add
clutter in the programs. On the other hand, in systems with subtyping for union types
[29, 47, 42], explicit tags are replaced by implicit coercions represented by the two subtyping
rules A <: A ∨ B and B <: A ∨ B. In this paper we refer to union types where the explicit
tags are replaced by implicit coercions as untagged union types, or simply union types. In
those systems, a term of type A or B can be directly used as if it had type A ∨ B, and thus
we can write safe division as:

String | Int safediv2 (x : Int) (y : Int) =
if (y == 0) then " Divided by zero" else (x / y) // no tags!

However, now the elimination form of union types cannot rely on explicit tags anymore, and
different systems implement elimination forms differently. The most common alternative is
to employ types in the elimination form. We review type-directed union elimination next.

Type-directed elimination. Some systems [22] support type-directed elimination of union
types. For instance, tostring2 has different behaviors depending on the type of x.

String tostring2 (x: String | Int) = switch (x)
(y : String) -> y
(y : Int) -> show y

However, compared to tag-directed elimination, extra care must be taken with type-
directed elimination. In particular, while we can easily distinguish tags, ambiguity may arise
when types in a union type overlap for type-directed elimination. For example, consider the
type Person | Student, where we assume Student is a subtype of Person. With type-directed
elimination, we can write:

Bool isstudent (x: Person | Student) = switch (x)
(y : Person) -> False
(y : Student) -> True

Now it is unclear what happens if we apply isstudent to a term of type Student, as its type
matches both branches. In some calculi [29], the choice is not determined in the semantics, in
the sense that either branch can be chosen. This leads to a non-deterministic semantics. In
some other languages or calculi [22], branches are inspected from top to bottom, and the first
one that matches the type gets chosen. However, in those systems, as Person is a supertype
of Student, the first branch subsumes the second one and will always get chosen, and so the
second branch will never get evaluated! This may be unintentional, and similar programs
being accepted can lead to subtle bugs. Even if a warning is given to alert programmers that
a case can never be executed, there are other situations where two cases overlap, but neither
case subsumes the other. For instance we could have Student and Worker as subtypes of Person.
For a person that is both a student and a worker, a switch statement that discriminates
between workers and students could potentially choose either branch. However for persons
that are only students or only workers, only one branch can be chosen.

ECOOP 2022

25:6 Union Types with Disjoint Switches

Best-match and overloading. Some languages support an alternative to typed-based union
elimination via method overloading. Such form is used in, for example, Java [33] and Julia [57].
In Java, we can encode isstudent2 as an overloaded method, which has different behaviors
when the type of the argument differs.
boolean isstudent2 (Person x) { return False; }
boolean isstudent2 (Student x) { return True; }

Java resolves overloading by finding and selecting, from all method implementations, the one
with the best type signature that describes the argument. If we apply isstudent2 to a term of
type Student, the second implementation is chosen, as Student is the best type describing the
argument. As we can see, such a best-match strategy eliminates the order-sensitive problem,
as it always tries to find the best-match despite the order. That is, in Java the method order
does not matter: in this case, we have the method for Person before the one for Student, but
Java still finds the one for Student.

However, the best-match strategy can also be confusing, especially when the system
features implicit upcasting (e.g., by subtyping). If programmers are not very familiar with
how overloading resolution works, they may assume that the wrong implementation is called
in their code. For instance, in Java we may write:
Person p = new Student ();
isstudent2 (p);

In this case Java will pick the isstudent2 method with the argument Person, since Java
overloading uses the static type (p has the static type Person) to resolve overloading. But
some programmers may assume that the implementation of the method for Student would be
chosen instead, since the person is indeed a student in this case. This can be confusing and
lead to subtle bugs.

Moreover, there are other tricky situations that arise when employing a best-match
strategy. For example, suppose that the type Pegasus is a subtype of both type Bird and type
Horse. If a method isbird is overloaded for Bird and Horse, then which method implementation
should we choose when we apply isbird to a term of type Pegasus, the one for Bird, or the
one for Horse? In such case, we have an ambiguity. Things get worse when the type system
includes more advanced type system features, such as generics, intersections and union types,
or type-inference.

2.3 Union Types and Disjoint Switches in Ceylon
The Ceylon language [39] supports type-directed union elimination by a switch expression
with branches. The following program is an example with union types using Ceylon’s syntax:
void print(String | Integer |Float x) {

switch (x)
case (is String) { print(" String : ‘‘x‘‘"); }
case (is Integer |Float) { print(" Number : ‘‘x‘‘"); }

}

For the switch expression, Ceylon enforces static type checking with two guarantees:
exhaustiveness, and disjointness. First, Ceylon ensures that all cases in a switch expression
are exhaustive. In the above example, x can either be a string, an integer or a floating point
number. The types used in the cases do not have to coincide with the types of x. Nevertheless,
the combination of all cases must be able to handle all possibilities. If the last case only
dealt with Integer (instead of Integer|Float), then the program would be statically rejected,
since no case deals with Float.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:7

Second, Ceylon enforces that all cases in a switch expression are disjoint. That is, unlike
the approaches described in Section 2.2, in Ceylon, it is impossible to have two branches
that match with the input at the same time. For instance, if the first case used the type
String | Float instead of String, the program would be rejected statically with an error.
Indeed, if the program were to be accepted, then the call print(3.0) would be ambiguous,
since there are two branches that could deal with the floating point number. Note that, since
the cases in a switch cannot overlap, their order is irrelevant to the program’s behavior and
its evaluation result. All of the overlapping examples from the previous section will statically
be rejected in similar fashion.

Union types as an alternative to overloading. One motivation for such type-directed
union elimination in Ceylon is to model a form of function overloading. The following
example, which is adapted from TypeScript’s documentation [3], demonstrates how to define
an “overloaded” function padLeft, which adds some padding to a string. The idea is that
there can be two versions of padLeft: one where the second argument is a string; and the
other where the second argument is an integer:
String space(Integer n){

if (n==0) { return ""; }
else { return " "+space(n -1); }

}
String padLeft (String v, String | Integer x) {

switch (x)
case (is String) { return x+v; }
case (is Integer) { return space(x)+v; }

}
print(padLeft ("?", 5)); // " ?"
print(padLeft ("World", "Hello ")); // "Hello World"

In padLeft, there are two cases of the switch construct depending on the type of x: the first
one appends a string to the left of v, and the other calls function space to generate a string
with x spaces, and then append that to v. Although statically x has type String|Integer, as
a concrete value it can only be a string or an integer. As such, when values with such types
are passed to the function, the corresponding branch is chosen and executed.

2.4 Nullable Types
Besides being used for overloading, union types can be used for other purposes too. Null
pointer exceptions (NPEs) are a well-known and tricky problem in many languages. The
problem arises when dereferencing a pointer with the null value. For instance, if we have a
variable str, which is assigned to null, the the code print(str.size), in a Java-like language,
will raise a null pointer exception. This is because of so-called implicit nulls in Java and
other popular languages. With implicit nulls, any variable of a reference type can be null.

An interesting application of union types in Ceylon is to encode nullable types (or optional
types) [34] in a type-safe way. A similar approach to nullable types has also been recently
proposed for Scala [43]. In those languages, there is a special type Null, which is inhabited
by the null value. Note that Null differs from Nothing (the bottom type in Ceylon), in the
sense that Null is inhabited while Nothing is not. To illustrate the subtle difference, Figure 1
presents a part of the subtyping lattice in Ceylon. Anything, the top type in Ceylon, is an
enumerated class. Anything is also a supertype of Object, which is the root of primitive types,
function types, all interfaces and any user-defined class. Notably, Null is disjoint to Object,
and therefore, to all user-defined classes.

In Ceylon the following code:

ECOOP 2022

25:8 Union Types with Disjoint Switches

Null Object

Anything

Char Integer

Nothing

Figure 1 Ceylon’s subtyping hierarchy. Note that Null only has Nothing as its subtype.

String str = null;

is rejected with a type error, since null cannot have type String. Instead, a type that can
have the null value must be defined explicitly in Ceylon using union types:
String | Null str = null;

Now we cannot call str.size, as str may be null, and size is not defined on null. To get the
size of str, we must first check whether str is null or not using disjoint switches:
String | Null str = null;
switch (str)

case (is String) { print(str.size); }
case (is Null) { print (); }

Other uses of Union Types. Union types are also useful in many other situations. In
Section 2.2 we illustrated a safediv operation, which can be easily encoded in Ceylon as:
String | Integer safediv3 (Integer x, Integer y){

if (y==0) { return " Divided by zero"; }
else { return (x/y); }

}

The return value can be a string or an integer, with no explicit tag needed, as union types
are implicitly introduced. As long as the declared return type of the function is a supertype
of all possible return values, it is valid in Ceylon.

2.5 Key Ideas in Our Work
We first introduce a simplified formulation of λu, which formalizes the basic ideas of union
types with disjoint switches similar to those in the Ceylon Language. To our best knowledge,
there is yet no formalism of disjoint switches, and λu studies those features formally and
precisely. In particular, λu captures the key idea for type-directed elimination of union
types in its switch construct in a language independent way, and formally defines disjoint-
ness, disjointness and subtyping algorithms, and the operational semantics. The simplified
formulation of λu is useful to compare with existing calculi with union types in the liter-
ature [41, 9, 30, 29, 47, 18]. Moreover, we study a more fully featured formulation of λu

that includes practical extensions, such as intersection types, distributive subtyping, nullable
types and a simple form of nominal types. λu is proved to enjoy many desirable properties,
such as type soundness, determinism and the soundness/completeness of disjointness and
subtyping definitions. All the Ceylon examples in Sections 2.3 and 2.4 can be encoded in λu.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:9

Disjointness. A central concept in the formulation of disjoint switches is disjointness. Our
first hurdle was to come up with a suitable formal definition of disjointness. Consider the
simple λu switch expression:

switch x {
(y : String | Int) -> 0
(y : Int | Bool) -> 1

}

Here we wish to determine whether String ∨ Int and Int ∨ Bool are disjoint or not. In other
words, we wish to determine whether, for any possible (dynamic) type that x can have, it is
unambiguous which branch to choose. In this case, it turns out that there is ambiguity. For
instance, if x is an integer, then either branch can be chosen. Thus λu rejects this program
with a disjointness error. In this example, the reason to reject the program is basically that
Int <: String ∨ Int and Int <: Int ∨ Bool. That is we can find a common subtype (Int) of the types
in both branches. Moreover, that subtype can be inhabited by values (integer values in this
case). If the only common subtypes of the types in the two branches would be types like ⊥
(which has no inhabitants), then the switch should be safe because we would not be able to
find a value for x that would trigger two branches. This observation leads to the notion of
disjointness employed in the first variant λu in Section 3. Formally, we have:

I Definition 1 (⊥-Disjointness). A ∗ B ::= ∀ C, if C <: A and C <: B then cCb

Here we use cCb to denote that type C is equivalent to type ⊥, or, bottom-like (i.e.
C <: ⊥). In either definition, Int serves as a counter-example for String ∨ Int and Int ∨ Bool
to be disjoint. Thus λu rejects the program above with a disjointness error. It is worth
noting that this first notion of disjointness is essentially dual to a definition of disjointness
for intersection types in the literature in terms of top-like common supertypes [45].

Disjointness in the presence of intersection types. The variant of λu in Section 3 does
not include intersection types. Unfortunately, the disjointness definition above does not
work in the presence of intersection types. The reason is simple: with intersection types
we can always find common subtypes, such as Int ∧ Bool, which are not bottom-like, and yet
they have no inhabitants. That is, Int ∧ Bool is not a subtype of ⊥, but no value can have
both type Int and type Bool. We address this issue by reformulating disjointness in terms of
ordinary types [28], which are basically primitive types (such as integers or functions). If we
can find common ordinary subtypes between two types, we know that they are not disjoint.
Thus the disjointness definition used for formulations of λu with intersection types is:

I Definition 2 (∧-Disjointness). A ∗ B ::= @ C◦, C◦ <: A and C◦ <: B.

Note that here C◦ is a metavariable denoting ordinary types. Under this definition we can
check that Int and Bool are disjoint, since no ordinary type is a subtype of both of these two
types. This definition avoids the issue with Definition 1, which would not consider these two
types disjoint. Moreover, this definition is a generalization of the previous one, and in the
variant with union types only the two definitions coincide.

This new definition requires a different approach to algorithmic disjointness. Our new
approach is to use the notion of lowest ordinary subtypes: For any given type, we calculate a
finite set to represent all the possible values that can match the type. Then we can easily
determine whether two types are disjoint by ensuring that the intersection of their lowest
ordinary subtypes is empty.

ECOOP 2022

25:10 Union Types with Disjoint Switches

Distributive Subtyping. In Section 4, we study λu with an enriched distributive subtyping
relation inspired by Ceylon programming language. Distributive subtyping is more expressive
than standard subtyping and adds significant complexity in the system, in particular for
a formulation of algorithmic subtyping and the completeness proof of the disjointness
algorithm. Nevertheless, distributive subtyping does not affect the disjointness definition
and its algorithm remains the same with and without distributive subtyping. The following
code snippet elaborates on the expressiveness of distributive subtyping:

void do (< Integer & String > | Boolean val) { /* do something */ }

The function do in above code snippet takes input value of type (Int ∧ String) ∨ Bool. How-
ever, we cannot pass a value of type (Int ∨ Bool) ∧ (String ∨ Bool) to the function do: we get a
type error if we try to do that in a system with standard subtyping (without distributiv-
ity), as standard subtyping fails to identify that the value has a subtype of the expected
argument type. Distributive rules enable this subtyping relation. With distributivity of
unions over intersections (and vice-versa), the type (Int ∨ Bool) ∧ (String ∨ Bool) is a subtype of
(Int ∧ String) ∨ Bool (in particular, by rule ds-distor in Figure 6). As such with distributive
subtyping, the following Ceylon program type-checks:

variable <Integer | Boolean > & <String | Boolean > x = true; do(x);

Nominal Types and Other Extensions to λu. We also study several extensions to λu,
including nominal types. The extension with nominal types is interesting, since nominal
types are highly relevant in practice. We show a sound, complete and decidable algorithmic
formulation of subtyping with nominal types by extending an approach by Huang and
Oliveira [36]. We show that disjointness can also be employed in the presence of nominal
types. This extension rejects ambiguous programs with overlapping nominal types in different
branches of switch construct at compile time. It illustrates that disjointness is practically
applicable to structural types as well as the nominal types. For example, the following
program will statically be rejected in λu with nominal types:

Bool isstudent (x: Person | Student) = switch (x)
(y : Person) -> False
(y : Student) -> True

Whereas, the following program will be accepted if we know that Person and Vehicle are
disjoint:

Bool isvehicle (x: Person | Vehicle) = switch (x)
(y : Person) -> False
(y : Vehicle) -> True

3 The Union Calculus λu

This section introduces the simplified union calculus λu. The distinctive feature of the λu

calculus is a type-based switch expression with disjoint cases, which can be used to eliminate
values with union types. In this first formulation of λu we only include the essential features
of a calculus with disjoint switches: union types and disjoint switches. Section 4 then presents
a richer formulation of λu with several extensions of practical relevance. We adapt the notion
of disjointness from previous work on disjoint intersection types [45] to λu, and show that λu

is type sound and deterministic.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:11

Type A,B, C ::= > | ⊥ | Int | A→ B | A ∨ B | Null
Expr e ::= x | i | λx.e | e1 e2 | switch e {(x : A)→ e1, (y : B)→ e2} | null
Value v ::= i | λx.e | null
Context Γ ::= · | Γ, x : A

A <: B (Subtyping)

A <: >
s-top

Null <: Null
s-null

Int <: Int
s-int

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2
s-arrow

⊥ <: A
s-bot

A <: C B <: C
A ∨ B <: C

s-ora

A <: B
A <: B ∨ C

s-orb
A <: C

A <: B ∨ C
s-orc

Figure 2 Syntax and subtyping for λu.

3.1 Syntax
Figure 2 shows the syntax for λu. Metavariables A, B and C range over types. Types include
top (>), bottom (⊥), integer types (Int), function types (A→ B), union types (A ∨ B) and
null types (Null). Metavariable e ranges over expressions. Expressions include variables
(x), integers (i), lambda abstractions (λx.e), applications (e1 e2), a novel switch expression
(switch e {(x : A) → e1, (y : B) → e2}) and the null expression. The switch expression
evaluates a specific branch by matching the types in the cases. Note that, although the
switch expression in λu only has two branches, a multi-branch switch can be easily encoded
by employing nested switch expressions. We model the two-branch switch for keeping the
formalization simple, but no expressive power is lost compared to a multi-branch switch.
Metavariable v ranges over values. Values include i, λx.e and null expressions. Finally, a
context (Γ) maps variables to their associated types.

3.2 Subtyping
The subtyping rules for λu are shown at the bottom of Figure 2. The rules are standard.
Rule s-top states that all types are subtypes of the > type. Rule s-bot states that ⊥ type is
subtype of all types. Rule s-null states that the Null type is a subtype of itself. Rules s-int
and s-arrow are standard rules for integers and functions respectively. Functions are
contravariant in input types and covariant in output types. Rules s-ora, s-orb, and s-orc
deal with the subtyping for union types. Rule s-ora says that the union type of A and B is
a subtype of another type C if both A and B are subtypes of C . Rules s-orb and s-orc
state if a type is subtype of one of the components of a union type, then it is subtype of the
union type. The subtyping relation for λu is reflexive and transitive.

3.3 Disjointness
The motivation for a definition of disjointness based on bottom-like types is basically that
in disjoint switches, the selection of branches can be viewed as a type-safe downcast. For
instance, recall the example in Section 2.5:
switch x {

ECOOP 2022

25:12 Union Types with Disjoint Switches

(y : String | Int) -> 0
(y : Int | Bool) -> 1

}

Here x may have type Int | String | Bool and the two branches in the disjoint switch cover
two subtypes String | Int and Int | Bool. When considered together those subtypes cover
all possibilities for the value x (i.e. x can be either an integer, a string or a boolean, and the
two cases cover all those possibilities). The exhaustiveness of the downcasts is what ensures
that the downcasts are type-safe (that is they cannot fail at runtime). However, we also need
to ensure that the two cases do not overlap to prevent ambiguity. In essence, in this simple
setting of λu, checking that two types do not overlap amounts to check that there are no
basic types (like Int or Bool) in common. In other words the only common subtypes should
be bottom-like types.

Bottom-Like Types. Bottom-like types are types that are equivalent (i.e. both supertypes
and subtypes) to ⊥. In λu, there are infinitely many such types, and they all are uninhabited
by values. According to the inductive definition shown at the top of Figure 3, they include
the bottom type itself (via rule bl-bot) and unions of two bottom-like types (via rule bl-or),
e.g. ⊥ ∨ ⊥. The correctness of our definition for bottom-like types is established by the
following property:

I Lemma 3 (Bottom-Like Soundness and Completeness). cAb if and only if ∀B, A <: B.

Declarative Disjointness. The declarative definition for disjointness is as follows:

I Definition 4 (⊥-Disjointness). A ∗ B ::= ∀ C, if C <: A and C <: B then cCb

That is, two types are disjoint if all their common subtypes are bottom-like. We give a few
examples next, employing a bold font to highlight the types being compared for disjointness:

1. A = Int, B = Int → Bool : Int and Int→ Bool are disjoint types. All common subtypes
of Int and Int→ Bool are bottom-like types, including ⊥ and unions of ⊥ types.

2. A = Int ∨ Bool, B = ⊥ : Int ∨ Bool and ⊥ are disjoint types. All common subtypes are
bottom-like. In general, the type ⊥ (or any bottom-like type) is disjoint to another type.

3. A = Int, B = > : Int and > are not disjoint types because they share a common subtype
Int which is not bottom-like. In general no type is disjoint to >, except for bottom-like
types. Also, one type is not disjoint with itself, unless it is bottom-like.

4. A = Int → Bool, B = String → Char : The types Int→ Bool and String→ Char are not
disjoint, since we can find non-bottom-like types that are subtypes of both types. For
instance > → ⊥ is a subtype of both types. More generally, any two function types can
never be disjoint: it is always possible to find a common subtype, which is not bottom-like.

Disjointness for Intersection Types. In essence, disjointness for λu is dual to the disjointness
notion in λi [45], a calculus with disjoint intersection types. In λu, two types are disjoint if
they do not share any common subtype which is not bottom-like. While in λi, two types are
disjoint if they do not share any common supertype which is not top-like (i.e. equivalent to
>). While a disjoint switch provides deterministic behavior for downcasting, disjointness
in intersection types prevents ambiguity in upcasting. In a type-safe setting, if two values
v1 and v2 (of type A1 and A2) can both be upcasted to type B, then B must be a common
supertype of A1 and A2. The disjointness restriction of A1 and A2 means they cannot have
any non-top-like common supertype, so when the two values together upcasted to a type like

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:13

cAb (Bottom-Like Types)

c⊥b
bl-bot

cAb cBb
cA ∨ Bb

bl-or

A ∗a B (Algorithmic Disjointness)

A ∗a ⊥
ad-btmr

⊥ ∗a A
ad-btml

Int ∗a A→ B
ad-intl

A→ B ∗a Int
ad-intr

Null ∗a Int
ad-null-intl

Int ∗a Null
ad-null-intr

Null ∗a A→ B
ad-null-funl

A→ B ∗a Null
ad-null-funr

A ∗a C B ∗a C
A ∨ B ∗a C

ad-orl
A ∗a B A ∗a C

A ∗a B ∨ C
ad-orr

Γ ` e : A (Typing)

Γ ` i : Int
typ-int

Γ ` null : Null
typ-null

Γ ` e : A A <: B
Γ ` e : B

typ-sub

Γ ` e1 : A→ B Γ ` e2 : A
Γ ` e1 e2 : B

typ-app
Γ, x : A ` e : B

Γ ` λx.e : A→ B
typ-abs

x : A ∈ Γ
Γ ` x : A

typ-var

Γ ` e : A ∨ B Γ, x : A ` e1 : C Γ, y : B ` e2 : C A ∗ B
Γ ` switch e {(x : A)→ e1, (y : B)→ e2} : C

typ-switch

Figure 3 Bottom-like types, algorithmic disjointness and typing for λu.

Int, only one of them can contribute to the result. Prior work on disjoint intersection types is
also helpful to find an algorithmic formulation of disjointness. Declarative disjointness does
not directly lead to an algorithm. However, we can find an algorithmic formulation that
employs dual rules to those for disjoint intersection types.

Algorithmic Disjointness. We present an algorithmic version of disjointness in the middle
of Figure 3. Rules ad-btmr and ad-btml state that the ⊥ type is disjoint to all types.
Rules ad-intl and ad-intr state that Int and A → B are disjoint types. Algorithmic
disjointness can further be scaled to more primitive disjoint types such as Bool and String
by adding more rules similar to rules ad-intl and ad-intr for additional primitive types.
Rules ad-null-intl and ad-null-intr state that Null and Int are disjoint types. Similarly,
rules ad-null-funl and ad-null-funr state that Null and A → B are disjoint types.
Rules ad-orl and ad-orr are two symmetric rules for union types. Any type C is disjoint to
an union type A∨B if C is disjoint to both A and B. We show that algorithmic disjointness
is sound and complete with respect to its declarative specification (Definition 4).

I Theorem 5 (Soundness and Completeness of Algorithmic Disjointness). A ∗a B if and only

ECOOP 2022

25:14 Union Types with Disjoint Switches

if A ∗ B.

A natural property of λu is that if type A and type B are two disjoint types, then subtypes
of A are disjoint to subtypes of B. This property dualises the covariance of disjointness
property in calculi with disjoint intersection types [4].

I Lemma 6 (Disjointness contravariance). If A ∗B and C <: A and D <: B then C ∗D.

3.4 Typing

The typing rules are shown at the bottom of Figure 3. They are mostly standard. An integer
has type Int, null has type Null and variable x gets type from the context. Rule typ-app is
the standard rule for function application. Similarly, rule typ-sub and rule typ-abs are
standard subsumption and abstraction rules respectively. The most interesting and novel
rule is for switch expressions (rule typ-switch). It has four conditions. First, Γ ` e : A ∨ B
ensures exhaustiveness of the cases in the switch: e must check against the types in the
branches of the switch. The next two conditions ensure that branches of case expressions
are well-typed and have type C , where the input variable is bound to type A and to type
B respectively in the two branches. Finally, A ∗ B guarantees the disjointness of A and B.
This forbids overlapping types for the branches of case expressions to avoid non-deterministic
results. Since all the branches have type C , the whole switch expression has type C . Note
that the two branches can have different return types. For example, if e1 and e2 have type
Int and String respectively, the whole expression can have type Int ∨ String.

3.5 Operational Semantics

Now we discuss the small-step operational semantics of λu. An important aspect of this
semantics is that union elimination is type-directed: types are used to pick the branch of the
switch expression.

Figure 4 shows the operational semantics of λu. Rules step-appl, step-appr, and
step-beta are the standard call-by-value reduction rules for applications. Of particular
interest are rules step-switch, step-switchl, and step-switchr, which reduce the switch
expressions. First, rule step-switch reduces the case expression e, until it becomes a value
v, at which point we must choose between the two branches of switch. We do so by inspecting
the type of v: if the approximate type of v is a subtype of type of the left branch, then
rule step-switchl evaluates the left branch of the switch expression, or otherwise if it is a
subtype of the type of the right branch, rule step-switchr evaluates the right branch.

Note that the approximate type definition gives only a subtype of the actual type for
a lambda value. This works, because the approximate type is only employed to allow the
selection of a case with a function type, and in λu two function types can never be disjoint.
Therefore, if there is a branch with a function type, then that must be the branch that
applies to a lambda value. Note also that the program has been type-checked before hand, so
we know that the static type of the value is compatible with the types on the branches. The
subtyping condition in rules step-switchl and step-switchr is important, as it provides
flexibility for the value to have various subtypes of A and B, instead of strictly having those
types. Recall that the typing rule for switch (rule typ-switch) requires that types of left and
right branches of a switch expression to be disjoint. This ensures that rules step-switchl
and step-switchr cannot overlap, which, as we will see, is important for the operational
semantics to be deterministic.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:15

e −→ e′ (Operational Semantics)

e1 −→ e′1
e1 e2 −→ e′1 e2

step-appl
e −→ e′

v e −→ v e′
step-appr

(λx.e) v −→ e[x ; v]
step-beta

e −→ e′

switch e {(x : A)→ e1, (y : B)→ e2} −→ switch e′ {(x : A)→ e1, (y : B)→ e2}
step-switch

bvc <: A
switch v {(x : A)→ e1, (y : B)→ e2} −→ e1[x ; v]

step-switchl

bvc <: B
switch v {(x : A)→ e1, (y : B)→ e2} −→ e2[y ; v]

step-switchr

Approximate Type bvc

bic = Int
bλx.ec = > → ⊥

bnullc = Null

Figure 4 Operational semantics and approximate type definitions for λu.

3.6 Type Soundness and Determinism
In this section, we prove that λu is type sound and deterministic. Type soundness is
established by the type preservation and progress theorems. Type preservation (Theorem 7)
states that types are preserved during reduction. Progress (Theorem 8) states that well
typed programs never get stuck: a well typed expression e is either a value or it can reduce
to some other expression e′.

I Theorem 7 (Type Preservation). If Γ ` e : A and e −→ e′ then Γ ` e′ : A.

I Theorem 8 (Progress). If · ` e : A then either e is a value; or e −→ e′ for some e′.

Determinism of λu (Theorem 10) ensures that a well-typed program reduces to a unique
result. In particular, it guarantees that switch expressions are not order-sensitive: at any
time, only one of the rules step-switchl and step-switchr can apply. The determinism
of the switch expression relies on an essential property that a value cannot check against two
disjoint types (Lemma 9).

I Lemma 9 (Exclusivity of Disjoint Types). If A ∗ B then @ v such that both Γ ` v : A and
Γ ` v : B holds.

I Theorem 10 (Determinism). If Γ ` e : A and e −→ e1 and e −→ e2 then e1 = e2.

3.7 An Alternative Specification for Disjointness
The current definition of disjointness (Definition 4) works well for the calculus presented
in this section. But it is not the only possible formulation of disjointness. An equivalent
formulation of disjointness is:

I Definition 11 (∧-Disjointness). A ∗ B ::= @ C◦, C◦ <: A and C◦ <: B

According to the new definition, two types are disjoint if they do not have common subtypes
that are ordinary. Ordinary types (denoted by C◦) are essentially those types that are
primitive, such as integers and functions (see Figure 5 for a formal definition).

For the calculus presented in this section, we prove that the new definition is equivalent
to the previous definition of disjointness.

ECOOP 2022

25:16 Union Types with Disjoint Switches

I Lemma 12 (Disjointness Equivalence). Definition 11 (∧-Disjointness) is sound and complete
to Definition 4 (⊥-Disjointness) in λu defined in this section.

Why do we introduce the new definition of disjointness? It turns out that the previous
definition is not sufficient when the calculus is extended with intersection types. As we will
see, the new definition will play an important role in such variant of the calculus.

4 λu with Intersections, Distributive Subtyping and Nominal Types

In this section we extend λu with intersection types, nominal types and an enriched distributive
subtyping relation. The study of an extension of λu with intersection types is motivated by
the fact that most languages with union types also support intersection types (for example
Ceylon, Scala or TypeScript). Furthermore, languages like Ceylon or Scala also support
some form of distributive subtyping, as well as nominal types. Therefore it is important
to understand whether those extensions can be easily added or whether there are some
challenges. As it turns out, adding intersection types does pose a challenge, since the notion
of disjointness inspired from disjoint intersection types [45] no longer works. Moreover
subtyping relations with distributive subtyping add significant complexity, and we need an
extension that supports nominal types as well. We show that desirable properties, including
type soundness and determinism, are preserved in the extended version of λu. Moreover we
prove that both disjointness and subtyping have sound, complete and decidable algorithms.

4.1 Syntax, Well-formedness and Ordinary Types

The syntax for this section mostly follows from Section 3, with the additional syntax given
in Figure 5. The most significant difference and novelty in this section is the addition of
intersection types A ∧ B and an infinite set of nominal types. We use metavariable P to
stand for nominal types. Expressions are extended with a new expression (new P) to create
instances of nominal types. The expression new P is also a value. Context Γ stays the same
as in Section 3. We add a new context ∆, to track nominal types and their supertypes. For
example, adding P1 ≤ P2 to ∆ declares a new nominal type P1 that is a subtype of P2. For a
well-formed context, the supertype P2 has to be declared before P1. We also allow to declare
a new nominal type P1 with > as its supertype by adding P1 ≤ > to ∆. Metavariable A◦, B◦
and C◦ ranges over ordinary types [28]. There are four kinds of ordinary types: integers,
null, function types and nominal types. Well-formed types and well-formedness of ordinary
contexts ∆ are shown in Figure 5.

Remark on Nominal Types. Note that our formulation of nominal types is simplified in
two ways compared to languages like Java. Firstly, we do not consider arguments when
building new expressions (i.e. we do not allow expressions like new Person("John")). Secondly,
we also do not introduce class declarations, which would allow nominal types to be associated
with method implementations. We follow a design choice for nominal types similar to
Featherweight Java [38]. Featherweight Java uses a fixed size context for nominal types.
Diamond inheritance is also not supported in Featherweight Java, and we follow that design
choice as well. However, we believe that supporting diamond inheritance in our calculus is
relatively easy. These simplifications keep the calculus simple, while capturing the essential
features that matter for disjointness and the formalization of disjoint switches. Allowing for
a more complete formulation of nominal types can be done in mostly standard ways.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:17

A,B, C ::= ... | A ∧ B | P
A◦, B◦, C◦ ::= Int | Null | A→ B | P
e ::= ... | new P
v ::= ... | new P
Γ ::= · | Γ, x : A
∆ ::= · | ∆,P1 ≤ P2 | ∆,P ≤ >

∆ ` A (Well-formed Types)

∆ ` >
wft-top

∆ ` ⊥
wft-bot

∆ ` Int
wft-int

∆ ` Null
wft-null

∆ ` A ∆ ` B
∆ ` A→ B

wft-arrow
P ∈ dom ∆

∆ ` P
wft-prim

∆ ` A ∆ ` B
∆ ` A ∨ B

wft-or

∆ ` A ∆ ` B
∆ ` A ∧ B

wft-and

ok ∆ (Well-formed Nominal Contexts)

ok ·
okp-empty

ok ∆ P /∈ dom ∆
ok ∆,P ≤ >

okp-cons

ok ∆ ∆ ` P2 P1 /∈ dom ∆
ok ∆,P1 ≤ P2

okp-sub

Figure 5 Additional syntax and well-formedness.

4.2 Distributive Subtyping

Another interesting feature of this section is the addition of distributive subtyping to λu.
Ceylon employs an enriched distributive subtyping relation [42] that is based on the B+
logic [50, 53]. To obtain an equivalent algorithmic formulation of subtyping, we employ the
idea of splittable types [36], but extend that algorithm with the Null type and nominal types.

Distributive subtyping relation. Figure 6 shows a declarative version of distributive sub-
typing for λu with intersection and nominal types. Subtyping includes axioms for reflexivity
(rule ds-refl) and transitivity (rule ds-trans). Rules ds-top, ds-bot, ds-arrow, and
ds-ora have been discussed in Section 3. Rule ds-prim states that a nominal type is a
subtype of type A if it is declared as subtype of A in ∆. Note that A can either be a nominal
type or > under a well-formed context ∆. With the help of rule ds-trans, the subtyping of
primitive types can also be constructed indirectly, e.g. P1 ≤ >,P2 ≤ P1,P3 ≤ P2 ` P3 ≤ P1.
Compared with the algorithmic formulation, having an explicit transitivity rule considerably
simplifies the rules for nominal types. Rules ds-orb and ds-orc state that a subpart of
a union type is a subtype of whole union type. Rule ds-anda states that a type A is a
subtype of the intersection of two types B and C only if A is a subtype of both B and C .
Rules ds-andb and ds-andc state that intersection type A1 ∧A2 is a subtype of both A1
and A2 separately. Rule ds-distarr distributes function types over intersection types. It

ECOOP 2022

25:18 Union Types with Disjoint Switches

∆ ` A ≤ B (Declarative Subtyping with Distributivity)

ok ∆ ∆ ` A
∆ ` A ≤ A

ds-refl
∆ ` A ≤ B ∆ ` B ≤ C

∆ ` A ≤ C
ds-trans

∆ ` B1 ≤ A1 ∆ ` A2 ≤ B2

∆ ` A1 → A2 ≤ B1 → B2
ds-arrow

ok ∆ P ≤ A ∈ ∆
∆ ` P ≤ A

ds-prim

∆ ` A1 ≤ B ∆ ` A2 ≤ B
∆ ` A1 ∨A2 ≤ B

ds-ora
ok ∆ ∆ ` A1 ∆ ` A2

∆ ` A1 ≤ A1 ∨A2
ds-orb

ok ∆ ∆ ` A1 ∆ ` A2

∆ ` A2 ≤ A1 ∨A2
ds-orc

∆ ` B ≤ A1 ∆ ` B ≤ A2

∆ ` B ≤ A1 ∧A2
ds-anda

ok ∆ ∆ ` A1 ∆ ` A2

∆ ` A1 ∧A2 ≤ A1
ds-andb

ok ∆ ∆ ` A1 ∆ ` A2

∆ ` A1 ∧A2 ≤ A2
ds-andc

ok ∆ ∆ ` A1 ∆ ` A2 ∆ ` B
∆ ` (A1 → B) ∧ (A2 → B) ≤ (A1 ∨A2)→ B

ds-distarru
ok ∆ ∆ ` A

∆ ` A ≤ >
ds-top

ok ∆ ∆ ` A1 ∆ ` A2 ∆ ` B
∆ ` (A1 ∨ B) ∧ (A2 ∨ B) ≤ (A1 ∧A2) ∨ B

ds-distor
ok ∆ ∆ ` A

∆ ` ⊥ ≤ A
ds-bot

ok ∆ ∆ ` A ∆ ` B1 ∆ ` B2

∆ ` (A→ B1) ∧ (A→ B2) ≤ A→ (B1 ∧ B2)
ds-distarr

Figure 6 Distributive subtyping for λu with intersection types and nominal types.

states that (A→ B1) ∧ (A→ B2) is a subtype of A→ (B1 ∧ B2). Rule ds-distarru states
that (A1 → B) ∧ (A2 → B) is a subtype of (A1 ∨A2)→ B type. Rule ds-distor distributes
intersections over unions.

Algorithmic Subtyping. Distributive rules make it hard to eliminate the transitivity rule.
Our algorithmic formulation of distributive subtyping is based on a formulation using
splittable types by Huang and Oliveira [36]. The basic idea is to view the distributive rules
as some expansion of intersection and union types. For example, rule ds-distarr makes
A → B1 ∧ B2 and (A → B1) ∧ (A → B2) mutual subtypes. Thus A → B1 ∧ B2 is treated
like (A → B1) ∧ (A → B2) in the three intersection-related rules as-anda, as-andb, and
as-andc. Here we use A u B ∧ C to denote that type A can be split into B and C (and
therefore, A is equivalent to B ∧ C) according to the procedure designed by Huang and
Oliveira. Union and union-like types (e.g. (A1 ∨ A2) ∧ B u A1 ∧ B ∨ A2 ∧ B) are handled
in similar way in rules as-ora, as-orb, and as-orc. For further details of algorithmic
subtyping we refer to their paper.

Subtyping Nominal Types. However, Huang and Oliveira’s algorithm does not account
for Null and nominal types. We add the nominal context ∆ in the subtyping judgment
and extend the subtyping algorithm with Null and nominal types. Nominal types are not
splittable, and their subtyping relation is defined by the transitive closure of the context.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:19

∆ ` A <: B (Algorithmic Subtyping with Distributivity)

∆ ` B1 <: A1 ∆ ` A2 <: B2

∆ ` A1 → A2 <: B1 → B2
as-arrow

ok (∆,P1 <: P2) ∆ ` P2 <: P3

∆,P1 <: P2 ` P1 <: P3
as-primEq

ok ∆ ∆ ` A
∆ ` A <: A

as-refl
ok (∆,P2 <: A) P1 6= P2 ∆ ` P1 <: P3

∆,P2 <: A ` P1 <: P3
as-primNeq

A u A1 ∨A2 ∆ ` A1 <: B ∆ ` A2 <: B
∆ ` A <: B

as-ora
ok ∆ ∆ ` A

∆ ` A <: >
as-top

A u A1 ∨A2 ∆ ` B <: A1

∆ ` B <: A
as-orb

A u A1 ∨A2 ∆ ` B <: A2

∆ ` B <: A
as-orc

A u A1 ∧A2 ∆ ` B <: A1 ∆ ` B <: A2

∆ ` B <: A
as-anda

ok ∆ ∆ ` A
∆ ` ⊥ <: A

as-bot

A u A1 ∧A2 ∆ ` A1 <: B
∆ ` A <: B

as-andb
A u A1 ∧A2 ∆ ` A2 <: B

∆ ` A <: B
as-andc

Figure 7 Algorithmic subtyping for λu with distributivity, intersection and nominal types.

They are supertypes of ⊥ and subtypes of >, but not related with other primitive types like
Int and Null. So for nominal types, we mainly focus on checking the subtyping relationship
among them in our algorithm. Given a well-formed context, any nominal type P appears
only once in a subtype position as an explicit declaration for P, and its direct supertype, if is
not >, must be declared before P. Thus if ∆ ` P1 <: P2 holds, either P2 is introduced before
P1 in ∆, or they are the same type, in which case the goal can be solved by rule as-refl.
For the other cases, we recursively search for P1 in all subtype positions of the context ∆
(rule as-primNeq). When we find P1, we check its direct supertype. If it is >, no other
nominal types can be supertypes of P1. So in rule as-primEq, we only consider when the
direct supertype is another primitive P2. For P3 to be a supertype of P1, it must either equal
to P2, or it is related to P2 by the smaller context. In either case, we can prove that P3 is a
supertype of the direct supertype of P1.

Inversion Lemmas for Type Soundness. Having an algorithmic formulation of subtyping
is useful to prove several inversion lemmas that are used in the type soundness proof. For
instance, it allows us to prove the following lemma:

I Lemma 13 (Inversion on Function Types). If ∆ ` A1 → A2 <: B1 → B2 then ∆ ` B1 <: A1
and ∆ ` A2 <: B2.

While the additional distributive rules make function types more flexible, they retain the
contravariance of argument types and covariance of return types. In addition, we show the
formulation is sound and complete to the declarative subtyping and it is decidable whether a
subtyping judgment holds under a given context.

I Lemma 14 (Equivalence of subtyping). ∆ ` A ≤ B if and only if ∆ ` A <: B.

I Lemma 15 (Decidability of subtyping). ∆ ` A ≤ B is decidable.

ECOOP 2022

25:20 Union Types with Disjoint Switches

4.3 Disjointness Specification
Disjointness is another interesting aspect of the extension of λu. Unfortunately, Definition 4
does not work with intersection types. In what follows, we first explain why Definition 4 does
not work, and then we show how to define disjointness in the presence of intersection types.

Bottom-like types, intersection types and disjointness. Recall that disjointness in Section 3
(Definition 4) depends on bottom-like types, where two types are disjoint only if all their
common subtypes are bottom-like. However, this definition no longer works with the addition
of intersection types. According to the subtyping rule for intersection types, any two types
have their intersection as one common subtype. For non-bottom-like types, their intersection
is also not bottom-like. For example, type Int and type Bool now have a non-bottom like
subtype Int ∧ Bool. In other words, the disjointness definition fails, since we can always find a
common non-bottom-like subtype for any two (non-bottom-like) types.

A possible solution: the Ceylon approach. A possible solution for this issue is to add a
subtyping rule which makes intersections of disjoint types subtypes of ⊥.

A ∗ B
A ∧ B <: ⊥

s-disj

This rule is adopted by the Ceylon language [42]. With the rule s-disj now the type Int ∧ Bool
would be a bottom-like type, and the definition of disjointness used in Section 3 could still
work. The logic behind this rule is that if we interpret types as sets of values, and intersection
as set intersection, then intersecting disjoint sets is the empty set. In other words, we would
get a type that has no inhabitants. For instance the set of all integers is disjoint to the set
of all booleans, and the intersection of those sets is empty. However we do not adopt the
Ceylon solution here for two reasons:

1. Rule s-disj complicates the system because it adds a mutual dependency between
subtyping and disjointness: disjointness is defined in terms of subtyping, and subtyping
now uses disjointness as well in rule s-disj. This creates important challenges for
the metatheory. In particular, the completeness proof for disjointness becomes quite
challenging.

2. Additionally, the assumption that intersections of disjoint types are equivalent to ⊥ is
too strong for some calculi with intersection types. If a merge operator [49] is allowed in
the calculus, intersection types can be inhabited with values (for example, in λi [45], the
type Int ∧ Bool is inhabited by 1, ,True). Considering those types bottom-like would lead
to a problematic definition of subtyping, since some bottom-like types (those based on
disjoint types) would be inhabited.

For those reasons we adopt a different approach in λu. Nevertheless, in the extended version
of the paper we show that it is possible to create an extension of λu that includes (and in
fact generalizes) the Ceylon-style rule s-disj.

Disjointness based on ordinary types to the rescue. To solve the problem with the
disjointness specification, we resort to the alternative definition of disjointness presented in
Section 3.7. Note that now the disjointness definition also contains ∆ as an argument to
account for nominal types.

I Definition 16 (∧-Disjointness). ∆ ` A ∗ B ::= @ C◦, ∆ ` C◦ <: A and ∆ ` C◦ <: B.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:21

Lowest Ordinary Subtypes (LOS) |A|∆
|>|∆ = {Int,> → ⊥,Null} ∪ dom ∆

|⊥|∆ = {}

|Int|∆ = {Int}
|A→ B|∆ = {> → ⊥}

|A ∨ B|∆ = |A|∆ ∪ |B|∆
|A ∧ B|∆ = |A|∆ ∩ |B|∆
|Null|∆ = {Null}
|P|∆ = {P} ∪ ∆(P)

Nominal Subtypes ∆(A)

·(A) = {}

(∆′,P ≤ B)(A) =

 {P} ∪∆′(A) if P ≤ A ∈ ∆

∆′(A) otherwise

ok ∆ ∆ ` P
∆; Γ ` new P : P

ptyp-prim

Figure 8 Lowest ordinary subtypes function and additional typing rule for λu with intersection
types and nominal types.

Interestingly, while in Section 3 such definition was equivalent to the definition using
bottom-like types, this is no longer the case for λu with intersection types. To see why,
consider again the types Int and Bool. Int and Bool do not share any common ordinary subtype.
Therefore, Int and Bool are disjoint types according to Definition 16. We further illustrate
Definition 16 with a few concrete examples:

1. A = Int ∨ Bool, B = ⊥ : Since there is no ordinary type that is a subtype of both
Int ∨ Bool and ⊥, Int ∨ Bool and ⊥ are disjoint types. In general, the ⊥ type is disjoint to
all types because ⊥ does not have any ordinary subtype.

2. A = Int ∧ Bool, B = Int ∨ Bool : There is no ordinary type that is a subtype of both
Int ∧ Bool and Int ∨ Bool. Therefore, Int ∧ Bool and Int ∨ Bool are disjoint types. In general,
an intersection of two disjoint types (Int ∧ Bool in this case) is always disjoint to all types.

4.4 Algorithmic Disjointness

The change in the disjointness specification has a significant impact on an algorithmic
formulation. In particular, it is not obvious at all how to adapt the algorithmic formulation
in Figure 3. To obtain a sound, complete and decidable formulation of disjointness, we
employ the novel notion of lowest ordinary subtypes.

Lowest ordinary subtypes (|A|∆). Figure 8 shows the definition of lowest ordinary subtypes
(LOS) (|A|∆). LOS is defined as a function which returns a set of ordinary subtypes of the
given input type. No ordinary type is a subtype of ⊥. The only ordinary subtype of Int is
Int itself. The function case is interesting. Since no two functions are disjoint in the calculus
proposed in this paper, the case for function types A → B returns > → ⊥. This type is
the least ordinary function type, which is a subtype of all function types. Lowest ordinary
subtypes of > are Int, > → ⊥, Null and all the nominal types defined in ∆. In the case of
union types A ∨ B, the algorithm collects the LOS of A and B and returns the union of the
two sets. For intersection types A∧B the algorithm collects the LOS of A and B and returns
the intersection of the two sets. The lowest ordinary subtype of Null is Null itself. Finally,
the LOS of P is the union of P itself with all subtypes of P defined in ∆. Note that LOS is
defined as a structurally recursive function and therefore its decidability is immediate.

ECOOP 2022

25:22 Union Types with Disjoint Switches

Algorithmic disjointness. With LOS, an algorithmic formulation of disjointness is straight-
forward:

I Definition 17. ∆ ` A ∗a B ::= |A|∆ ∩ |B|∆ = {}.

The algorithmic formulation of disjointness in Definition 17 states that two types A and B are
disjoint under the context ∆ if they do not have any common lowest ordinary subtypes. In
other words, the set intersection of |A|∆ and |B|∆ is the empty set. Note that this algorithm
is naturally very close to Definition 16.

Soundness and completeness of algorithmic disjointness. Next, we show that disjointness
algorithm is sound and complete with respect to disjointness specifications (Theorem 18).
Soundness and completeness of LOS are essential to prove Theorem 18. Both of these
properties are shown in Lemma 19 and Lemma 20 respectively.

I Theorem 18 (Disjointness Equivalence). ∆ ` A ∗a B if and only if ∆ ` A ∗ B.

I Lemma 19 (Soundness of |A|∆). ∀ well-formed ∆ and A and B that are well-formed under
∆, if B ∈ |A|∆, then ∆ ` B <: A.

I Lemma 20 (Completeness of |A|∆). ∀ A B◦, if ∆ ` B◦ <: A, then B◦ ∈ |A|∆, or B◦ is
an arrow type and > → ⊥ ∈ |A|∆.

4.5 Typing, Semantics and Metatheory
Both typing and the operational semantics are parameterized by the nominal context ∆.
The typing rules are extended with a rule for nominal types rule ptyp-prim as shown at the
right side in Figure 8. The typing rule ptyp-prim states that under a well-formed context ∆
and well-formed type P, new P has type P. No additional reduction rule is required because
new P is a value. However, the rules step-switchl and step-switchr require ∆ because
they do a subtyping check. We illustrate the updated rule step-switchl next:

∆ ` bvc <: A
∆ ` switch v {(x : A)→ e1, (y : B)→ e2} −→ e1[x ; v]

nstep-switchl

Rule step-switchr is updated similarly. All the other rules are essentially the same as in
Section 3, modulo the extra nominal context ∆.

Example. Assuming a context ∆ = Person ≤ >,Student ≤ Person,Robot ≤ >, y : Person |
Robot and x : Student, we could write the following two switches:
switch (y) // Accepted !

(z : Person) -> False
(z : Robot) -> True

switch (x) // Rejected !
(z : Person) -> False
(z : Student) -> True

In the above code, the first switch, using y is accepted, while the second one (using x) is
rejected because the types overlap in that case.

Key Properties. We proved that λu with intersection types, nominal types and subtyping
distributivity preserves type soundness and determinism.

I Theorem 21 (Type Preservation). If ∆; Γ ` e : A and e −→ e′ then ∆; Γ ` e′ : A.

I Theorem 22 (Progress). If ∆; · ` e : A then either e is a value; or e can take a step to e′.

I Theorem 23 (Determinism). If ∆; Γ ` e : A and e −→ e1 and e −→ e2 then e1 = e2.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:23

5 Related Work

Union types. Union types were first introduced by MacQueen et al. [41]. They proposed
a typing rule that eliminates unions implicitly. The rule breaks type preservation under
the conventional reduction strategy of the lambda calculus. Barbanera et al. [9] solved the
problem by reducing all copies of the same redex in parallel. Dunfield and Pfenning [30, 29]
took another approach to support mutable references. They restricted the elimination typing
rule to only allow a single occurrence of a subterm with a union type when typing an
expression. Pierce [47] proposed a novel single-branch case construct for unions. As pointed
by Dunfield and Pfenning, compared to the single occurrence approach, the only effect of
Pierce’s approach is to make elimination explicit.

Union types and elimination constructs based on types are widely used in the context of
XML processing languages [35, 10], and have inspired proposals for object oriented languages
[37]. Generally speaking, the elimination constructs in those languages offer a first-match
semantics, where cases can overlap and reordering the cases may change the semantics of
the program. This is in contrast to our approach. Union types have also been studied in
the context of XDuce programming language [35]. XDuce employs regular expression types.
Pattern matching can be on expressions and types in XDuce. Expressions are considered as
special cases of types. CDuce [10] is an extension of XDuce. Work on the more foundational
aspects of CDuce, and in particular on semantic subtyping [31] and set-theoretic types, also
employs a form of first-match semantics elimination construct, though in a different form.
In particular, work by Castagna et al. [18, 20] proposes a conditional construct that can
test whether a value matches a type. If it matches then the first branch is executed and the
type for the value is refined. Otherwise, the second branch is executed and the type of the
value is refined to be the negation of the type (expressing that the value does not have such
type). Union types are also studied in the context of semantic subtyping and object-oriented
calculi [6, 5, 27] which focus on designing subtyping algorithms to employ semantic subtyping
in OOP. In contrast, we study a deterministic and type-safe switch construct for union
elimination.

Muehlboeck and Tate [42] give a general framework for subtyping with intersection
and union types. They illustrate the significance of their framework using the Ceylon
programming language. The main objective of their work is to define a generic framework
for deriving subtyping algorithms for intersection and union types in the presence of various
distributive subtyping rules. For instance, their framework could be useful to derive an
algorithmic formulation for the subtyping relation presented in Figure 6. They also briefly
cover disjointness in their work. As part of their framework, they can also check disjointness
given some disjointness axioms. For instance, for λu, such axioms could be similar to
rule ad-btmr or rule ad-intl in Figure 3. However, they do not have a formal specification
of disjointness. Instead they assume that some sound specification exists and that the axioms
respect such specification. If some unsound axioms are given to their framework (say Int∗a Int)
this would lead to a problematic algorithm for checking disjointness. In our work we provide
specifications for disjointness together with sound and complete algorithmic formulations. In
addition, unlike us, they do not study the semantics of disjoint switch expressions.

Occurrence Typing. Occurrence typing or flow typing [51] specializes or refines the type of
variable in a type test. An example of occurrence typing is:
Integer occurrence (Integer | String val) {

if (val is Integer) { return val +1; }
else { return toInt(val)+2; }

ECOOP 2022

25:24 Union Types with Disjoint Switches

}

In such code, val initially has type Int ∨ String. The conditional checks if the val is of type
Int. If the condition succeeds, it is safe to assume that val is of type Int, and the type of
val is refined in the branch to be Int. Otherwise, it is safe to assume that val is of type
String, in the other branch (and the type is refined accordingly). The motivation to study
occurrence typing was to introduce typing in dynamically typed languages. Occurrence
typing was further studied by Tobin-Hochstadt and Felleisen [52], which resulted into the
development of Typed Racket. Variants of occurrence typing are nowadays employed in
mainstream languages such as TypeScript, Ceylon or Flow. Castagna et al. [21] extended
occurrence typing to refine the type of generic expressions, not just variables. They also
studied the combination with gradual typing. Occurrence typing in a conditional construct,
such as the above, provides an alternative means to eliminate union types using a first-match
semantics. That is the order of the type tests determines the priority.

Nullable Types. Nullable types are types which may have the null value. Recently, Nieto
et al. [43] proposed an approach with explicit nulls in Scala using union types. The Ceylon
language has implemented a similar approach for a few years now. However our’s and
Ceylon’s approaches are based on disjoint switches to test for nullability, while Nieto et
al.’s [43] approach is based on a simplified form of occurrence typing.

Various approaches have been proposed to deal with nullability such as T? in Kotlin [40],
Swift [7] and Flow [25]. The Checker Framework [46] is another line of related work to
detect null pointer deferences in Java programs. Banerjee et al. [8] proposes an approach to
explicitly associate nullable and non-nullable properties with expressions in Java. However,
differently from our work, in those approaches nullable types are not encoded with union
types. Blanvillain et al. [14] study a notion of match types for type level programming. They
also employ a notion of disjointness in match types and can encode nullable types. However,
they provide match types at the type level and do not use them for union elimination.
Furthermore, they do not study intersection and union types formally. In contrast, we
provide a term level switch construct for union elimination.

Disjoint Intersection Types. Disjoint intersection types were first studied by Oliveira et
al. [45] in the λi calculus to give a coherent calculus for intersection types with a merge
operator. The notion of disjointness used in λu, discussed in Section 3, is inspired by the
notion of disjointness of λi. In essence, disjointness in λu is the dual notion: while in λi two
types are disjoint if they only have top-like supertypes, in λu two types are disjoint if they
only have bottom-like subtypes. Disjoint polymorphism [4] has been studied for calculi with
disjoint intersection types.

None of calculi with disjoint intersection types [45, 11, 4, 12] in the literature includes
union types. One interesting discovery of our work is that the presence of both intersections
and unions in a calculus can affect disjointness. In particular, as we have seen in Section 4,
adding intersection types required us to change disjointness. The notion of disjointness that
was derived from λi stops working in the presence of intersection types. Interestingly, a
similar issue happens when union types are added to a calculus with disjoint intersection
types. If disjointness of two types A and B is defined to be that such types can only have
top-like types, then adding union types immediately breaks such definition. For example,
the types Int and Bool are disjoint but, with union types, Int ∨ Bool is a common supertype
that is not top-like. We conjecture that, to add union types to disjoint intersection types, we
can use the following definition of disjointness:

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:25

I Definition 24. A ∗ B ::= @ C◦, A <: C◦ and B <: C◦.

which is, in essence, the dual notion of the definition presented in Section 4. Under this
definition Int and Bool would be disjoint since we cannot find a common ordinary supertype
(and Int ∨ Bool is a supertype, but it is not ordinary). Furthermore, there should be a dual
notion to LOS, capturing the greatest ordinary supertypes. Moreover, if a calculus includes
both disjoint switches and a merge operator, then the two notions of disjointness must coexist
in the calculus. This will be an interesting path of exploration for future work.

Overloading. Union and intersection types also provide a form of function overloading or
ad-hoc polymorphism using the switch and type-based case analysis. A programmer may
define the argument type to be a union type. By using type-based case analysis, it is possible
to execute different code for each specific type of input. Intersection types have also been
studied for function overloading. For example, a function with type Int→ Int ∧ Bool→ Bool
can take input values either of type Int or Bool. In such case, it returns either Int or Bool
depending upon the input type. Function overloading [19, 17, 56] has been studied in detail
in the literature. Wadler and Blott [56] studied type classes as an alternative way to provide
overloading based on parametric polymorphism.

6 Conclusion and Future Work

This work develops the union calculus (λu) with union types and a type-based union
elimination construct based on disjointness. We presented the operational semantics of the
calculus, and showed type-soundness and determinism. Disjointness plays a crucial role for
the determinism result, as it ensures that only one branch in the switch elimination construct
can apply for any given value. A nice aspect of the work was that we were able to adapt the
notion of disjointness used in disjoint intersection types to our variant of λu with union types.
We believe that this reinforces fundamental connections between union and intersection types
via duality. The addition of intersection types to λu lead to some interesting discoveries. In
particular, it showed that the notion of disjointness that we were able to formulate, inspired
by the work on disjoint intersection types, breaks. This is not showing that the duality stops
working. Instead, it shows that the combination of intersections and unions in the same
system affects disjointness. As discussed in Section 5, adding union types to calculi with
disjoint intersection types leads to a similar problem, and the solution in λu can inspire
solutions for adding union types to disjoint intersection types.

We plan to extend λu for practical programming languages with more advanced features.
An interesting line of research for λu is to study the addition of the merge operator, which
calculi with disjoint intersection types include. The main challenge is that types such as
Int ∧ Bool become inhabited. It could also be interesting to study a variant of λu that uses a
best-match approach based on the dynamic type. This would relate to the extensive line of
research on multi-methods [23] and multiple dispatching [26]. Finally, a current limitation
of our approach is that it relies on a global context for nominal types. This enables some
simplifications, since we can search the global nominal environment for subtypes. However
this assumption breaks in a setting where new nominal types can be added. Ceylon solves
this issue in a modular way using of clauses that enumerate all the possible subtypes that a
class can have. It would be interesting to adopt this approach to enable the addition of new
nominal types.

ECOOP 2022

25:26 Union Types with Disjoint Switches

References
1 Disjointness in ceylon. URL: http://web.mit.edu/ceylon_v1.3.3/ceylon-1.3.3/doc/en/

spec/html_single.
2 Overloading in ceylon. URL: https://github.com/ceylon/ceylon-spec/issues/73.
3 Union types in typescript. URL: https://www.typescriptlang.org/docs/handbook/

unions-and-intersections.html.
4 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European

Symposium on Programming (ESOP), 2017.
5 Davide Ancona and Andrea Corradi. Sound and complete subtyping between coinductive

types for object-oriented languages. In European Conference on Object-Oriented Programming,
pages 282–307. Springer, 2014.

6 Davide Ancona and Andrea Corradi. Semantic subtyping for imperative object-oriented
languages. ACM SIGPLAN Notices, 51(10):568–587, 2016.

7 Inc Apple. Swift language guide, 2021. URL: https://docs.swift.org/swift-book/
LanguageGuide/TheBasics.html.

8 Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical type-based null
safety for java. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages
740–750, 2019.

9 Franco Barbanera, Mariangiola Dezaniciancaglini, and Ugo Deliguoro. Intersection and union
types: syntax and semantics. Information and Computation, 119(2):202–230, 1995.

10 Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. Cduce: an xml-centric general-
purpose language. ACM SIGPLAN Notices, 38(9):51–63, 2003.

11 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The Essence of Nested Composition.
In European Conference on Object-Oriented Programming (ECOOP), 2018.

12 Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. Distributive disjoint
polymorphism for compositional programming. In Luís Caires, editor, Programming Languages
and Systems, pages 381–409, Cham, 2019. Springer International Publishing.

13 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In European
Conference on Object-Oriented Programming, pages 257–281. Springer, 2014.

14 Olivier Blanvillain, Jonathan Immanuel Brachthäuser, Maxime Kjaer, and Martin Odersky.
Type-level programming with match types. Proc. ACM Program. Lang., 6(POPL), jan 2022.
doi:10.1145/3498698.

15 R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: An experimental applicative
language. Technical Report CSR-62-80, Computer Science Dept, Univ. of Edinburgh, 1981.

16 Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C Mitchell. F-bounded
polymorphism for object-oriented programming. In Proceedings of the fourth international
conference on functional programming languages and computer architecture, pages 273–280,
1989.

17 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys (CSUR), 17(4):471–523, 1985.

18 Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping. In
Proceedings of the 7th ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 198–199, 2005.

19 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. Information and Computation, 117(1):115–135, 1995.

20 Giuseppe Castagna and Victor Lanvin. Gradual typing with union and intersection types.
Proceedings of the ACM on Programming Languages, 1(ICFP):1–28, 2017.

21 Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen. Revisiting occurrence
typing. arXiv preprint arXiv:1907.05590, 2019.

http://web.mit.edu/ceylon_v1.3.3/ceylon-1.3.3/doc/en/spec/html_single
http://web.mit.edu/ceylon_v1.3.3/ceylon-1.3.3/doc/en/spec/html_single
https://github.com/ceylon/ceylon-spec/issues/73
https://www.typescriptlang.org/docs/handbook/unions-and-intersections.html
https://www.typescriptlang.org/docs/handbook/unions-and-intersections.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://doi.org/10.1145/3498698

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:27

22 Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca
Padovani. Polymorphic functions with set-theoretic types: Part 1: Syntax, semantics, and
evaluation. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, page 5–17, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2535838.2535840.

23 Craig Chambers. Object-oriented multi-methods in Cecil. In Ole Lehrmann Madsen, editor,
ECOOP ’92, European Conference on Object-Oriented Programming, Utrecht, The Netherlands,
volume 615, pages 33–56. Springer-Verlag, 1992.

24 Avik Chaudhuri. Flow: a static type checker for javascript. SPLASH-I In Systems, Program-
ming, Languages and Applications: Software for Humanity, 2015.

25 Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. Fast
and precise type checking for javascript. Proceedings of the ACM on Programming Languages,
1(OOPSLA):1–30, 2017.

26 Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava: Modular open
classes and symmetric multiple dispatch for java. In Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
’00, page 130–145, 2000.

27 Ornela Dardha, Daniele Gorla, and Daniele Varacca. Semantic subtyping for objects and
classes. In Formal Techniques for Distributed Systems, pages 66–82. Springer, 2013.

28 Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Proceedings
of the fifth ACM SIGPLAN international conference on Functional programming, pages 198–208,
2000.

29 Joshua Dunfield. Elaborating intersection and union types. Journal of Functional Programming,
24(2-3):133–165, 2014.

30 Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-
by-value languages. In International Conference on Foundations of Software Science and
Computation Structures, pages 250–266. Springer, 2003.

31 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 137–146. IEEE, 2002.

32 Jacques Garrigue. Programming with polymorphic variants. In ML workshop, 1998.
33 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith, and Gavin

Bierman. The java language specification, 2021. URL: https://docs.oracle.com/javase/
specs/jls/se14/html/index.html.

34 Eric Gunnerson. Nullable types. In A Programmer’s Guide to C# 5.0, pages 247–250. Springer,
2012.

35 Haruo Hosoya and Benjamin C Pierce. Xduce: A statically typed xml processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

36 Xuejing Huang and Bruno C d S Oliveira. Distributing intersection and union types with
splits and duality (functional pearl). Proceedings of the ACM on Programming Languages,
5(ICFP):1–24, 2021.

37 Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented programming. In
Proceedings of the 2006 ACM symposium on Applied computing, pages 1435–1441, 2006.

38 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal core
calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

39 Gavin King. The ceylon language specification, version 1.0, 2013.
40 Foundation Kotlin. Kotlin programming language, 2021. URL: https://kotlinlang.org/.
41 David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive polymorphic

types. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 165–174, 1984.

42 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated
subtyping. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29, 2018.

ECOOP 2022

https://doi.org/10.1145/2535838.2535840
https://docs.oracle.com/javase/specs/jls/se14/html/index.html
https://docs.oracle.com/javase/specs/jls/se14/html/index.html
https://kotlinlang.org/

25:28 Union Types with Disjoint Switches

43 Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin Pu. Scala with Explicit
Nulls. In 34th European Conference on Object-Oriented Programming (ECOOP 2020), Leibniz
International Proceedings in Informatics (LIPIcs), pages 25:1–25:26, 2020.

44 Martin Odersky. Scala 3: A next generation compiler for scala, 2021. URL: https://dotty.
epfl.ch.

45 Bruno C. d. S. Oliveira, Zhiyuan Shi, and Joao Alpuim. Disjoint intersection types. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,
pages 364–377, 2016.

46 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.
Practical pluggable types for java. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 201–212, 2008.

47 Benjamin C Pierce. Programming with intersection types, union types. Technical report, and
polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon University, 1991.

48 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
49 John C Reynolds. Preliminary design of the programming language forsythe. 1988.
50 Richard Routley and Robert K Meyer. The semantics of entailment—iii. Journal of philosoph-

ical logic, 1(2):192–208, 1972.
51 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed scheme.

ACM SIGPLAN Notices, 43(1):395–406, 2008.
52 Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In

Proceedings of the 15th ACM SIGPLAN international conference on Functional programming,
pages 117–128, 2010.

53 Steffen van Bakel, Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Yoko Motohoma. The
minimal relevant logic and the call-by-value lambda calculus. Technical report, Citeseer, 2000.

54 Adriaan Van Wijngaarden, Barry J Mailloux, John EL Peck, Cornelius HA Koster, M Sintzoff,
CH Lindsey, LGLT Meertens, and RG Fisker. Report on the algorithmic language algol 68.
Numerische Mathematik, 14(1):79–218, 1969.

55 Adriaan van Wijngaarden, Barry James Mailloux, John Edward Lancelot Peck, Cornelis HA
Koster, CH Lindsey, M Sintzoff, Lambert GLT Meertens, and RG Fisker. Revised report on
the algorithmic language Algol 68. Springer Science & Business Media, 2012.

56 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 60–76, 1989.

57 Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson,
and Jan Vitek. Julia subtyping: a rational reconstruction. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):1–27, 2018.

A Further Extensions and Discussion

The calculus introduced in Section 3 is a simple foundational lambda calculus with union
types, similar to prior work on union types and their elimination forms [10, 29, 22]. In
Section 4 we extend λu with various interesting features including intersection types, nominal
types and subtyping distributivity, inspired by Ceylon, which has similar features. In this
section we discuss two more practical extensions:

Disjoint Polymorphism: The first extension is an extension with a form of disjoint poly-
morphism [4], which allows the specification of disjointness constraints for type variables.
Although Ceylon supports polymorphism, it does not support disjoint polymorphism.
The extension with disjoint polymorphism is inspired by the work on disjoint intersection
types, where disjoint polymorphism has been proposed to account for disjointness in a
polymorphic language.

https://dotty.epfl.ch
https://dotty.epfl.ch

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:29

A,B, C ::= ... | α | ∀(α ∗G).B
e ::= ... | e A | Λ(α ∗G).e
v ::= ... | Λ(α ∗G).e
Γ ::= ... | Γ, α ∗G
G ::= > | ⊥ | Int | Null | A→ B

| G1 ∨G2 | G1 ∧G2 | ∀(α ∗G).B

Lowest Ordinary Subtypes (LOS) |A|∆;Γ

... = ...
|∀(α ∗G).B|∆;Γ = {∀(α ∗ ⊥).⊥}
|α|∆;Γ = (|>|∆;Γ) - (|G|∆;Γ)

where α ∗G ∈ Γ

∆; Γ ` A <: B (Additional subtyping rules)

ok ∆ ∆; Γ ` α
∆; Γ ` α <: α

polys-tvar
∆; Γ ` G1 <: G2 ∆; Γ, α ∗G2 ` B1 <: B2

∆; Γ ` ∀(α ∗G1).B1 <: ∀(α ∗G2).B2
polys-all

∆; Γ ` e : A (Additional typing rules)

∆; Γ ` e : ∀(α ∗G).C ∆; Γ ` G1 ∗G
∆; Γ ` eG1 : C [α ; G1]

ptyp-tap

∆; Γ, α ∗G ` e : B
∆; Γ ` Λ(α ∗G).e : ∀(α ∗G).B

ptyp-tabs

∆; Γ ` e −→ e′ (Additional reduction rules)

∆; Γ ` e −→ e′

∆; Γ ` e B −→ e′ B
polystep-tappl

∆; Γ ` (Λ(α ∗G).e) B −→ e[α ; B]
polystep-tapp

Figure 9 Syntax, additional typing, subtyping, and reduction rules for λu with polymorphism.

A Special Subtyping Rule for Empty Types: The second extension that we discuss
is an alternative subtyping formulation with a special subtyping rule for empty types,
which follows the Ceylon approach.

Note that both extensions above have also been formalized in Coq and proved type-
sound and deterministic. In addition, we also have a brief discussion about implementation
considerations.

A.1 Polymorphism

Polymorphism is an essential feature of almost all the modern programming languages. In this
section we discuss an extension of λu with parametric polymorphism along with intersection
and nominal types. The interesting aspect about this extension is the presence of disjointness
constraints. For example, in λu with polymorphism a polymorphic disjoint switch such as:
Γ, α ∗ Int ` switch e {(x : Int)→ true, (y : α)→ false} is accepted. It is safe to use Int and α
in alternative branches in a switch in this example. The disjointness constraint in the context
(Γ, α ∗ Int) on type variable α ensures that α must only be instantiated with types disjoint
to Int. Thus an instantiation of α with Null or A→ B is allowed. Whereas, an instantiation
of α with Int is rejected by the type system.

ECOOP 2022

25:30 Union Types with Disjoint Switches

Syntax. Figure 9 shows the extension in the syntax of λu with polymorphism. Types
are extended with type variables α and disjoint quantifiers ∀(α ∗ G).B. ∀(α ∗ G).B is
also an ordinary type. The reader can think of this extension in the context of bounded
quantification [17, 16] where bounded quantifiers (∀(α <: A).B) are replaced by disjoint
quantifiers (∀(α ∗G).B). Bounded quantification imposes a subtyping restriction on type
variables, whereas disjoint quantification imposes disjointness restriction on type variables.
Disjoint quantification only allows the instantiation of disjoint types. For example, ∀(α <:
Int ∨ Bool).α allows α to be instantiated only with subtypes of Int ∨ Bool and restricts all
other types. Whereas, ∀(α ∗ Int ∨ Bool).α restricts all the instantiations of α which share an
ordinary subtype with Int ∨ Bool. In other words, the permitted instantiations of α are the
types disjoint to Int ∨ Bool. Null is a valid instantiation in this case, while Int is not a valid
instantiation.

Expressions are extended with type application e A and type abstraction Λ(α ∗G).e. A
type abstraction is also a value. Additionally, context Γ now also contains type variables
with their respective disjointness constraints. The disjointness constraint of type variables is
restricted to ground types (G), which includes all the types except type variables. Ground
types are shown at the top left of Figure 9.

Subtyping, Typing and Operational Semantics. Figure 9 shows additional rules in the
formalization of λu with polymorphism. Note that subtyping, typing, and reduction relations
now have two contexts ∆ and Γ. Subtyping is extended for the two newly added types.
The subtyping rule for type variables is a special case of reflexivity (rule polys-tvar)).
Rule polys-all is interesting. It says that input and output types of two disjoint quantifiers
are covariant in the subtype relation. This contrasts with calculi with bounded quantification
and disjoint polymorphism [4], where the subtyping between the type bounds of the constraints
is contravariant, and the subtyping between the types in the universal quantification body
is covariant. Note that in the calculus that we formalized in Coq, we study parametric
polymorphism without distributive subtyping rules.

Similarly, typing is extended to assign the type to two newly added expressions. Rule ptyp-
tap is for type applications and rule ptyp-tabs is for type abstractions. Rule polystep-
tappl is standard reduction rule for type application. Rule polystep-tapp replaces α with
type B in expression e.

Disjointness. Disjointness has to be updated to accommodate type variables and disjoint
quantifiers. The definition of algorithmic disjointness is roughly the same as discussed in
Section 4, except that it takes an additional argument Γ. Context Γ is also an argument of
LOS. LOS is extended to handle the additional cases of α and ∀(α ∗G).B and is shown at the
top right of Figure 9. LOS returns ∀(α ∗ ⊥).⊥ as the least ordinary subtype of ∀(α ∗G).B.
The type variable case is interesting. It returns the set difference of all ordinary subtypes
and LOS of the disjointness constraint of type variable. Note that the disjointness constraint
of type variables is restricted to ground types.

I Definition 25 (Disjointness). ∆; Γ ` A ∗ B ::= |A|∆;Γ ∩ |B|∆;Γ = {}.

Type-safety and Determinism. The extension with disjoint polymorphism retains the
properties of type-soundness and determinism. All the metatheory is formalized in Coq
theorem prover. Progress and determinism does not require significant changes for this
extension. Type preservation requires the preservation of disjointness after substitution and
disjointness narrowing along with disjointness weakening. Disjointness substitution states

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:31

that if two types are disjoint before type substitution, they must be disjoint after type
substitution as stated in Lemma 26. The disjointness narrowing relates disjointness and
subtyping. It states that it is safe to change the bounds of type variables from subtypes to
supertypes as stated in Lemma 27.

I Lemma 26 (Disjointness Substitution). If ∆; Γ, α ∗G1 ` B ∗ C and ∆; Γ ` G2 ∗G1 then
∆; Γ[α ; G2] ` B[α ; G2] ∗ C [α ; G2]

I Lemma 27 (Disjointness Narrowing). If ∆; Γ, α ∗G1 ` B ∗ C and ∆; Γ ` G1 <: G2 then
∆; Γ, α ∗G2 ` B ∗ C

A.2 A More General Subtyping Rule for Bottom Types

As discussed in Section 4.3, Ceylon includes the following subtyping rule:

A ∗ B
A ∧ B <: ⊥

s-disj

It is possible to support, and in fact generalize, such a rule in λu. The idea is to employ our
definition of lowest ordinary subtypes, and add the following rule to λu with intersection
types:

|A| = {}
A <: B

s-los

Rule s-los is an interesting addition in subtyping of λu. It says that if the LOS returns
the empty set for some type A, then A is a subtype of all types. In other words, such type
behaves like a bottom-like type. Such rule generalizes the rule s-disj employed in Ceylon,
since when A is an intersection type of two disjoint types, we get the empty set. Moreover,
adding rule s-los makes rule s-bot redundant as well, since the LOS for the bottom type is
also the empty set. It is trivial to prove a lemma which says that ⊥ is a subtype of all types.
We drop rule s-bot from the calculus discussed in Section 4 and prove Lemma 28 to show
this property instead:

I Lemma 28 (Bottom Type Least Subtype). ⊥ <: A.

A similar lemma can be proved to show that disjoint types are bottom-like (as in rule s-disj),
when rule s-los is added to subtyping:

I Lemma 29 (Disjont Intersections are Bottom-Like). If A ∗ B then A ∧ B <: ⊥.

The use of rule s-los instead of rule s-disj also has the advantage that it does not create
a mutual dependency between disjointness and subtyping. We can have the definition of
disjointness, which depends only on subtyping and ordinary types, and the definition of
subtyping, which depends on LOS but not on disjointness.

We have formalized and proved all the metatheory, including type soundness, transitivity
of subtyping, soundness and completeness of disjointness and determinism for a variant of
λu with intersection types, nominal types, standard subtyping and rule s-los in Coq.

ECOOP 2022

25:32 Union Types with Disjoint Switches

A.3 Implementation of Disjoint Switches
Ceylon code runs on the Java Virtual Machine (JVM). A Ceylon program compiles to JVM
bytecode. The final bytecode to which a Ceylon program is compiled to erase annotations for
types not supported in the JVM. In particular, union types such as String ∨ Null are erased
into Object. Disjoint switches are implemented by type casts. For each branch there is an
instanceof to test the type of the branch and select a particular branch. An implementation
of the λu calculus could also use a similar approach for compilation. In essence the use
of union types and disjoint switches provides an elegant alternative to type-unsafe idioms,
based on instanceof tests, that are currently widely used by Java programmers, while keeping
comparable runtime performance.

	1 Introduction
	2 Overview
	2.1 Tagged Union Types
	2.2 Type-directed Elimination forms for Union Types
	2.3 Union Types and Disjoint Switches in Ceylon
	2.4 Nullable Types
	2.5 Key Ideas in Our Work

	3 The Union Calculus Lambda-u
	3.1 Syntax
	3.2 Subtyping
	3.3 Disjointness
	3.4 Typing
	3.5 Operational Semantics
	3.6 Type Soundness and Determinism
	3.7 An Alternative Specification for Disjointness

	4 Lambda-u with Intersections, Distributive Subtyping and Nominal Types
	4.1 Syntax, Well-formedness and Ordinary Types
	4.2 Distributive Subtyping
	4.3 Disjointness Specification
	4.4 Algorithmic Disjointness
	4.5 Typing, Semantics and Metatheory

	5 Related Work
	6 Conclusion and Future Work
	A Further Extensions and Discussion
	A.1 Polymorphism
	A.2 A More General Subtyping Rule for Bottom Types
	A.3 Implementation of Disjoint Switches

