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—— Abstract

Polymorphism and subtyping are important features in mainstream OO languages. The most
common way to integrate the two is via F<. style bounded quantification. A closely related mechanism
is row polymorphism, which provides an alternative to subtyping, while still enabling many of the
same applications. Yet another approach is to have type systems with intersection types and
polymorphism. A recent addition to this design space are calculi with disjoint intersection types and
disjoint polymorphism. With all these alternatives it is natural to wonder how they are related.

This paper provides an answer to this question. We show that disjoint polymorphism can
recover forms of both row polymorphism and bounded polymorphism, while retaining key desirable
properties, such as type-safety and decidability. Furthermore, we identify the extra power of disjoint
polymorphism which enables additional features that cannot be easily encoded in calculi with row
polymorphism or bounded quantification alone. Ultimately we expect that our work is useful to
inform language designers about the expressive power of those common features, and to simplify
implementations and metatheory of feature-rich languages with polymorphism and subtyping.
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1 Introduction

Intersection types [51, 22, 59] and parametric polymorphism are common features in many
newer mainstream Object-Oriented (OO) languages. Among others intersection types are
useful to express multiple interface inheritance [21]. They feature in programming languages
like Scala [44], TypeScript [40], Ceylon [52] and Flow [31]. These languages also incorporate
a form of parametric polymorphism, typically generalized to account for subtyping and
supporting bounded quantification [12]. As programmers get more experienced with the
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combination of intersection types and polymorphism, they discover new applications. For
example, the documentation of TypeScript [41] shows how the two features can express a
composition operator for objects that enables an expressive form of statically typed dynamic
inheritance [20, 32] and mizin composition [8]:

function extend<A, B>(first: A, second: B): A & B

The polymorphic function extend takes two objects and produces a result whose type is the
intersection of the types of the original objects. The implementation of extend relies on low
level features of JavaScript and is right-biased: the fields or properties of second are chosen
in favor of the ones in first. For example, we can create a new object jim as follows:

var jim = extend(new Person(’Jim’), new ConsoleLogger());

The jim object has type Person & ConsoleLogger, and acts both as a person and as a
console logger. Using extend to compose objects is much more flexible than the static
inheritance mechanisms of common OO languages like Java or Scala. It can type-check
flexible OO patterns that have been used for many years in many dynamically-typed languages.
Functions similar to extend have also been encoded in Scala [47, 54].

Unfortunately, the extend function in TypeScript suffers from ambiguity issues, and
worse, it is not type-safe [2]. Indeed, given two objects with the same field or method names,
extend does not detect potential conflicts. Instead it silently composes the two objects,
using the implementation based on a biased choice. This does implement a mixin semantics,
but it has the drawback that it can unintentionally override methods, without any warnings
or errors. Additionally, the extend function is not type-safe: if two objects have the same
property name with different types, extend may lookup the property of the wrong type.

In the literature of intersection types, extend is essentially what has been identified as
the merge operator [55]. As illustrated by Dunfield [28], the expressive power of the merge
operator can encode diverse programming language features, promising an economy of theory
and implementation. Calculi with disjoint intersection types [46, 7, 2] incorporate a coherent
merge operator. In such calculi the merge operator can merge two terms with arbitrary types
as long as their types are disjoint; disjointness conflicts are reported as type-errors. Some
calculi with disjoint intersection types, such as F; [7], also support disjoint polymorphism [2],
which extends System F style universal quantification with a disjointness constraint. With
disjoint polymorphism we can model extend as:

let extend A (B * A) (first : A, second : B) : A & B = first ,, second

Unlike the TypeScript definition, which relies on type-unsafe features, the definition above
includes the full implementation. The definition of extend uses the merge operator (, ,) to
compose the two objects. The type variable B has a disjointness constraint (B * A) which
states that B must be disjoint from A. Disjointness retains the flexibility to encode highly
dynamic forms of inheritance, while ensuring both type-safety and the absence of conflicts.

Row polymorphism and disjoint polymorphism Disjoint polymorphism looks quite close to
certain forms of row polymorphism. Indeed, when restricted to record types, row polymorphism
with constrained quantification [34] provides an approach to recovering an unambiguous
semantics for extend as well. Constrained quantification extends System F style universal
quantification with a compatibility constraint. By requiring B to be compatible with A, we
can encode a row polymorphic variant of extend as:
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let extend A (B # A) (first : A, second : B) : A || B = first || second

Here A and B are row variables standing for record types, and B is compatible with A (B # A),
which ensures the absence of conflicts. The || operator concatenates two records at both the
term level and the type level. The key difference between the two implementations of extend
is that in the version with row variables, A and B only stand for record types. In contrast
in the version with disjoint polymorphism, A and B are arbitrary types. In languages with
nominal type systems, allowing arbitrary types is important to deal with nominal types of
classes, for instance. The encoding of extend suggests that at least some functionality of row
polymorphism can be captured with disjoint polymorphism. Indeed, there are clear analogies
between the two mechanisms: the merge operators (,, and | |) are similar; compatibility plays
a similar role to disjointness; and intersection types generalize record type concatenation.

Bounded quantification and disjoint polymorphism Polymorphic object-oriented lan-
guages also typically feature bounded quantification, which addresses the interaction between
polymorphism and subtyping. Bounded quantification generalizes universal quantification by
allowing programmers to specify upper bounds on type variables. For example:

let getName (A <: Person) (o : A) : (String,A) = (o.name,o0)

expresses a function getName that takes an object o whose type is a subtype of Person,
extracts its name and returns a copy of the object. Note that bounded quantification is
useful to avoid the loss of information problem of subtyping [11]. Using the simpler type:

let getName_bad (o : Person) : (String,Person) = (o.name,o)

would lose static type information when given a subtype of Person as an argument.
An alternative version of getName that also does not lose type information is:

let getName A (o : A & Person) : (String,A & Person) = (o.name,0)

Here, the type variable A is unrestricted and represents the statically unknown part of
the type of the object. The intersection type A & Person ensures that the object must at
least contain all properties of Person, but does not forget about the statically unknown
components. The two versions of getName show a common use case in OOP, but they use
different features: the first uses bounded quantification, while the second uses a combination
of intersection types and polymorphism. The connection between bounded quantification
and polymorphic intersection types has been informally observed by Pierce [48].

Disjoint polymorphism, row polymorphism and bounded quantification provide a range
of functionalities for OOP languages. Thus a language designer may be tempted to design
a core language that combines all of these concepts. However, supporting all of them
would lead to a significant implementation effort and a complex metatheory with non-trivial
interactions between features. Furthermore, a common principle for (core) languages is to
avoid overlapping features, which provide different ways to solve the same problem. Yet there
seems to be a significant overlap between these features, which goes against that principle.

This paper builds on the similarities between the mechanisms, and shows that forms of both
row polymorphism and bounded polymorphism can be recovered by type-safe elaborations
into languages with disjoint polymorphism. Theoretically, it is important to formally establish
the comparison among different type features, to allow a deep understanding and a precise
discussion of the relative expressiveness of each feature. In practice, this result suggests
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that core languages wishing to support all those features only need to support disjoint
polymorphism natively, promising an economy of the implementation of those languages. To
establish the relationship between row, bounded and disjoint polymorphism in a rigorous
and precise manner, we formalize elaborations from Al [34], a System F like calculus with
row polymorphism, and from kernel F. [12], into F;". Our work serves as a guideline for
language designers wishing to combine disjoint polymorphism, with bounded quantification
and/or row polymorphism. The elaborations are useful to understand exactly what can and
cannot be encoded, and to uncover and overcome difficulties. To our surprise, a full encoding
of Ml is quite subtle: there are subtle differences between compatibility and disjointness.
Moreover, certain general forms of bounded quantification are problematic, but all programs
in kernel F.. (the most widely used and decidable fragment of F..) are encodable.
We make the following specific contributions:

A formal elaboration from row to disjoint polymorphism: We present a formal
elaboration from M| to F; (Section 4). We first identify an intuitive elaboration (Sec-
tion 4.3). Due to discrepancies between compatibility and disjointness this elaboration
does not work for all Al programs. However it is possible to find a simple restriction on
M that allows for the intuitive elaboration to work. We then present a complete, but non-
trivial elaboration that targets the original Al without restrictions (Section 4.4). While the
design space of row polymorphic calculi is very diverse, features in Al are representative
of most other calculi. We discuss elaborating other row calculi in Section 6.1.

A formal elaboration from bounded to disjoint polymorphism: We identify a
fragment of F_. that is encodable in terms of polymorphic intersection type systems, by
providing an elaboration from kernel F.. to Fj‘ (Section 5). Our elaboration, for the first
time, validates the informal observation between polymorphic intersection systems and
bounded quantification. We discuss other variants of F.. in Section 6.2.

A discussion of the extra expressive power of disjoint polymorphism: We
identify and discuss specific features of disjoint polymorphism that cannot be easily
encoded in F, and ! (Section 2.4), including distributivity of intersections over other
constructs, and the combination of subtyping and row polymorphism. We discuss other
variants of intersection type systems in Section 6.3.

Coq formalization: All elaborations and metatheory of this paper, except for some
manual proof for simulation, has been mechanically formalized in the Coq proof assistant,
including type-safety and coherence. The Coq formalization amounts to 18,855 lines of
proofs and code (not including blank lines, comments and existing metatheory for Fj‘)

2 Overview

This section introduces the key ideas of the encodings for bounded quantification and row
polymorphism. We also discuss the added extra power of disjoint polymorphism over bounded
quantification and row polymorphism.

2.1 Background: Disjoint Polymorphism

Disjoint polymorphism [2, 7] combines disjoint intersection types with parametric polymor-
phism. In particular, F;" [7] supports intersection types A& B for terms that are both of type
A and of type B. With the merge operator we can construct terms of an intersection type, like
1,, True of type Int & Bool. Thanks to subtyping, a term of type Int & Bool can also be used
as if it had type Int, or as if it had type Bool. F; requires the two components of a merge to
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have disjoint types, e.g., 1,, 2 : Int& Int is not allowed, because it is ambiguous which value
should be used at type Int. With disjoint quantification, it is possible to merge components
whose type contains type variables. For instance, the term A(a *Int). A(z : @). 2 ,, 1 has type
V(axInt). « = a & Int. The disjointness annotation a * Int allows « to be instantiated only to
types that are disjoint from Int. Without a disjointness constraint, the term Aa. A(z : @). z,, 1
is rejected. Otherwise such a term would allow « to be instantiated to Int, and thus the
function could be applied to numbers, e.g., 2, leading to the ambiguous merge 2, 1.

2.2 Row Polymorphism through Disjoint Polymorphism

Row types, originally introduced by Wand [63] to model inheritance, provide an approach
to typing extensible records. Row types have been studied extensively [35, 11, 53, 42] and
have been applied to provide extensibility in various type systems [37, 36, 38]. According to
Rémy [53], record calculi can be divided into those that support free extension, and those
that support strict extension. The former allows extension with fields that already exist,
whereas the latter does not. In this paper we focus on All, a calculus proposed by Harper
and Pierce [34] that extends System F with row polymorphism. Al belongs to the strict
camp and avoids concatenating records with a field label in common by means of constrained
quantification. A constrained quantifier attaches a constraint list to a type variable, which
restricts the instantiations of that type variable to be record types with field labels that are
distinct from all the record types in the constraint list. What sets Al apart from other strict
record calculi is its ability to merge records with statically unknown fields, and a mechanism
to ensure that the resulting record is conflict-free (i.e., no duplicate labels). The following
function concatenates two records by the merge operator ||:

mergeRecd = A(ag # Empty). Alas #aq). Ay 2 1) Mz 2 @2). 21 || 22

which takes two type variables, each of which lacks (#) the appropriate fields (Empty means
no constraints at all). The function above can take any record type as its first argument, but
the second type must be compatible with the first (aa#a1), i.e., the second record cannot
have any labels that also occur in the first. These constraints ensure that the resulting record
21 || 22 has no duplicate labels. If later we want to say that the first record z; has at least a
field [; of type Int, we can refine the constraint list of a1, ao and the type of z; accordingly:

A(a1 #{ll : |nt}).A(Ol2#(a1,{ll : |I"It})))\($1 a3 || {ll : |nt}).>\(l'2 : 042).261 || T2

Encoding with disjoint polymorphism Our encoding of All into F:’ is based on the simi-
larities between the two calculi that the astute reader may have already observed. Indeed,
the constrained quantification of record type variables A(a# R).e€ is quite similar to the
disjoint quantification A(a * A). E. They both constrain the use of respectively the record
concatenation operator x; || 2z and the merge operator z; ,, 22. Exploiting these similarities,
we can encode mergeRcd as follows in F}:

mergeAny = Aoy * T). Alae * a1). A(z1 : 1) AM(a2 : ). 21, 22

An important difference is that in mergeRed, a; and ay are row variables: they can only be
instantiated with record types. In contrast in mergeAny, oy and «y are type variables and
they can be instantiated with any types, including types which are not records (such as Int).

Formal elaboration To establish the validity of the encoding, we have formalized two
different elaborations of Al into Fj". The first elaboration exploits the obvious similarity
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between the two mechanisms. While it clearly works for many example programs, the
formalization of the metatheory reveals that the straightforward elaboration does not work
for all programs. Indeed, it turns out that there is a subtle difference in the interpretation
of the constrained quantification and the disjoint quantification that makes the elaboration
break down in some cases. For instance, the Al binder Aa#{l: Int} expresses that o cannot
have the label [ at all. In contrast, the F;r binder A5 * {I : Int} expresses that 5 cannot have
a field [ of type Int, but it can have a field [ of some other disjoint type, say Bool. In what
we consider to be contrived programs, this subtle difference invalidates the elaboration. We
can eliminate this source of semantic difference by slightly restricting All, which is what we
do in the first elaboration. However, in order to handle those contrived (but well-typed)
unrestricted Al programs as well, we also present a more complex elaboration that faithfully
captures the semantics of constrained quantification in unrestricted All.

2.3 Bounded Quantification through Disjoint Polymorphism

Bounded quantification is a language feature that integrates parametric polymorphism with
subtyping. It was first introduced in the language Fun [12] as a means of typing functions
that operate uniformly over all subtypes of a given type, and has been the subject of much
theoretical and practical effort [9, 48, 49, 39, 13, 11, 18, 25, 50]. In this paper, we focus on
System F.., which is a calculus with bounded quantification that extends System F.

As an illustration of bounded quantification, consider the following definition:

f = A= :{val : Int}).{orig = z,val = z.val + 1}

The function f has type {val : Int} — {orig : {val : Int},val : Int}, but it actually works for all
records that have a val field of type Int. Thanks to bounded quantification we can formulate
a variant of f that admits this:

fooly = Ao <: {val : Int}). \(z : ). {orig = z,val = z.val + 1}

The term fpoly has type V(« <: {val : Int}).a — {orig : o, val : Int}. Here the (upper-)bound
{val : Int} restricts the instantiation of the quantified type variable a to subtypes of {val : Int}.

Encoding with disjoint polymorphism Pierce [48] informally discussed an encoding of
bounded quantification in terms of intersection types. To illustrate the encoding, let us
consider a function of type V(«a <: Int). « — «, which requires the type of the argument to
be a subtype of Int. With intersection types, we know that a & Int is always a subtype of Int.
Therefore, the type Va. (a & Int) — (& Int) expresses a similar subtype requirement. This
leads to the following encoding of bounded quantification, by reading a bounded quantifier
as an abbreviation for an unbounded one with a slightly modified body:

V(a <: A). B2 VB.([3& A/a]B)
For the fpoly example, we have its encoded type
V3.8 & {val : Int} — {orig : B & {val : Int},val : Int}

However, there is no formalization of this encoding, and it is not clear at all what fragment
of programs can be encoded. Pierce showed that this is not an encoding for full F.. as it
does not respect the subtyping rule for universal quantification. Nevertheless, after some
experimentation, where the encoding was manually applied to complex examples, he came to
the conclusion that “the encoding trick works better than might be expected”. Castagna and
Xu [19] even claim that “bounded quantification does not require any modification” in their
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intersection type system due to this encoding. However, due to Pierce’s counterexamples,
without further qualification, this statement cannot be fully justified.

What is missing is to clarify precisely the expressiveness of this encoding with a type-
theoretic formalization. Our work serves as a basis to fill the gaps, by identifying an encodable
fragment of F_., i.e., kernel F.., and thus, for the first time, validates the informal observation
of this encoding.

Formal elaboration We formalize Pierce’s informal encoding idea and turn it into a struc-
turally recursive procedure that systematically and simultaneously replaces all bounded
quantifiers in a term. While doing this we faced several technical challenges. The first one
was the misalignment between the F_. and F;r type systems: the former is undirected and the
latter is bidirectional. This is a source of complication. In particular, we need to add explicit
type annotations for all terms whose type cannot be synthesized, but only checked. Another
challenge was the implicit use of subsumption in the typing of F.. terms. We shift around
the position in the term where subsumption happens and still arrive at the same type for
the whole term. While the different typing derivations may lead to different F;r elaborations,
we do not want those different elaborations to have a different meaning. Hence, we must
show that the elaboration is coherent. Finally we had to identify the class of F.. programs
for which the encoding actually works. This was not clear from the individual examples that
Pierce gave, but it was necessary to make a formal statement that characterizes the extent
and thus the usefulness of the encoding. Our translation shows that all well-typed kernel F..
programs are encodable as well-typed F; programs. We believe that this justifies Pierce’s
claim that the encoding might work better than expected, as kernel F_. is the most common
decidable fragment of F_. and widely used to model key aspects of OO programs.

2.4 The Extra Power of Disjoint Polymorphism

This section identifies some of the additional expressive power of F;" over F, and Al alone.

Distributivity, Nested Composition and Family Polymorphism FZr is based on BCD sub-
typing [4], which features distributive subtyping rules, and enables nested composition of
merges. Nested composition has several applications. In particular it is a key feature to
enable family polymorphism [29].

With nested composition we can model a combinator that is useful to compose interpre-
tations of embedded DSLs. A minimal example [7] is:

type Rle] = {1lit : Int — e, neg : e — e} —- literal and negative expressions
compose = A(a * T). A(b *x a). A(r1 : R[al). A(z2 : R[b]). (r1 ,, r2) : R[a & D]

Here R[e] stands for the abstract syntax of a tiny form of arithmetic expressions. The
combinator compose allows the composition of two arbitrary interpretations (such as evaluation
and pretty printing), into a single interpretation that runs both interpretations at once. In
F this functionality is achieved by simply merging r1 and r2. Nested composition takes care
of the details, by implicitly using a form of type-directed code generation, which is triggered
by the upcast: R[a]l & R[b] <: R[a & b] in expression r1 ,, r2. The type of r1 ,, r2is
R[a] & R[b]. In F?‘, due to the distributivity properties of intersections, such a type is a
subtype of R[a & b]. Importantly, the fact that records are not treated specially in the type
language is a key to allowing distributivity, which in turn enables nested composition.

The interested reader can see the work by Bi et al. [6, 7] for more complete examples.
These examples illustrate how nested composition provides a simple and elegant solution to
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the Fxpression Problem (EP) [62]. In essence the approach mimics Ernst’s solution to the
EP with family polymorphism [30] (which also relies on a form of nested composition).

With bounded quantification alone, compose is essentially not expressible. A solution
with row polymorphism can be simulated only at the cost of more work:

A(a # Empty). A(b # a). A(rl : R[al). A(x2 : R[bl).
{ 1it = A(d : Int) . (r1.1it i , r2.1it i)
, neg = A(e : (a, b)). (rl.neg (fst e), r2.neg (snd e)) }

Since row polymorphism does not support nested composition of merges, the code for
executing the two interpretations at once has to be explicitly modeled with some tedious
boilerplate code. Moreover, the results of the two interpretations have to be stored in a pair,
and explicit projections are necessary to access the values.

In essence the manual composition approach employed with row polymorphism is akin
to some existing solutions to the EP which need to tediously compose classes in different
families manually. For instance, it is well-known that Scala enables solutions to the EP [65].
However, without nested composition those solutions are cluttered with manual composition
code. In contrast, solutions based on nested composition are much more concise and elegant
thanks to the automatic composition [30, 6, 7].

Subtyping and row typing Fj combines both subtyping and row polymorphism under one
roof. The majority of systems with row polymorphism have been employed as an alternative
to subtyping (although some row calculi also have subtyping, e.g., [11]). All, in particular,
has no subtyping. One argument for row polymorphism is that it also eliminates the loss of
information problem of subtyping [11]. For example, with subtyping, an identity function:

Mz :{l:Int}).z

with type {l: Int} — {l: Int} may, inadvertently, lose some precision on the output type.
For instance, the function can be applied to the record {{ = 1,1" = True}, but the result type
of such an application is {I : Int} and not {I: Int, ' : Bool}.

Al solves the loss of information problem by formulating the function in a different way:

Aa#{l:Int}). A(z: {l:Int} || ).z
In this function the row variable « stands for any record without a label I. The type of x
expresses that x includes a label [, as well as any labels in «. In this function the output
type is {l : Int} || a as well. Therefore the application of the function to {{ = 1, = True}
has the type {I: Int, !’ : Bool}, which does not lose precision.

In Fj’ we can easily translate the Al approach and reap its benefits too:

Alax{l:Int}). XMz : {l:Int} &a).z

This function, like the row polymorphic version, preserves the precision of the output type.
Nevertheless, for many functions subtyping does not lose precision. For example:
Mz {l:Int}).z.l+1

The function has type {I : Int} — Int. In this case no matter which record is passed as an
argument the output type is as precise as it can be. Note that this function is valid in Fj
and, because of subtyping, the record {l = 1,7 = True} is a valid argument. However in All,
the only way to allow records with more labels, is to generalize the function to:

Aa#{l:Int}). Nz:{l:Int} || @). 2.1+ 1

In this case the generalization does not gain any precision, and in fact it requires a more
complex type than the version with subtyping.
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In summary, unlike All, many functions in F:r can have a simpler non-polymorphic type
and still allow for larger records to be used as inputs.

3 Disjoint Polymorphism

This section reviews F;", which serves as target of our elaborations of row and bounded
polymorphism. The Fj calculus and its metatheory have been studied already in Bi et al. [7].
We refer to prior work on for further details regarding F;’s formalization and metatheory.

3.1 Syntax and Semantics

Syntax The syntax of FZT" is given at the top of Figure 1. Types A, B, C include integers
Int, the top type T, the bottom type L, arrows A — B, intersection types A & B, singleton
record types {l: A}, type variables o and disjoint quantification V(« * A). B. Expressions
FE include term variables z, integers ¢, the top value T, abstractions Az. F/, applications
E; E», merge expressions Fj ,, Fy, annotated terms E : A, singleton records {l = E}, record
projections E.I, type abstractions A(a * A). E and type applications E A. Term contexts I"
record types of term variables, and type contexts A record disjointness constraints of type
variables. Well-formedness of a type or a context are standard and omitted here.

Subtyping The subtyping relation of Fj is presented in the middle of Figure 1. Most
rules are standard. For functions (rule S-ARR) and disjoint quantifications (rule S-FORALL),
subtyping is covariant in positive positions, and contravariant in negative positions. Rules S-
ANDL, S-ANDR, and S-AND for intersection types axiomatize that A & B is the greatest lower
bound of A and B. Moreover, F; features BCD-style subtyping [4], where intersections
are distributive over other type constructs. Concretely, intersections distribute over arrows
(rule S-DISTARR), records (rule S-DISTRCD) and disjoint quantifications (rule S-DISTALL).
Rules S-TOPARR, S-TOPRCD, and S-TOPALL are special cases of the distributivity rules,
when viewing T as a O-ary intersection.

Typing The bidirectional typing rules for F;” are given at the bottom of Figure 1. The
inference judgment A;T'F EF = A says that under the type context A and the term context
I, we can synthesize the type A for the expression E. The checking judgment A;T'H F < A
checks F against the type A under the contexts A and I". Most of the typing rules are
standard. Rule T-MERGE says that the merge expression Fi,, FEy is well-typed if both
sub-expressions are well-typed, and their types are disjoint. The disjointness judgment
A+ Ay x As is important to rule out invalid merges, such as 1,, 2. Rule T-TABS says that,
when typing a type abstraction, we put the disjointness constraint into the type context and
then type-check the body. Conversely, rule T-TAPP checks that the type argument should
satisfy the disjointness constraint.

Disjointness Figure 2 presents the rules of the disjointness relation. Essentially, disjointness
checks whether the merge of two expressions preserves coherence. Rules D-TOPL and D-
TOPR say that top-like types are disjoint with any type. The top-like predicate JAJ, given at
the top of Figure 2, captures the set of types that are isomorphic to T. Disjointness axioms
Axq, B (appearing in rule D-AX) take care of two types with different type constructors (e.g.,
Int and records). The axiom rules can be found in Appendix A.2. The other disjointness
rules are standard and explained in detail in previous work [46, 2]. Finally, we note that
subtyping preserves disjointness.
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Types A,B,C = Int|T|L|A—=B|A&B|{l:A}|a|V(a*xA).B
Expressions E = z|i|T|Xe.E|E1Ey |Ev1,,E | E:A|{l=E}|E.
| AlaxA).E|EFA
Term contexts I = eo|lz:A
Type contexts A = eo|AaxA
A<:B (Declarative subtyping)
g S-TRANS g g S-RCD
“REFL Ag <: As Ay <: As -Top -BOT A<:B
A< A Ay <: As A< T 1< A {i: A} <:{l: B}
S-ARR S-FORALL S-AND
By <: Ay Az <: Bo By <: By As <: Ay Ay <: As Ay <: Az
Al — AQ <:B1 — B> V(Oé* Al).Bl < V(Oé * AQ).BQ Al <: AQ&Ag
S-ANDL S-ANDR S-DISTARR
Al&AQ <ZA1 Al&AQ <ZA2 (AlﬂAQ)&(AlﬁAk;) <IA1*)A2&A3
S-pIsTRCD S-DISTALL
{l: A} &{l: B} <: {l: A& B} (V(awx A). B1) & (V(ax A). Ba) <:V(a*x A). B1 & B
S-TOPARR S-ToPRCD S-TOPALL
T<T—>T T<:{l:T} T<Y(axT).T
ATHE=A (Inference)
T-Top T-NAT T-VAR
FA AFT FA AFT FA AFT (z:A) el
ATHET =T A;THi=Int ATHz= A
T-apPpP T-TABS
A;F}—E1:>A1—>A2 A;F}—E2<:A1 AR A A,Oé*A;Pl—EiB
AT - By By = Az A;THA(axA). E=V(axA).B
T-MERGE T-rCD
A;F}_E1:>A1 A;FI_E2:>A2 AF A1 x Ay A,F"E=>A
A;Fl—EH,,EQ:}Al&AQ A,F}—{l:E}é{lA}
T-PROJ T-ANNO T-TAPP
AT HE={1: A} ATHE< A A;THE=V(axB).C AFAxB
ATHELI= A ATHFE: A= A A;THEA=[A/aC
ATHEE<A (Checking)
T-ABS T-suB
AFA A;T,z: AFE< B ATHE=B B<: A
A;THEMN. E< A— B ATHE<«< A

Figure 1 Syntax, declarative subtyping, and bidirectional type system of FjL
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14 (Top-like types)
TL-ToP TL-AND TL-ARR TL-rCD TL-ALL
o 1Al 1B B[ 1A B[
17T 1A& B[ 1A — Bf Hi: A WV(ax A). B[

A AxB (Disjointness)

D-ToPL D-TtoPR D-AX D-ARR
-‘A|— -|B|— A*azB AFAQ*BQ
A+ AxB AFAxB A+ AxB AF A — Ay % By — By
D-ANDL D-ANDR D-rCcDNEQ
AFAl*B AFAQ*B AFA*Bl AFA*BQ l17él2
A}—Al&AQ*B Al_A*Bl&BQ Al—{h:A}*{lQ:B}
D-rcDEQ D-TVARL D-TvARR
AFAxB (axA)eA A<:B (axA) e A A<:B
AF{l:A}«{l: B} Ak axB AF Bxa
D-FORALL

A,OL*A1&A2|_B1*BQ
A"V(&*Al)Bl *\V/(O[*AQ).BQ

Figure 2 Selected rules for disjointness.

» Lemma 1 (Subtyping preserves disjointness). If A+ Ax B and B <: C, then A+ Ax C.

3.2 Elaboration and Coherence

The dynamic semantics of Fj is given by a type-directed elaboration ((~> e ) into another
calculus, F.,, a variant of System F with explicit coercions. The full definition of F., and
the elaboration process can be found in Appendix B. The main challenge of the elaboration
is that, due to the non-deterministic nature of the declarative type system, an F;~ expression
can elaborate to different F., expressions. For example, the subtyping rules S-AND, S-ANDL,
and S-ANDR overlap with each other when both sides are intersections, leading to different
coercions depending on the order in which these rules are applied. To establish coherence for
F;r, Bi et al. [7] resort to contextual equivalence, and they prove that different elaborations of
the same F;‘ expression are contextually equivalent. More formally, A;T' - e; =, es means
that two F., expressions are contextually equivalent under the corresponding elaboration
contexts of A and I'. We state the central coherence theorem below.

» Theorem 2 (Coherence of F'). We have that
IfATEE= A~e , and A;T'HE= A~ ey, then A;TF e 2, eo.
IfATEE<A~e , and A;THE < A~ ey, then A;TF e 2, eo.
4 Encoding Row Polymorphism

This section shows how to systematically elaborate Al [34]—a polymorphic record calculus
with constrained quantification—into Fj. We first identify a simple and direct elaboration
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for a fragment of All, and then present a carefully crafted elaboration of full All using a more
sophisticated elaboration.

4.1 Syntax of )/

We start by briefly reviewing the syntax of All, shown at the top of Figure 3. Metavariable ¢
ranges over types, which include the integer type Int, function types t; — to, constrained
quantifications Va # R. t and record types r. Record types are built from record type variables
a, the empty record type Empty, single-field records {/ : t} and record merges r; || 2.5 A
constraint list R of record types is used to constrain instantiations of record type variables.

Metavariable € ranges over terms, including term variables z, integers ¢, lambda abstrac-
tions A(z : t).¢e, function applications €1 2, the empty record empty, single-field records
{l = €}, record merges €1 || £2, record restrictions ¢\ I, record projections e.l, type abstractions
A(a# R).e and type applications € [r]. As a side note, from the syntax of type applications
e [r], it can already be seen that Al only supports quantification over record types.

4.2 Typing Rules of )/l

The type system of Al consists of several conventional judgments. The complete set of rules
appears in Appendix C.2. Figure 3 presents selected well-formedness rules for record types.
A merge 71 || ro is well-formed in context T if r; and r, are well-formed, and moreover, 7
and ry are compatible in T’ (rule WFR-MERGE)—the most important judgment in M as we
will explain next.

Compatibility The compatibility relation in the middle of Figure 3 plays a central role in All.
It is the underlying mechanism for deciding when merging two records is “sensible”. Informally,
T F ry # 5 holds if r; lacks every field contained in 5 and vice versa. Compatibility is
symmetric (rule CMP-SYMM) and respects type equivalence (rule cMP-EQ). Rule cMP-BASE
says that if a record is compatible with {I : t}, it is also compatible with every record
{l: ¢'} with the same label [. A type variable is compatible with the records in its constraint
list (rule cMP-TVAR). Two single-field records are compatible if they have different labels
(rule cMP-BASEBASE). The remaining rules are self-explanatory; we refer the reader to [34]
for further explanation. The judgment of constraint list satisfaction T+ r# R ensures that
r is compatible with every record in the constraint list R.

Type equivalence Unlike Fj, M does not have subtyping. Instead, A/l uses type equivalence
to convert terms of one type to another. A selection of the rules defining equivalence of types
and constraint lists appears at the bottom of Figure 3. The relation t; ~ t5 is an equivalence
relation, and is a congruence with respect to the type constructors. Merge is associative
(rule TEQ-MERGEASSOC), commutative (rule TEQ-MERGECOMM), and has Empty as its unit
(rule TEQ-MERGEUNIT). As a consequence, records are identified up to permutations. The
equivalence of constrained quantification (rule TEQ-CONGALL) relies on the equivalence of
constraint lists Ry ~ Ry. Again, it is an equivalence relation, and it respects type equivalence.
Constraint lists are essentially finite sets, so order is irrelevant (rule CEQ-SwWAP). Merges
of constraints can be “flattened” (rule CEQ-MERGE), and occurrences of Empty may be

1 The original Al also includes record type restrictions r \ I, which can be systematically erased using
type equivalence, thus we omit type-level restrictions but keep term-level restrictions.
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Types t = Int|t1 = t2 |Va#R.t]| T
Records r u= alEmpty |[{l:t} |7 ||
Constraint lists R == o|r R
Terms e = zli|MNz:t)e|erea|empty |[{l=¢c}]|e1 ]| e2
| e\l|el|A(a#R).e|e[r]
Term contexts G = o|G,z:t
Type contexts T == o|T,a#R
(Well-formed record types)
WFR- VAR WFR-MERGE
(a#R)eT T+ 71 record T+ 7o record ThEri#r
T+ « record T+ 7 || r2 record
(Compatibility)
CMP-EQ CMP-SYMM CMP-BASE
THr#s rer s~ s Trr#s ThHr#{l:t} T+t type
THr#s Tks#r TEr#{l:t'}
CMP-TVAR CMP-MERGEE CMP-EMPTY
(a#R)eT T+ R ok re€R TEr# (s s2) T+ r record
THa#r TEr#s; T+ r# Empty
CMP-MERGEI CMP-BASEBASE
Tt s1# s THr#s ThEr#s 1410 T+t type T+t type

TEr# (s || s2)

cMPLIST-NIL
T F r record

THEr#o

TEQ-MERGEASSOC

ol (re |l rs) ~ (ra [ r2) || 73

CEQ-SWAP

TH{L:ty# {1}

(Constraint list satisfaction)

cMPLI1ST-CONS
THr#r THr#R

THr#7 R

(Type equivalence)
TEQ-MERGECOMM TEQ-MERGEUNIT

r|l e~ || m r || Empty ~ r

TEQ-CONGALL

R~R t~t

CEQ-MERGE

Va# R.t ~Va# R .t

(Constraint list equivalence)

CEQ-EMPTY CEQ-BASE

T, (T/, R) ~ T,v (Tv R)

(T1 || TZ)vR ~ T, (7"2,R)

Empty, R ~ R {I:t}, R~{l:t'},R

Figure 3 Syntax, and selected rules of AL
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T;:GFe:t~FE (Type-directed elaboration)
wWTT-EQ WTT-BASE
T;GFe:t~E THt type t~t T;Gre:t~E
T;Gre:t' ~ E:[t] T;GH{l=c}:{l:t} ~» {l=E}
WTT-RESTR WTT-SELECT WTT-EMPTY
T;Gre:{l:t}||r~E T;Gre:{l:t}||r~E T ok T+ G ok
T;Gre\l:r~ E:[r] T;Grel:t~ (E:{l:[t]})-l TG+ empty : Empty ~ T
WTT-MERGE
T:GrFei:m~ By WTT-ALLE
T:GVFeg:ro ~ Fo TEri#nr T;Gre:Ya# Rt~ E THr#R
T;Gleil|lez:m || o~ By, Ba T;Grelr]:[r/alt~ E[r] [r]o
WTT-ALLL

T+ R ok T, a#R,GrFe:t~FE
T;GFA(a#R).e:Va#R.t ~ Aax*[R]). A(arL * [R]). E

Figure 4 Sclected typing rules of All with elaboration.

eliminated (rule CEQ-EMPTY). The last rule CEQ-BASE is quite interesting: it implies that
the types of single-field records are ignored. The reason is that, as far as compatibility is
concerned, only labels matter, thus changing the types of records in constraint lists will not
affect their compatibility relation. We will have more to say about this in Section 4.3.

Typing rules A selection of typing rules is shown in Figure 4. In a first reading, the gray
parts can be ignored. Most of the typing rules are quite standard. Typing is invariant under
type equivalence (rule wTT-EQ). Two terms can be merged if their types are compatible
(rule wrT-MERGE). Type application ¢ [r] is well-typed if the type argument r satisfies the
constraints R (rule wrT-ALLE).

» Remark 3. We have made a few simplifications compared to the original All, notably the
typing of record selection (rule WTT-SELECT) and restriction (rule wTT-RESTR). In the
original formulation, both typing rules use a partial function r_[ that denotes the type
associated with label [ in r. Instead of using partial functions, here we explicitly expose the
expected label in a record. It can be shown that if label [ is present in record type r, then
the fields in r can be rearranged so that [ comes first by type equivalence. This formulation
was also adopted by Leijen [35].

4.3 A Simple yet Incomplete Encoding

The similarities between Al and F.r, which the astute reader may have already observed,
suggest an intuitive elaboration scheme. On the syntactic level, it is easy to see a one-to-one
correspondence between Al types and Fj types. We use [t] to denote the elaboration
function from A types to F types, whose formal definition is given at the top of Figure 5.
Elaboration of expressions is also easy. Constrained type abstractions A(a # R). e correspond
to A(a * A). E; record merges can be simulated by the more general merge operator of
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[ [Intf] = Int [R] [e] = T
[t = 6] = [t = [t2] [r,R] = [rl&[R]
[Va#R.t] = VY(ax[R]).[t] 7] [¢] = o
[e] = « [T,a#R] = [T],ax|[R]
[Empty] = T 1G] [e] = o
[{r-e31 = {0} [G,z:t] = [Glz:[¢]
[l 2]l = [n]&[r]
T;GrFe:t~; E (Type-directed elaboration)
WTTI-EQ WTTI-BASE
T;Glre:t~; E THt type t~t T;:Gte:t~ E
T;GlFe:t ~; B[] T;:GH{l=c}:{l:t} ~; {l=E}
WTTI-ALLI WTTI-ALLE
THRok T,a#RGre:t~;B T:GFe:Va#Ri~i B Trr#R
T;GFAla# R).e :Va# R.t ~; Alax[R]). E T;GrFelr]:[r/a]t ~; E[r]

Figure 5 Intuitive elaboration functions, and selected type-directed elaboration from Al to Fj.

F+.

. ; record restriction can be modeled as annotated terms, and so on. On the semantic
level, well-formedness judgments of All match with well-formedness judgments of Fr. The
compatibility relation corresponds to the disjointness relation. What might not be so obvious
is that type equivalence is expressible via subtyping. More specifically, ¢; ~ t5 induces two
subtyping relations: [t1] <: [t2] and [t2] <: [t1]. Under this elaboration scheme, the full
definition of type-directed elaboration, denoted as T;G - ¢ : t ~»; E , where ¢ stands for
“intuitive”, is simple (selected rules are given at the bottom of Figure 5). With all these in

mind, let us consider two examples.

» Example 4. Consider the term A(a# {l: Int}). A(z : ). . This term can be assigned the
type (among others) Va# {l : Int}.a — «, and its F; counterpart A(a* {l: Int}). A(z: a).z
has type V(a x {l : Int}).« — «, which corresponds directly to Va#{l : Int}.a — a. In
M1, the same term could also be assigned type Va# {1 : Bool}.a — a (rule wrT-EQ), since
Va#{l : Bool}.a« — « is equivalent to Va# {I : Int}. @« — « by rules TEQ-CONGALL and
CEQ-BASE. However, in F}, these two types have no relationship at all—V(ax{l : Int}).a — «
is not the same as V(a * {l: Bool}). « — «, and indeed it should not be, as these two types
have completely different meanings!

» Example 5. Consider the term ¢ = A(a# {I: Bool}). A(z : ). A(y : {l: Int}). z || y. This
term has type Va# {l: Bool}. oo — {l: Int} — « || {I: Int}, and its “obvious” elaboration is
E = Alax{l:Bool}). \(z: a). Ay : {l: Int}).z,, y. However, expression E is ill-typed in F;:

we cannot merge x with y because their types (o and {I: Int} respectively) are not disjoint.

Allowing it to type-check causes incoherence: evaluating (E {l: Int} {I = 1} {l = 2}).l could
result in 1 or 2!

These examples underline a crucial observation: disjointness is more fine-grained than
compatibility. Unlike F;', the existence of ¢ in Ml will not cause incoherence because
compatibility can only relate records with different labels, and thus € can only be applied to

27:15
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records without label [ at all. So !l rejects type application e [{I: Int}] in the first place.
However, disjointness also relates records with the same label as long as their types are
disjoint, i.e., rule D-RCDEQ. Section 2.4 illustrates the importance of rule D-RCDEQ for
distributivity, which is not supported by All. A careful comparison between the two calculi
reveals that two rules are “to blame”: rule CEQ-BASE and rule cMP-BASE, which are the
cause for the problem in Example 4 and Example 5 respectively.

TEr#{l:t} T+t type
: — CEQ-BASE — CMP-BASE
{l:t},R~{l:t'},R THr#{l:t}

Yet, both Example 4 and Example 5 seem contrived. From the expression A(a# {l :
Int}). A(z : @). z, the user can reasonably expect the type to be Va# {I : Int}.a — . For
g, an equivalent definition with more sensible and readable annotation is ¢’ = A(a#{l :
Int}). A(z: «). My : {l:Int}).z || y, whose corresponding elaboration type-checks successfully.
We believe that programs with the same issue always have some equivalent accepted programs
by changing some type annotations.

We propose a restricted Al by: (1) replacing rule CEQ-BASE with rule CEQ-BASEALT; and
(2) removing rule cMP-BASE. We conjecture that this change has no practical consequences
and no expressiveness is lost. Moreover, the restrictions coincide with the observation in
Harper and Pierce [34]: we may normalize constraint lists into the form ly, ... l,,a1,. .., 0
where the I;’s are labels and the «;’s are record type variables. The normalization then
validates the change of rules.

t~t

; CEQ-BASEALT
{l:t},R~{l:t},R

In return, we can prove the intuitive elaboration for restricted Al is, indeed, sound:

» Theorem 6 (Type-safety of ~+; elaboration). IfT; Gt e :t ~»; E then [T];[G] - E = [t].

4.4 A Complete Encoding of )\l and its Challenges

One criticism to the intuitive encoding is that it does not fully model Al: fewer expressions
type-check in the modified A/!. Thus, we present a carefully designed encoding that is able
to elaborate the original !l to Fj without any restrictions at all. It is highly non-trivial and
reveals the essence of constrained quantification from the point of view of disjointness.

First, let us take a step back and have another look at Example 5. As we have discussed,
the root cause is rule CMP-BASE, which says that if a record is compatible with a single-field
record {l : t}, then it is compatible with every single-field record {l : t'}. To express the
essence of rule CMP-BASE in Fj, we utilize the bottom type L. In Fj, according to Lemma 1,
if some type A is disjoint to {I: L}, then, because {l: L} <: {l: B} (by rules S-rRCD and
S-BOT) for any B, we have that A is disjoint to {l: B}. In other words, in F;', if a record is
disjoint to {l: L}, then it is disjoint to every single-field record {1 : A}.

» Lemma 7 (Disjointness to records with bottom). If AF A« {l: L}, then A+ Ax{l: B}
for all B.

Essentially, a compatibility constraint with {/ : ¢} in M corresponds to a disjointness
constraint to {/: L} in Fj‘. Thus, we bottom-elaborate the record types that appear in a
constraint list: if a record {I: t} appears in a constraint list, then it is bottom-elaborated to
{l: L}. For Example 4, both Ya# {l : Int}.a — o and Va # {I : Bool}. & — « elaborate to
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V(a*{l:L}).a = . For Example 5, ¢ elaborates to B/ = Ala*{l: L}). ANz :a). My : {l:
Int}). z,, y, which type-checks in F.

» Example 8. Now consider the All term

g1 = (Ala#Empty). A(z : (VB# . Int)). 1) [{l: Int}] (A(B#{l: Int}).2)
The term type-checks in All and has type Int. During elaboration, we treat records differently
according to where they occur. For the type argument {I: Int}, since it is not in a constraint
list, we elaborate it normally to {I : Int}. For the term argument (A(S#{l : Int}).2),

since the record {I : Int} appears in a constraint list, we elaborate the term argument to
(A(B={l:L}).2). The whole term is then elaborated to

Ei=Aa*xT).(Az.1) : (V(B*a).Int) = Int)) {l: Int} (A(B*{l:L}).2)
However, F; fails to type-check in F?‘: after type application, we substitute o with the type
argument {/: Int} in 2’s type (V(5 * «). Int), yielding (V(8 * {I : Int}). Int), whereas the term
argument has type (V(8 % {l: L}).Int), which does not match (and is not a subtype of) the
expected parameter type!

The tricky part here is that, for type variables that appear in the constraint list, after
type application, the elaborated disjointness constraint contains the original type argument
instead of the bottom-elaborated type. In this case, the result type of type application, i.e.,
((V(B +{l:Int}).Int) — Int), has {I : Int} instead of {I/: L} in the disjointness constraint.

Apparently we cannot bottom-elaborate every type argument, or otherwise we would lose
type information for records. For example, ((A(a# Empty). AM(z : «). z) [{l: Int}]{l =1}).1+1

should not elaborate to ((A(a*xT).(Az.z):a— a){l: L} {l=1}).l+ 1, which is ill-typed.

Therefore, we bottom-elaborate record variables that appear in a constraint list. To this
end, we map a record type variable « to a pair of type variables a and «,, where o is
used in the disjointness constraint. Note that, | is not a new sort of type variable—we can
use o or ag as well—the subscript L here is only for readability. The bottom-elaborated
type variable o is introduced by an extra type abstraction. While « takes the normal
type argument, «; takes an extra bottom-elaborated type argument. As an example, the
expression €1 in Example 8 is elaborated to Ef, which type-checks successfully in Fj, where
the differences from Fj are highlighted in gray.

Bl = (AMaxT). Alag *xT) .(Az.1) : (V(B*lay ).Int) = Int) {l:Int} {I: L} (A(B*{l:1}).2)

Intentionally, o) is a subtype of «, as it always takes bottom-elaborated type arguments

that are subtype of the original type arguments. For example, {l: L} is a subtype of {I: Int}.

However, the type system is unaware of this observation.

» Example 9. Consider the term
g2 =Aa#Empty). A(B#a). ANz :a). XNy :B).z || v.

Under the current approach, it elaborates to

Es=AlaxT).AMap «T). AB*xar). ABLxar) Mz:a) Ny:B8).z,,y

However, the merge z,, y fails to type-check, as we do not have the information that a * 3.

We only have B« in the context. If the system could know that ar; <: «, then by Lemma 1
we could derive [ * .

Twisting F;" by adding the axiom «; <: « is unsatisfactory, as it complicates the subtyping
relation and also significantly affects the metatheory. Our solution is to include both the
regularly elaborated types as well as the bottom-elaborated types into the disjointness
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It [Int] = Int [l = lai

[tr = t2] = [ta] — [t2] [Empty][. = T
[Va# R.t] = Y(ax[R]).V(aL *[R]).[t] [{l:t}]. = A{l:1L}
[e] = «a [r || =]e = [m]e&[re]e

[Empty] = T [zl [e] =T

{3 = A{L: [t} [r,Rl = [rl&[r]L&[R]
[rflm] = [n]&[r] [7] [o] = o

1G] [o] = e [T,a#R] = [T],ax*[R],aL*][R]

[G,z:t] = [G],z:[t]

Figure 6 Elaboration functions from A!l to F;.

constraint. In other words, g is disjoint with both o and «; . Now €5 elaborates to Ej, which
type-checks successfully in F;". Note we have also elaborated and bottom-elaborated Empty.

Ey=Ala*x T&T ). Ala; * T&T ). AB* a&ay ).ABL* a&kay ). \x:a. y:B.2,,y

4.5 Formal Elaboration

With all the above ideas and observations in mind, we are ready to give a formal account of
the elaboration. The elaboration of types is given in Figure 6. We highlight the differences
from Figure 5 in grey. There are two ways of elaborating records: [r] (contained in [t]) for
regular elaboration and [r], for bottom elaboration. In regular elaboration [t], a elaborates
to . Of particular interest is the case of elaborating quantifiers: each quantifier Vo # R. 1 is
split into two quantifiers V(a * [R]). ¥(arr * [R]). [t] in Fj. The relative order of a and « is
not important, as long as we respect the order when elaborating type applications. Bottom
elaboration [r], elaborates a to ay, and {l: ¢} to {I: L}.

When elaborating constraint lists ([R]), a record r is elaborated to the intersection of
both its regular elaboration and bottom elaboration. Thus if 8 is compatible with «, then
its elaboration § is disjoint with both « and «a .

Now let us go back to the gray parts in Figure 4. The major difference from Figure 5
is rule wTT-ALLI and rule wrT-ALLE. In rule wrT-ALLI, we elaborate constrained type
abstractions to disjoint type abstractions with two quantifiers, matching the elaboration of
constrained quantification. Note that the relative order of o and «; should match the order of
« and « in elaborating quantifiers. Similarly, in the type application € [r] (rule WTT-ALLE),
we first elaborate e to E. The elaboration E is then applied to two types [r] and [r] ., as F
has two quantifiers resulting from the elaboration. It is of great importance that the relative
order of [[r] and [r], should match the order of & and o in elaborating quantifiers. There
is a protocol that we must follow during elaboration: if « is substituted by [r], then « is
substituted by [r] L.

4.6 Metatheory

Our elaboration enjoys desirable properties. The following lemma states that our elaboration
function commutes with substitution, in a slightly involved way:

» Lemma 10 (Elaboration commutes with substitution). We have (1) [[r/at] = [[r]L/aL][[r]/lt];

(2) [lr/ednl e = [[r]/adllr])/alln] L and (3) [lr/alR] = [[r]1/ed]([r]/o][B]-
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We show key lemmas that bridge the gap between row and disjoint polymorphism.

» Lemma 11 (Type equivalence implies subtyping). If t1 ~ ta, then we have [t1] <: [t2] and

th]] <: Htl]] .

» Lemma 12 (Compatibility implies disjointness). If T F r| # 1, then we have: (1) [T]
[ Drad; (2) ITTE ]+ [ral s (3) ITTF ]+ Dol and (4) [TTF [ra] e+ [ra] o

» Lemma 13 (Essence of compatibility). If T+ r# {l : t}, then for all A, we have (1)
[T] = [r] *{l: A}; and (2) [T]+ [r]L = {l: A}.

With everything in place, we prove that our elaboration in Figure 4 is type-safe. The
reader can refer to our Coq formalization for details.

» Theorem 14 (Type-safety of elaboration). If T;G ket~ E , then [T];[G] - E = [t].

Coherence Because of rule wrT-EQ, a M| expression can possibly elaborate to many
different F; expressions. For example, the term A(a# {I: Int}). \(z : @). z has the following
two elaborations E; and Fs (among others). This is the problem of coherence [56]: the
meaning of a target program depends on the choice of a particular elaboration typing.
LBy =Alax({l:Int}&{l: L}). Alar «({I:Int}&{l: L})). A(z: @). z;

2. By = (E;: [Va#{l:Bool}.a = a]) : [Va#{l:Int}.a — o]

To prove that different elaborations are equivalent, we utilize the definition of contextual
equivalence. In particular, we prove that if a Al expression € with type ¢ elaborates to two
F;r expressions, and these two F:r expressions further elaborate to two F., expressions, then
the F., expressions are contextually equivalent.

» Theorem 15 (Coherence of elaboration). Ifo;ob et~ By, and o;0 et~ By, and
oo I = [t]~ e, and e;0 - Ey = [[t] [~ ez, then e;0 - e =y eo.

5 Encoding Bounded Quantification

This section presents a type-safe and coherent encoding of kernel F.. [12] into Fj‘. This
encoding validates the informal observation about the relationship between polymorphic
intersection systems and bounded quantification.

5.1 Syntax and Semantics of kernel F_.

We start by reviewing the syntax and semantics of kernel F.., a polymorphic calculus with
bounded quantification. The syntax of F.. is given at the top of Figure 7. It is a version of
F-. extended with records? [10]. In addition to standard System F constructs, types o include
bounded quantifications V(a <: 7). o, which give a bound for the type variable; and record
types {l : 01, .., Iy : 05}, for which we assume all labels are distinct. In addition to standard
System F terms, terms € include type abstractions A(a <: o). €, records {l = €1, .., I, = €p},
and projections e.l. Contexts X record both the types of term variables, and the bounds of
type variables. We use X F ¢ to mean that a type is well-formed under a context.

2 'We could also encode record types in F., which however is a bit involved.
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Types oor = Int|T|a|lo=71|V(a<i7T)o|{h:01, . ,ln:on}

Terms € = | T|z|Mz:o)e|lee|Ala<:T)e|leo|{h=€, ., lp=€}]el
Value v = | T|AMz:o)e|AMa<:o)e|l{lh=0v1,., L =uv}

Context X = o|X,z:0|X,a<io

(susaping)

F-SUB-REFL F-SUB-TRANS F-SUB-TOP F-SUB-TVAR-BINDS
3 ok Yto ko1 <iog YFhox<:ios > ok Yto (a<:o)eX
Yho<:io Yo <:o3 Yho<: T Yhra<:io
F-SUB-ARROW F-SUB-FORALL F-SUB-RCDDEPTH
YEFm<io1 YhFoa<:imo Y,a<:Tko <:og for each ¢ Yhoi<:m;
Yhroir =00 <iT1 = T YEY(a<iT).o1 <:V(a<:T).02 SHA{l:o} < {li: T}

F-SUB-RCDPERM

F-SUB-RCDWIDTH {l_,f . T;El..n} is a permutation of {J; : O_;L_'Gl,.n}

Y- {11 . 0_’7;'61.477,—0—1@} <: {l1 . O_ZGL.TL} Y {lJ/ . Tjelnn} < {lz . 0261.4n}
YFe:o~ E (Typing)
F-TOP F-NAT F-VAR
3 ok 3 ok 3 ok (z:0)eX
YET:T~T YhEi:lnt~1 YFz:io~zx
F-ARROW F-SUB
Ysx:oke:T B YhFe:o~mE YrFo<:iT
YEXz:0).e:o—=T~ Az E): ([o]s = [7]=) Ykhe:m~ E:[r]s
F-APP F-TABS
Yher:0—T1~ E Yhe:o~ B Ya<:iokbe:T~FE
Sheres:T ~ BBy YFAa<io)e:V(a<io)T~ANaxT).E
F-RCD
Yher:01~ B . Xte€,: 00~ By,
YH{h=ea, . . h=¢e}:{h:01, .., Lh:on}~ {bh=Ei},, .., {ln=En}
F-PROJ F-TAPP
Yte:{lh:on, ..,li0, .., ln:on}~ E Yhe:Via<:im). e~ E Yho<in
YSthel:o~ (E:[{l:0}]z).l YFteo:[o/a]ra ~ (Eo]=) : ([([e/a]T2)]=)
[Int]s = Int =] lo] = e
[Tl = T IZ,a<:all = [Zl,axT
[c—=7ls = [ols—=I[r]s 1Z,2:0] = [X]
b0, . sl:ond)]s = Ab:fois}& .. &{kL:[on]s}
lalzeey = lals
[[a]](273<:0) = [[Oz]]g ”Eﬂ ”Qﬂ = L4
[[aﬂ(E,OK:G) = a&fo]s Ca<a]l = [X]
Ma<:o).7]ls = Y(axT). [7]s,a<o S,z:0] = [Z],z:[o]s

Figure 7 Syntax, subtyping, typing and elaboration of kernel F...
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Subtyping The subtyping relation is presented in the middle of Figure 7. Most rules are
quite standard. Rule F-SUB-TVAR-BINDS says that a type variable « is a subtype of its
bound o. Rule F-SUB-FORALL, first introduced in Fun [12], requires that the bounds of
two quantified types must be identical in order for one to be a subtype of the other. Full
F.. relaxes this restriction and includes a more powerful formulation where subtyping of
quantified types is contravariant in their bounds and covariant in their bodies. We will discuss
full F<. in Section 6.2. Rules F-SUB-RCDDEPTH, F-SUB-RCDWIDTH, and F-SUB-RCDPERM
together form the usual record subtyping.

Typing The typing rules of F_. are shown below the subtyping relation. The reader is
advised to ignore the gray parts for now. Most rules are straightforward. Unlike F;r, F..
has a subsumption rule (rule F-sUB) for implicit upcasting that can be triggered anywhere
during type-checking. Type abstractions are checked by moving their bounds into the context
(rule F-TABS), and type applications check that the type being passed satisfies the bound of
the corresponding quantifier (rule F-TAPP).

5.2 Elaboration Function

Adapting the encoding from Pierce [48] to our setting, we have
Ve <:o).T&2VY(axT). [a&a/a]T
We turn the encoding into an elaboration function. Instead of immediately substituting o

with a & o, we collect the bounds a <: o as we traverse the quantifiers, and only substitute
when we encounter a type variable a. This strategy is consistent with elaborating types with

free type variables. For example, consider the expression o <: Int - (A(z: ). 2 +1) : & — Int.

This expression type-checks because we have the information o <: Int in the context so that
we can upcast (by rule F-sUB) the type of z to Int when checking = 4 1. Here it is important
to propagate the context information to the type being elaborated. In a fairly standard
way, we regard the context as a big binder. Intuitively, if we elaborate o under the context
a <: Int, it should give us the same result as if elaborating « inside V(a <: Int). a. Therefore,
in this case, we substitute a by «a & Int, which yields z : a & Int, and thus validates = + 1.

Formally, type elaboration is denoted as [o]s = A, which reads: under context X, type o
elaborates to type A. Elaboration of a closed type is just a special case where the context is
empty, i.e., [0]o. The full definition is given on the lower left of Figure 7. Most rules are
self-explanatory. In particular, bounded quantification elaborates into disjoint quantification
by moving the bound information into the context. When elaborating a type variable «, we
traverse the context until we find its subtyping constraint o <: o, and then we substitute it
with an intersection type a & [o]s.

» Lemma 16 ( [o]ys is total). If ¥ & o, then there exists a unique type A such that [o]x = A.

We now lift the elaboration function to contexts, given on the lower right of Figure 7.

| =] elaborates a F.. context to a F; type context, in which subtyping constraints a <: o
of type variables are elaborated to disjointness constraints a * T and all term variables are
ignored. [[X] elaborates a F.. context to a F;-" term context, in which all type variables are
ignored and the types of term variables are elaborated under the prefix context.

5.3 Type-directed Elaboration

An intuitive elaboration scheme of expressions is to simply apply the elaboration function
to types. For example, under context X, if € elaborates to E, then type applications e o
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elaborates to F [o]s. Now let us consider an example.

» Example 17. Consider a F.. judgment
B<IntkF(AMa<T)XNz:a)z)B:8—=0

Here the type application type-checks because by rule F-SUB-TOP we have 5 <: T. If we
elaborate e o to F o]y directly, the resulting expression is

AaxT).(Mz.2) : (a&T) = (a&T)) (B&Int)

Note that as F;L does not have annotated abstractions, we put the elaborated arrow type as
the type annotation. Following the typing rule of F;r, we can infer the type of this expression:

BxTiek (Ala*T).(M.2): (@& T) = (@& T)) (B&Int) = (B&Int&T) = (B&Int& T)

However, the expected result type 5 — 3 elaborates to
(B&Int) — (B &Int)

Now we get a mismatch between the actual type ((f&Int& T) — (B&Int& T)) and the
expected type ((8&Int) — (8 &Int)) of the expression!

Fortunately, in this particular example, we can prove that the actual type and the
expected type are subtypes of each other, i.e., they are isomorphic. Why is that true? Recall
that we have 8 <: T, which after elaboration gives us (3 & Int) <: T. Therefore we can show
that the following two subtyping instances are valid: (1) (B&Int&T) = (B&Int& T) <:
(B&Int) — (B&Int); and (2) (B&Int) = (B&Int) <: (B&Int& T) = (B&Int& T).

More generally, we prove that elaboration commutes with substitution, yielding isomorphic
types. Consider that under the context 3, we have a type application € o, where € has type
V(o <: 71). T2, and in order for it to type-check, we have o <: 71. The expected type we want
of the expression is the elaboration of the F.. typing result, i.e., [([c/a]m2)]s. The actual
type is the result of feeding the elaborated argument [o]s to the elaborated quantification

[V(a <: ). 7]z, Le, [[o]s/a]([m](sa<im))-

» Lemma 18 (Elaboration commutes with substitution). Given ¥+ o <: 7, we have (1)
llo/adn]s <: [lo]s/al(lrl(.a<in)); and (2) [[o]s/d([r2]s.a<m)) <: [(lo/a]2)]s.

Note that the elaboration scheme slightly varies depending on the type semantics of the
target intersection type calculi. Tt is a desirable property that typing should be preserved
after elaboration, i.e., the elaborated expression should have the corresponding elaborated
type. For languages with an implicit subsumption rule (e.g., rule F-suB in kernel F..),
Lemma 18 can implicitly upcast the actual type to the expected type, and thus validates the
intuitive elaboration of the type applications. For languages with explicit subsumption rules
(e.g., rule T-sSUB in F;r)7 to remedy this situation, we need to annotate the expression with
the expected type to explicitly upcast the type. Concretely, in this example, the elaborated
expression, with the added annotation highlighted in grey, will be:

(AMaxT).(Az.z): (@& T) = (a&T))(B&Int)) : (B&Int) — (B &Int)

Finally, we can go back and consider the elaboration of expressions in the grey part of
Figure 7. Most of the elaboration rules are self-explanatory. In particular, in rule F-TAPP,
type applications e o elaborates to (F [o]x) : [([o/a]m)]s.

5.4 Metatheory

Now that we have everything in place, we are ready to prove that our elaboration is sound.
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kernel F. (A(a <:Int). Mz : ). 1) Int — Az :Int). 1
{ §

Fr (A(a*xT). ((\z.1) : @& Int — Int)) Int) : Int — Int (Az.1) : Int — Int
§ §

Feo ((id,id) — id) ((Aa. Az. 1) Int) —> ((id,id) — id) (Az.1) Zctz Az.1

Figure 8 Key idea of simulation illustrated with an example.

» Theorem 19 (Type-safety of elaboration). If X Fe: 0~ E , then [X];[EF E = [o]s.

However, due to the implicit upcasting (rule F-SUB), a F.. expression can possibly
elaborate to many different ones in F;". For example, consider (A(z : T).2) 1. Two elaborations
(among others) are (1) (Az.2): T — Int) (1: T); and (2) (((Az.2) : T — Int) : Int — Int) 1.
Therefore, we prove that different elaborations lead to contextually equivalent results.?

» Theorem 20 (Coherence of elaboration). Ifo bk e: o~ By, and o F € : 0~ Ey, and
o0 F = [o]o~ e, and e;0 - Ey = [o]o/~ €2, then ;0 - e =iy €.

We also prove a weaker simulation result®: if the standard direct operational semantics of
kernel F_. produces €, — €3, and €5 elaborates to Es in F;r, which in turn elaborates to es
in F.,, then €; elaborates to F; in Fj‘, which in turn elaborates to e; in F.,, and ey — €],
where €] and ey are contextually equivalent. The lemma is weaker in the sense that €] and es
are not syntactically equivalent. Given the coherence lemmas of Fj‘ and of the elaboration,
it is no surprise that here contextual equivalence takes the place of the syntactic equivalence,
as explicit upcasting generates coercions, which may break syntactic equivalence. As an
example, consider Figure 8, where e; steps to an expression ef = ((id,id) — id) (Az. 1) that
is contextually equivalent to es = Ax. 1.

» Theorem 21 (Simulation). Ife; — €2, and o b e : 0~ By , and &;0 - Fy = [o]o ~ €3,

then there exist Ey, e1, €] such that o b €1 : 0~ By, and e;0 - Ey = [o]o/~ e, and
€1 —> e}, where o; 0 F €] g, €.

The detailed paper proof of this lemma is given in Appendix D. This lemma requires
a generalized logical equivalence for F;r, which is not yet supported in the current Coq
framework. Therefore we only present the paper proof. If the Coq framework of Fj is
generalized, we expect that the lemma can be proved in Coq.

6 Discussion

In this section we discuss some possible paths for further exploration.

One restriction in Bi et al. [7] is that due to the well-foundedness issue, the logical relation of Fj is
defined only for its predicative subset, where type arguments in type applications can only be monotypes.
Since our proof is built upon the logical relation of Fj, Theorem 20 is restricted to predicative subset
of kernel F.. as well. If the well-foundedness of impredicative Fj‘ is recovered, e.g., by employing
step-indexing logical relations [1], we expect that our proof remains valid.

Note that All does not provide a semantics [34], so we did not discuss the operational semantics in
Section 4. If Al had a operational semantics, we believe a similar theorem would apply.
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6.1 Variants of Row Polymorphism

According to Rémy [53], record calculi can typically be categorized into two groups based on
how they support the extension operation: the strict group does not allow duplicate labels,
while the free group does. We have already shown that Fj‘ supports A, a calculus in the
strict group, with a more fine-grained control as disjointness allows duplicate labels as long as
their types are disjoint. AT'R [60] is another calculus from the strict group, which introduces
type-indexed rather than label-indexed rows, and uses membership constraints to avoid
conflicts. To distinguish types and row, AT'R incorporates a kind system that distinguishes

ATIR "as type-indexed

rows from types. We believe that Fj‘ could also serve as a target for
rows are closely related to disjoint intersections. Thus an elaboration from ATR to Fj‘ is
interesting future work.

For the free group, there are two different approaches for extension: previous fields are
always retained, and record projections always select the first matching label [35]; or the
extension overwrites the field if it is already present [5, 53, 11]. The former system suffers
from the similar issue of ambiguity, as records can be extended with the same label even
when types are overlapping, which violates the essence of disjointness. For the latter system,
essentially F;r is capable to encode the extension operation in a different form. Consider a

function that overwrites (+—) the label [ in a record by incrementing the original value [11]:
inc=Aa <:{l:Int} Az :a).z {I{=z14+1}

In F;", we can define
ind = Alax{l:Int}). ANz:a&{l:Int}).(z:a,, {I=(2z:{l:Int}).l+1})

There are two differences. Firstly, the type arguments to the two functions are different: inc
expects a type argument which includes {I : Int}, while inc’ expects a type argument which
excludes {I : Int}, and {I: Int} is later recovered in z’s type by an intersection type. This
explains a more involved encoding. Secondly, the term arguments to the two functions are
also different: inc accepts arguments that have exactly one [ label with type Int, while inc’
can accept arguments of type {l : Int} & {I : Bool}. This again manifests the fine-grained
control of disjointness. That being said, we have not studied nor formalized the encoding.

Type-inference The focus of our work is languages that have more modest goals in terms
of type-inference. Note that neither Al or F address sophisticated type-inference. We focus
on languages with subtyping, including TypeScript, Ceylon, Scala or Flow. Languages like
Racket also include a variant of row polymorphism, without full-type inference to model
powerful OOP features [61]. Many other row type systems [53, 64, 63, 35] support type
inference. For the future, we wish to investigate whether a disjoint polymorphic calculus
offering similar type inference can model calculi with row polymorphism and type inference.
We believe that several ideas employed in work on type inference for row polymorphism can
be adapted to a setting with disjoint polymorphism.

6.2 Variants of Bounded Quantification

Full F.. [23] includes a more powerful formulation of subtyping for universal quantification
(rule F-SUB-FORALLALT), which is contravariant in the bound types and covariant in the
body types. However, this subtyping rule renders subtyping in full F.. undecidable [49].

YEm<im Yoa<:imy ko <:og
YHEY(a<:im). o1 < V(o <:T).09

F-SUB-FORALLALT
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Moreover, this rule breaks the encoding. Consider the example [48]:
oFVY(a<:T).a<:V(a<:Int).«

which elaborates to a non-derivable Fj judgment
oe-V(axT).a&T <:V(axT).aklnt

since a*x T Fa& T <: a&Int is not true.

One possible solution is to adopt a more powerful subtyping relation in the target calculus,
where a polymorphic type is a subtype of one type if the first has more instances [45]. For
example, the following judgment holds true, as a can be instantiated to Int to get Int — Int:

Va.oa — o <: Int — Int

Then the judgment e - V(ax T).a& T <:V(a* T).a&Int is derivable. After we skolemise
the type variable « in the right hand side, we can instantiate « in the left hand side by
a&inttoget ax THFa&Int& T <: a&int.

Interestingly, such subtyping is usually predicative, i.e., universal quantifications can only
be instantiated with monotypes; or otherwise it is undecidable. Thus if the bounds can only
be monotypes, it may be the case that a target calculus with the more powerful subtyping
rule can encode the predicative version of full F_..

6.3 Variants of Intersection Type Systems

All'is encodable into intersection type systems that feature the merge operator, unrestricted
intersection types, polymorphism and guarantee coherence through constraints similar to
compatibility or disjointness. This currently only applies to F;“. Some intersection type
systems [28, 6, 46] only support simple record types. While Alpuim and Oliveira [2] do
support polymorphism, they only allow intersection types between disjoint types. Hence, our
elaboration of constraint lists to [r] & [r] L is rejected as [r] and [r].L may not be disjoint.

Kernel F_. is encodable for intersection type systems that feature polymorphism and
unrestricted intersection types. For example, a similar encoding might be applicable to other
intersection type systems [17, 19]. Interestingly, the behavior of elaborated expressions varies
according to the type semantics of the target. Consider a function f of type V(a <: Int). o — «,
which, based on the encoding, elaborates to Va. a & Int — « & Int. The original type expects a
type argument which is a subtype of Int; while in the intersection type system, the elaborated
type can take any type argument, e.g., Bool, and then expect a term argument of type
Int & Bool. In intersection type systems (e.g., [43]) where Int & Bool is uninhabited (equivalent
to the bottom type), f Bool can take nothing. Yet, in calculi with the merge operator, we
can have, e.g., f Bool (1, True).

7 Related Work

Bounded quantification and intersection types The language Fun [12] introduced bounded
quantification. Bounded quantification is later extended with extensible records [10, 11],
recursively defined types [9] and session types [25, 33] among other extensions. The full
variant of F., [23] (see also Section 6.2) is proved to be undecidable [49]. The kernel Fun
variant [12], which restricts the subtyping of bounds to be invariant, is decidable.

Pierce [48] proposed the encoding of bounded quantification in terms of intersection
types in an informal discussion, which is the main inspiration of our Section 5. Castagna
and Xu [19] mentioned in a footnote that a type variable o bounded by a type o can be

encoded by replacing every occurrence of o by 5 A o where (8 is a fresh unbounded variable.
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Castagna et al. [17] further mentioned that the possible instantiation of a type variable «
with a upper bound ¢ and a lower bound 7 is equivalent to the possible instantiation of
(7V B) Ao. Dolan and Mycroft [26] used a similar encoding as one of the main ingredients of
the biunification algorithm: a <: 0~ (where types have polarity) implies the bisubstitution
0 =[(up B.an|B/a"](c7))/a"], which by unrolling implies that 8(a~) = aM8(c~). The
idea of encoding bounded quantification using intersection types is not new. However, as
far as we know, we are the first to formalize an elaboration and study the metatheory
from a calculus with bounded quantification into a calculus with intersection types and
polymorphism. This contrasts with the previous informal discussions, which have only shown
a few concrete examples of programs that could be manually translated (or not).

Row calculi and intersection types Along the way we have mentioned many row calculi [35,
5, 53, 11, 64, 63]. Reynolds [57] developed an encoding of simple records in terms of
intersection types and his merge construct. Similar ideas had been applied by more recent
work on intersection types with a merge operator [28, 6, 2]. Alpuim and Oliveira [2]
showed informally that many features of row polymorphism can be simulated with disjoint
polymorphism. However, their system is limiting for the encoding in Section 4.4.

Intersection types and the merge operator The F;" calculus follows from a line of work
on intersection types with a merge operator. The programming language Forsythe [57, 55]
includes a merge operator. However, several restrictions were imposed to make the merge
operator coherent [56]. For example, merging two functions is forbidden. Castagna et al. [14]
studied a special merge operator that only works on functions. Dunfield [28] proposed a
calculus with unrestricted intersection types and unrestricted merges. However his calculus
loses coherence. For example, 1,,2 could elaborate to 1 or 2. Pierce [48] proposed a
primitive function glue, similar to unrestricted merges. Oliveira et al. [46] proposed disjoint
intersection types and disjoint merges to recover syntactic coherence. Later this approach was
extended with disjoint polymorphism [2]. Bi et al. [6] support unrestricted intersection types
and disjoint merges, based on a novel semantic coherence approach in terms of contextual
equivalence, which is later extended to support polymorphic types [7].

Other work on intersection types includes refinement intersections [24, 27]; set theoretical
foundation for type connectives including intersections, unions and negations [16, 15, 17, 19];
and the DOT calculus, which aims at providing a foundational calculus for Scala that
incorporates features including intersection types [3, 58]. In those calculi, intersection types
only increase the expressiveness of types, but not the expressiveness of terms. For example,
the intersection type Int & Bool is uninhabited. The type system of Ceylon [43] exploits this
fact and considers any intersection of such disjoint types equivalent to the bottom type (L).

8 Conclusion and Future Work

We have presented the elaboration from kernel F., and Al to F, and showed that disjoint
polymorphism is powerful enough to encode essential aspects of bounded quantification
and row polymorphism, which is useful for economy of theory and implementation. The
elaboration from kernel F.. identifies one encodable fragment of F_., and thus validates the
previous informal observation by Pierce. The elaboration from Al to F reveals the essence
of constrained quantification from the point of view of disjointness. As for future work, we
plan to study the encoding of other variants of F.., as well as other row calculi. We also
plan to study type inference of F;".



N. Xie, B. C.d.S. Oliveira, X. Bi and T. Schrijvers

—— References

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In
European Symposium on Programming (ESOP), 2006.

Jodo Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European
Symposium on Programming (ESOP), 2017.

Nada Amin, Adriaan Moors, and Martin Odersky. Dependent object types. In Workshop on
Foundations of Object-Oriented Languages, 2012.

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. The journal of symbolic logic, 48(04):931-940, 1983.
Bernard Berthomieu and Camille Le Monies De Sagazan. A calculus of tagged types, with
applications to process languages. Types for Program Analysis, page 1, 1995.

Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The essence of nested composition. In
European Conference on Object-Oriented Programming (ECOOP), 2018.

Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. Distributive disjoint
polymorphism for compositional programming. In Furopean Symposium on Programming
(ESOP), 2019.

Gilad Bracha. The programming language jigsaw: mizins, modularity and multiple inheritance.
PhD thesis, Dept. of Computer Science, University of Utah, 1992.

Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C Mitchell. F-bounded
polymorphism for object-oriented programming. In FPCA, volume 89, pages 273-280, 1989.
Luca Cardelli. Ezxtensible records in a pure calculus of subtyping. Digital. Systems Research
Center, 1992.

Luca Cardelli and John C Mitchell. Operations on records. In International Conference on
Mathematical Foundations of Programming Semantics, 1989.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471-523, 1985.

Felice Cardone. Relational semantics for recursive types and bounded quantification. In
International Colloquium on Automata, Languages, and Programming, pages 164-178. Springer,
1989.

Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. In Conference on LISP and Functional Programming, 1992.

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. Polymorphic functions with
set-theoretic types: part 2: local type inference and type reconstruction. In Principles of
Programming Languages (POPL), 2015.

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Serguei Lenglet, and Luca
Padovani. Polymorphic functions with set-theoretic types: part 1: syntax, semantics, and
evaluation. In Principles of Programming Languages (POPL), 2014.

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. Set-theoretic types for polymor-
phic variants. In International Conference on Functional Programming (ICFP), 2016.
Giuseppe Castagna and Benjamin C Pierce. Decidable bounded quantification. In Principles
of Programming Languages (POPL), 1994.

Giuseppe Castagna and Zhiwu Xu. Set-theoretic foundation of parametric polymorphism and
subtyping. In International Conference on Functional Programming (ICFP), 2011.

C. Chambers, D. Ungar, B.W. Chang, and U. Holzle. Parents are shared parts of objects:
Inheritance and encapsulation in SELF. Lisp and Symbolic Computation, 4(3):207-222, 1991.
Adriana B Compagnoni and Benjamin C Pierce. Higher-order intersection types and multiple
inheritance. Mathematical Structures in Computer Science (MSCS), 6(5):469-501, 1996.
Mario Coppo, Mariangiola Dezani-Ciancaglini, and Patrick Sallé. Functional characterization
of some semantic equalities inside A-calculus. In International Colloguium on Automata,
Languages, and Programming, pages 133—-146. Springer, 1979.

Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum typing and
type-checking in <. Mathematical structures in computer science, 2(1):55-91, 1992.

27:27

ECOOP 2020



27:28

Row and Bounded Polymorphism via Disjoint Polymorphism

24

25

26

27
28

29

30

31
32

33

34

35

36

37

38

39

40
41

42

43

44

45

46

47

Rowan Davies. Practical refinement-type checking. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2005.

Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and Nobuko Yoshida.
Bounded session types for object oriented languages. In Formal Methods for Components and
Objects, pages 207—-245. Springer, 2007.

Stephen Dolan and Alan Mycroft. Polymorphism, subtyping, and type inference in mlsub. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pages 60-72, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.
1145/3009837.3009882, doi:10.1145/3009837.3009882.

Joshua Dunfield. Refined typechecking with stardust. In PLPV, 2007.

Joshua Dunfield. Elaborating intersection and union types. Journal of Functional Programming
(JFP), 24(2-3):133-165, 2014.

Erik Ernst. Family polymorphism. In European Conference on Object-Oriented Programming
(ECOOP), 2001.

Erik Ernst. The expression problem, scandinavian style. On Mechanisms For Specialization,
page 27, 2004.

Facebook. Flow. https://flow.org/, 2014.

Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with classes, mixins,
and traits. In Programming Languages and Systems (APLAS), 2006.

Simon J Gay. Bounded polymorphism in session types. Mathematical Structures in Computer
Science, 18(5):895-930, 2008.

Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In
Principles of Programming Languages (POPL), 1991.

Daan Leijen. Extensible records with scoped labels. Trends in Functional Programming,
5:297-312, 2005.

Daan Leijen. Type directed compilation of row-typed algebraic effects. In Principles of
Programming Languages (POPL), 2017.

Sam Lindley and James Cheney. Row-based effect types for database integration. In Proceedings
of the 8th ACM SIGPLAN workshop on Types in language design and implementation, pages
91-102. ACM, 2012.

Sam Lindley and J Garrett Morris. Lightweight functional session types. Behavioural Types:
from Theory to Tools. River Publishers, pages 265-286, 2017.

Simon Martini. Bounded quantifiers have interval models. In Proceedings of the 1988 ACM
conference on LISP and functional programming, pages 164-173. ACM, 1988.

Microsoft. Typescript. https://www.typescriptlang.org/, 2012.

Microsoft. https://www.typescriptlang.org/docs/handbook/advanced-types.html, 2019.
Online; accessed 16 June 2019.

J. Garrett Morris and James McKinna. Abstracting extensible data types: or, rows by any
other name. In Principles of Programming Languages (POPL), 2019.

Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated
subtyping. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2018.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview
of the scala programming language. Technical report, EPFL, 2004.

Martin Odersky and Konstantin Laufer. Putting type annotations to work. In Symposium on
Principles of Programming Languages (POPL), 1996.

Bruno C. d. S. Oliveira, Zhiyuan Shi, and Jodao Alpuim. Disjoint intersection types. In
International Conference on Functional Programming (ICFP), 2016.

Bruno C. d. S. Oliveira, Tijs Van Der Storm, Alex Loh, and William R Cook. Feature-oriented
programming with object algebras. In Furopean Conference on Object-Oriented Programming
(ECOOP), 2013.


http://doi.acm.org/10.1145/3009837.3009882
http://doi.acm.org/10.1145/3009837.3009882
http://dx.doi.org/10.1145/3009837.3009882
https://flow.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/advanced-types.html

N. Xie, B. C.d.S. Oliveira, X. Bi and T. Schrijvers

48

49

50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

65

Benjamin C Pierce. Programming with intersection types and bounded polymorphism. PhD
thesis, University of Pennsylvania, 1991.

Benjamin C Pierce. Bounded quantification is undecidable. Information and Computation,
112(1):131-165, 1994.

Benjamin C Pierce and David N Turner. Local type argument synthesis with bounded
quantification. Technical report, Technical Report 495, Computer Science Department, Indiana
University, 1997.

Garrel Pottinger. A type assignment for the strongly normalizable A-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages 561-577, 1980.

Redhat. Ceylon. https://ceylon-lang.org/, 2011.

Didier Rémy. Type inference for records in a natural extension of ML. Theoretical Aspects Of
Object-Oriented Programming. Types, Semantics and ..., 1993.

Tillmann Rendel, Jonathan Immanuel Brachthiuser, and Klaus Ostermann. From object
algebras to attribute grammars. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’14, page
377-395, New York, NY, USA, 2014. Association for Computing Machinery. URL: https:
//doi.org/10.1145/2660193.2660237, doi:10.1145/2660193.2660237.

John C Reynolds. Preliminary design of the programming language forsythe. Technical report,
Carnegie Mellon University, 1988.

John C. Reynolds. The coherence of languages with intersection types. In Lecture Notes in
Computer Science (LNCS), pages 675-700. Springer Berlin Heidelberg, 1991.

John C Reynolds. Design of the programming language forsythe. In ALGOL-like languages,
pages 173-233. Birkhauser Boston Inc., 1997.

Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2016.
Patrick Salle. Une extension de la theorie des types en lambda-calcul. In Proceedings of the
Fifth Colloquium on Automata, Languages and Programming, pages 398-410, London, UK,
UK, 1978. Springer-Verlag.

Mark Shields and Erik Meijer. Type-indexed rows. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 01, pages 261-275,
New York, NY, USA, 2001. ACM. URL: http://doi.acm.org/10.1145/360204.360230,
doi:10.1145/360204.360230.

Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Object-oriented Programming:
Systems, Languages and Applications (OOPSLA), 2012.

Philip Wadler. The expression problem. Java-genericity mailing list, 1998.

Mitchell Wand. Complete type inference for simple objects. In Symposium on Logic in
Computer Science (LICS), 1987.

Mitchell Wand. Type inference for record concatenation and multiple inheritance. In Symposium
on Logic in Computer Science (LICS), 1989.

Mathhias Zenger and Martin Odersky. Independently extensible solutions to the expression
problem. In Foundations of Object-Oriented Languages, 2005.

27:29

ECOOP 2020


https://ceylon-lang.org/
https://doi.org/10.1145/2660193.2660237
https://doi.org/10.1145/2660193.2660237
http://dx.doi.org/10.1145/2660193.2660237
http://doi.acm.org/10.1145/360204.360230
http://dx.doi.org/10.1145/360204.360230

	Introduction
	Overview
	Background: Disjoint Polymorphism
	Row Polymorphism through Disjoint Polymorphism
	Bounded Quantification through Disjoint Polymorphism
	The Extra Power of Disjoint Polymorphism

	Disjoint Polymorphism
	Syntax and Semantics
	Elaboration and Coherence

	Encoding Row Polymorphism
	Syntax of ||
	Typing Rules of ||
	A Simple yet Incomplete Encoding
	A Complete Encoding of || and its Challenges
	Formal Elaboration
	Metatheory

	Encoding Bounded Quantification
	Syntax and Semantics of kernel F<:
	Elaboration Function
	Type-directed Elaboration
	Metatheory

	Discussion
	Variants of Row Polymorphism
	Variants of Bounded Quantification
	Variants of Intersection Type Systems

	Related Work
	Conclusion and Future Work

