
Row and Bounded Polymorphism via Disjoint
Polymorphism
Ningning Xie
The University of Hong Kong, Hong Kong, China
nnxie@cs.hku.hk

Bruno C. d. S. Oliveira
The University of Hong Kong, Hong Kong, China
bruno@cs.hku.hk

Xuan Bi
The University of Hong Kong, Hong Kong, China
xbi@cs.hku.hk

Tom Schrijvers
KU Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract
Polymorphism and subtyping are important features in mainstream OO languages. The most

common way to integrate the two is via F<: style bounded quantification. A closely related mechanism
is row polymorphism, which provides an alternative to subtyping, while still enabling many of the
same applications. Yet another approach is to have type systems with intersection types and
polymorphism. A recent addition to this design space are calculi with disjoint intersection types and
disjoint polymorphism. With all these alternatives it is natural to wonder how they are related.

This paper provides an answer to this question. We show that disjoint polymorphism can
recover forms of both row polymorphism and bounded polymorphism, while retaining key desirable
properties, such as type-safety and decidability. Furthermore, we identify the extra power of disjoint
polymorphism which enables additional features that cannot be easily encoded in calculi with row
polymorphism or bounded quantification alone. Ultimately we expect that our work is useful to
inform language designers about the expressive power of those common features, and to simplify
implementations and metatheory of feature-rich languages with polymorphism and subtyping.

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engi-
neering → Object oriented languages; Software and its engineering → Polymorphism

Keywords and phrases Intersection types, bounded polymorphism, row polymorphism

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.27

Supplementary Material https://github.com/xnning/Row-and-Bounded-via-Disjoint

Funding This work has been sponsored by Hong Kong Research Grant Council projects number
17210617 and 17209519, and by the Research Foundation - Flanders.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Intersection types [51, 22, 59] and parametric polymorphism are common features in many
newer mainstream Object-Oriented (OO) languages. Among others intersection types are
useful to express multiple interface inheritance [21]. They feature in programming languages
like Scala [44], TypeScript [40], Ceylon [52] and Flow [31]. These languages also incorporate
a form of parametric polymorphism, typically generalized to account for subtyping and
supporting bounded quantification [12]. As programmers get more experienced with the

© Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira and Tom Schrijvers;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 27; pp. 27:1–27:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nnxie@cs.hku.hk
mailto:bruno@cs.hku.hk
mailto:xbi@cs.hku.hk
mailto:tom.schrijvers@cs.kuleuven.be
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://github.com/xnning/Row-and-Bounded-via-Disjoint
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Row and Bounded Polymorphism via Disjoint Polymorphism

combination of intersection types and polymorphism, they discover new applications. For
example, the documentation of TypeScript [41] shows how the two features can express a
composition operator for objects that enables an expressive form of statically typed dynamic
inheritance [20, 32] and mixin composition [8]:

function extend<A, B>(first: A, second: B): A & B

The polymorphic function extend takes two objects and produces a result whose type is the
intersection of the types of the original objects. The implementation of extend relies on low
level features of JavaScript and is right-biased: the fields or properties of second are chosen
in favor of the ones in first. For example, we can create a new object jim as follows:

var jim = extend(new Person(’Jim’), new ConsoleLogger());

The jim object has type Person & ConsoleLogger, and acts both as a person and as a
console logger. Using extend to compose objects is much more flexible than the static
inheritance mechanisms of common OO languages like Java or Scala. It can type-check
flexible OO patterns that have been used for many years in many dynamically-typed languages.
Functions similar to extend have also been encoded in Scala [47, 54].

Unfortunately, the extend function in TypeScript suffers from ambiguity issues, and
worse, it is not type-safe [2]. Indeed, given two objects with the same field or method names,
extend does not detect potential conflicts. Instead it silently composes the two objects,
using the implementation based on a biased choice. This does implement a mixin semantics,
but it has the drawback that it can unintentionally override methods, without any warnings
or errors. Additionally, the extend function is not type-safe: if two objects have the same
property name with different types, extend may lookup the property of the wrong type.

In the literature of intersection types, extend is essentially what has been identified as
the merge operator [55]. As illustrated by Dunfield [28], the expressive power of the merge
operator can encode diverse programming language features, promising an economy of theory
and implementation. Calculi with disjoint intersection types [46, 7, 2] incorporate a coherent
merge operator. In such calculi the merge operator can merge two terms with arbitrary types
as long as their types are disjoint; disjointness conflicts are reported as type-errors. Some
calculi with disjoint intersection types, such as F+

i [7], also support disjoint polymorphism [2],
which extends System F style universal quantification with a disjointness constraint. With
disjoint polymorphism we can model extend as:

let extend A (B * A) (first : A, second : B) : A & B = first ,, second

Unlike the TypeScript definition, which relies on type-unsafe features, the definition above
includes the full implementation. The definition of extend uses the merge operator (,,) to
compose the two objects. The type variable B has a disjointness constraint (B * A) which
states that B must be disjoint from A. Disjointness retains the flexibility to encode highly
dynamic forms of inheritance, while ensuring both type-safety and the absence of conflicts.

Row polymorphism and disjoint polymorphism Disjoint polymorphism looks quite close to
certain forms of row polymorphism. Indeed, when restricted to record types, row polymorphism
with constrained quantification [34] provides an approach to recovering an unambiguous
semantics for extend as well. Constrained quantification extends System F style universal
quantification with a compatibility constraint. By requiring B to be compatible with A, we
can encode a row polymorphic variant of extend as:

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:3

let extend A (B # A) (first : A, second : B) : A || B = first || second

Here A and B are row variables standing for record types, and B is compatible with A (B # A),
which ensures the absence of conflicts. The || operator concatenates two records at both the
term level and the type level. The key difference between the two implementations of extend
is that in the version with row variables, A and B only stand for record types. In contrast
in the version with disjoint polymorphism, A and B are arbitrary types. In languages with
nominal type systems, allowing arbitrary types is important to deal with nominal types of
classes, for instance. The encoding of extend suggests that at least some functionality of row
polymorphism can be captured with disjoint polymorphism. Indeed, there are clear analogies
between the two mechanisms: the merge operators (,, and ||) are similar; compatibility plays
a similar role to disjointness; and intersection types generalize record type concatenation.

Bounded quantification and disjoint polymorphism Polymorphic object-oriented lan-
guages also typically feature bounded quantification, which addresses the interaction between
polymorphism and subtyping. Bounded quantification generalizes universal quantification by
allowing programmers to specify upper bounds on type variables. For example:

let getName (A <: Person) (o : A) : (String,A) = (o.name,o)

expresses a function getName that takes an object o whose type is a subtype of Person,
extracts its name and returns a copy of the object. Note that bounded quantification is
useful to avoid the loss of information problem of subtyping [11]. Using the simpler type:

let getName_bad (o : Person) : (String,Person) = (o.name,o)

would lose static type information when given a subtype of Person as an argument.
An alternative version of getName that also does not lose type information is:

let getName A (o : A & Person) : (String,A & Person) = (o.name,o)

Here, the type variable A is unrestricted and represents the statically unknown part of
the type of the object. The intersection type A & Person ensures that the object must at
least contain all properties of Person, but does not forget about the statically unknown
components. The two versions of getName show a common use case in OOP, but they use
different features: the first uses bounded quantification, while the second uses a combination
of intersection types and polymorphism. The connection between bounded quantification
and polymorphic intersection types has been informally observed by Pierce [48].

Disjoint polymorphism, row polymorphism and bounded quantification provide a range
of functionalities for OOP languages. Thus a language designer may be tempted to design
a core language that combines all of these concepts. However, supporting all of them
would lead to a significant implementation effort and a complex metatheory with non-trivial
interactions between features. Furthermore, a common principle for (core) languages is to
avoid overlapping features, which provide different ways to solve the same problem. Yet there
seems to be a significant overlap between these features, which goes against that principle.

This paper builds on the similarities between the mechanisms, and shows that forms of both
row polymorphism and bounded polymorphism can be recovered by type-safe elaborations
into languages with disjoint polymorphism. Theoretically, it is important to formally establish
the comparison among different type features, to allow a deep understanding and a precise
discussion of the relative expressiveness of each feature. In practice, this result suggests

ECOOP 2020

27:4 Row and Bounded Polymorphism via Disjoint Polymorphism

that core languages wishing to support all those features only need to support disjoint
polymorphism natively, promising an economy of the implementation of those languages. To
establish the relationship between row, bounded and disjoint polymorphism in a rigorous
and precise manner, we formalize elaborations from λ|| [34], a System F like calculus with
row polymorphism, and from kernel F<: [12], into F+

i . Our work serves as a guideline for
language designers wishing to combine disjoint polymorphism, with bounded quantification
and/or row polymorphism. The elaborations are useful to understand exactly what can and
cannot be encoded, and to uncover and overcome difficulties. To our surprise, a full encoding
of λ|| is quite subtle: there are subtle differences between compatibility and disjointness.
Moreover, certain general forms of bounded quantification are problematic, but all programs
in kernel F<: (the most widely used and decidable fragment of F<:) are encodable.

We make the following specific contributions:

A formal elaboration from row to disjoint polymorphism: We present a formal
elaboration from λ|| to F+

i (Section 4). We first identify an intuitive elaboration (Sec-
tion 4.3). Due to discrepancies between compatibility and disjointness this elaboration
does not work for all λ|| programs. However it is possible to find a simple restriction on
λ|| that allows for the intuitive elaboration to work. We then present a complete, but non-
trivial elaboration that targets the original λ|| without restrictions (Section 4.4). While the
design space of row polymorphic calculi is very diverse, features in λ|| are representative
of most other calculi. We discuss elaborating other row calculi in Section 6.1.
A formal elaboration from bounded to disjoint polymorphism: We identify a
fragment of F<: that is encodable in terms of polymorphic intersection type systems, by
providing an elaboration from kernel F<: to F+

i (Section 5). Our elaboration, for the first
time, validates the informal observation between polymorphic intersection systems and
bounded quantification. We discuss other variants of F<: in Section 6.2.
A discussion of the extra expressive power of disjoint polymorphism: We
identify and discuss specific features of disjoint polymorphism that cannot be easily
encoded in F<: and λ|| (Section 2.4), including distributivity of intersections over other
constructs, and the combination of subtyping and row polymorphism. We discuss other
variants of intersection type systems in Section 6.3.
Coq formalization: All elaborations and metatheory of this paper, except for some
manual proof for simulation, has been mechanically formalized in the Coq proof assistant,
including type-safety and coherence. The Coq formalization amounts to 18,855 lines of
proofs and code (not including blank lines, comments and existing metatheory for F+

i).

2 Overview

This section introduces the key ideas of the encodings for bounded quantification and row
polymorphism. We also discuss the added extra power of disjoint polymorphism over bounded
quantification and row polymorphism.

2.1 Background: Disjoint Polymorphism
Disjoint polymorphism [2, 7] combines disjoint intersection types with parametric polymor-
phism. In particular, F+

i [7] supports intersection types A&B for terms that are both of type
A and of type B. With the merge operator we can construct terms of an intersection type, like
1 , , True of type Int & Bool. Thanks to subtyping, a term of type Int & Bool can also be used
as if it had type Int, or as if it had type Bool. F+

i requires the two components of a merge to

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:5

have disjoint types, e.g., 1 , , 2 : Int & Int is not allowed, because it is ambiguous which value
should be used at type Int. With disjoint quantification, it is possible to merge components
whose type contains type variables. For instance, the term Λ(α ∗ Int). λ(x : α). x , , 1 has type
∀(α ∗ Int). α→ α& Int. The disjointness annotation α ∗ Int allows α to be instantiated only to
types that are disjoint from Int. Without a disjointness constraint, the term Λα. λ(x : α). x , , 1
is rejected. Otherwise such a term would allow α to be instantiated to Int, and thus the
function could be applied to numbers, e.g., 2, leading to the ambiguous merge 2 , , 1.

2.2 Row Polymorphism through Disjoint Polymorphism
Row types, originally introduced by Wand [63] to model inheritance, provide an approach
to typing extensible records. Row types have been studied extensively [35, 11, 53, 42] and
have been applied to provide extensibility in various type systems [37, 36, 38]. According to
Rémy [53], record calculi can be divided into those that support free extension, and those
that support strict extension. The former allows extension with fields that already exist,
whereas the latter does not. In this paper we focus on λ||, a calculus proposed by Harper
and Pierce [34] that extends System F with row polymorphism. λ|| belongs to the strict
camp and avoids concatenating records with a field label in common by means of constrained
quantification. A constrained quantifier attaches a constraint list to a type variable, which
restricts the instantiations of that type variable to be record types with field labels that are
distinct from all the record types in the constraint list. What sets λ|| apart from other strict
record calculi is its ability to merge records with statically unknown fields, and a mechanism
to ensure that the resulting record is conflict-free (i.e., no duplicate labels). The following
function concatenates two records by the merge operator ||:

mergeRcd = Λ(α1 # Empty).Λ(α2 #α1). λ(x1 : α1). λ(x2 : α2). x1 || x2

which takes two type variables, each of which lacks (#) the appropriate fields (Empty means
no constraints at all). The function above can take any record type as its first argument, but
the second type must be compatible with the first (α2#α1), i.e., the second record cannot
have any labels that also occur in the first. These constraints ensure that the resulting record
x1 || x2 has no duplicate labels. If later we want to say that the first record x1 has at least a
field l1 of type Int, we can refine the constraint list of α1, α2 and the type of x1 accordingly:

Λ(α1 # {l1 : Int}).Λ(α2 # (α1, {l1 : Int})). λ(x1 : α1 || {l1 : Int}). λ(x2 : α2). x1 || x2

Encoding with disjoint polymorphism Our encoding of λ|| into F+
i is based on the simi-

larities between the two calculi that the astute reader may have already observed. Indeed,
the constrained quantification of record type variables Λ(α# R). ε is quite similar to the
disjoint quantification Λ(α ∗A).E . They both constrain the use of respectively the record
concatenation operator x1 || x2 and the merge operator x1 , , x2. Exploiting these similarities,
we can encode mergeRcd as follows in F+

i :
mergeAny = Λ(α1 ∗ >).Λ(α2 ∗ α1). λ(x1 : α1). λ(x2 : α2). x1 , , x2

An important difference is that in mergeRcd, α1 and α2 are row variables: they can only be
instantiated with record types. In contrast in mergeAny, α1 and α2 are type variables and
they can be instantiated with any types, including types which are not records (such as Int).

Formal elaboration To establish the validity of the encoding, we have formalized two
different elaborations of λ|| into F+

i . The first elaboration exploits the obvious similarity

ECOOP 2020

27:6 Row and Bounded Polymorphism via Disjoint Polymorphism

between the two mechanisms. While it clearly works for many example programs, the
formalization of the metatheory reveals that the straightforward elaboration does not work
for all programs. Indeed, it turns out that there is a subtle difference in the interpretation
of the constrained quantification and the disjoint quantification that makes the elaboration
break down in some cases. For instance, the λ|| binder Λα#{l : Int} expresses that α cannot
have the label l at all. In contrast, the F+

i binder Λβ ∗ {l : Int} expresses that β cannot have
a field l of type Int, but it can have a field l of some other disjoint type, say Bool. In what
we consider to be contrived programs, this subtle difference invalidates the elaboration. We
can eliminate this source of semantic difference by slightly restricting λ||, which is what we
do in the first elaboration. However, in order to handle those contrived (but well-typed)
unrestricted λ|| programs as well, we also present a more complex elaboration that faithfully
captures the semantics of constrained quantification in unrestricted λ||.

2.3 Bounded Quantification through Disjoint Polymorphism

Bounded quantification is a language feature that integrates parametric polymorphism with
subtyping. It was first introduced in the language Fun [12] as a means of typing functions
that operate uniformly over all subtypes of a given type, and has been the subject of much
theoretical and practical effort [9, 48, 49, 39, 13, 11, 18, 25, 50]. In this paper, we focus on
System F<:, which is a calculus with bounded quantification that extends System F.

As an illustration of bounded quantification, consider the following definition:

f = λ(x : {val : Int}). {orig = x, val = x.val + 1}

The function f has type {val : Int} → {orig : {val : Int}, val : Int}, but it actually works for all
records that have a val field of type Int. Thanks to bounded quantification we can formulate
a variant of f that admits this:

fpoly = Λ(α <: {val : Int}). λ(x : α). {orig = x, val = x.val + 1}

The term fpoly has type ∀(α <: {val : Int}). α→ {orig : α, val : Int}. Here the (upper-)bound
{val : Int} restricts the instantiation of the quantified type variable α to subtypes of {val : Int}.

Encoding with disjoint polymorphism Pierce [48] informally discussed an encoding of
bounded quantification in terms of intersection types. To illustrate the encoding, let us
consider a function of type ∀(α <: Int). α→ α, which requires the type of the argument to
be a subtype of Int. With intersection types, we know that α& Int is always a subtype of Int.
Therefore, the type ∀α. (α& Int)→ (α& Int) expresses a similar subtype requirement. This
leads to the following encoding of bounded quantification, by reading a bounded quantifier
as an abbreviation for an unbounded one with a slightly modified body:

∀(α <: A).B , ∀β. ([β& A/α]B)

For the fpoly example, we have its encoded type

∀β. β& {val : Int} → {orig : β& {val : Int}, val : Int}

However, there is no formalization of this encoding, and it is not clear at all what fragment
of programs can be encoded. Pierce showed that this is not an encoding for full F<: as it
does not respect the subtyping rule for universal quantification. Nevertheless, after some
experimentation, where the encoding was manually applied to complex examples, he came to
the conclusion that “the encoding trick works better than might be expected”. Castagna and
Xu [19] even claim that “bounded quantification does not require any modification” in their

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:7

intersection type system due to this encoding. However, due to Pierce’s counterexamples,
without further qualification, this statement cannot be fully justified.

What is missing is to clarify precisely the expressiveness of this encoding with a type-
theoretic formalization. Our work serves as a basis to fill the gaps, by identifying an encodable
fragment of F<:, i.e., kernel F<:, and thus, for the first time, validates the informal observation
of this encoding.

Formal elaboration We formalize Pierce’s informal encoding idea and turn it into a struc-
turally recursive procedure that systematically and simultaneously replaces all bounded
quantifiers in a term. While doing this we faced several technical challenges. The first one
was the misalignment between the F<: and F+

i type systems: the former is undirected and the
latter is bidirectional. This is a source of complication. In particular, we need to add explicit
type annotations for all terms whose type cannot be synthesized, but only checked. Another
challenge was the implicit use of subsumption in the typing of F<: terms. We shift around
the position in the term where subsumption happens and still arrive at the same type for
the whole term. While the different typing derivations may lead to different F+

i elaborations,
we do not want those different elaborations to have a different meaning. Hence, we must
show that the elaboration is coherent. Finally we had to identify the class of F<: programs
for which the encoding actually works. This was not clear from the individual examples that
Pierce gave, but it was necessary to make a formal statement that characterizes the extent
and thus the usefulness of the encoding. Our translation shows that all well-typed kernel F<:
programs are encodable as well-typed F+

i programs. We believe that this justifies Pierce’s
claim that the encoding might work better than expected, as kernel F<: is the most common
decidable fragment of F<: and widely used to model key aspects of OO programs.

2.4 The Extra Power of Disjoint Polymorphism
This section identifies some of the additional expressive power of F+

i over F<: and λ|| alone.

Distributivity, Nested Composition and Family Polymorphism F+
i is based on BCD sub-

typing [4], which features distributive subtyping rules, and enables nested composition of
merges. Nested composition has several applications. In particular it is a key feature to
enable family polymorphism [29].

With nested composition we can model a combinator that is useful to compose interpre-
tations of embedded DSLs. A minimal example [7] is:

type R[e] = {lit : Int → e, neg : e → e} -- literal and negative expressions
compose = Λ(a * >). Λ(b * a). λ(r1 : R[a]). λ(r2 : R[b]). (r1 ,, r2) : R[a & b]

Here R[e] stands for the abstract syntax of a tiny form of arithmetic expressions. The
combinator compose allows the composition of two arbitrary interpretations (such as evaluation
and pretty printing), into a single interpretation that runs both interpretations at once. In
F+
i this functionality is achieved by simply merging r1 and r2. Nested composition takes care

of the details, by implicitly using a form of type-directed code generation, which is triggered
by the upcast: R[a] & R[b] <: R[a & b] in expression r1 ,, r2. The type of r1 ,, r2 is
R[a] & R[b]. In F+

i , due to the distributivity properties of intersections, such a type is a
subtype of R[a & b]. Importantly, the fact that records are not treated specially in the type
language is a key to allowing distributivity, which in turn enables nested composition.

The interested reader can see the work by Bi et al. [6, 7] for more complete examples.
These examples illustrate how nested composition provides a simple and elegant solution to

ECOOP 2020

27:8 Row and Bounded Polymorphism via Disjoint Polymorphism

the Expression Problem (EP) [62]. In essence the approach mimics Ernst’s solution to the
EP with family polymorphism [30] (which also relies on a form of nested composition).

With bounded quantification alone, compose is essentially not expressible. A solution
with row polymorphism can be simulated only at the cost of more work:

Λ(a # Empty). Λ(b # a). λ(r1 : R[a]). λ(r2 : R[b]).
{ lit = λ(i : Int) . (r1.lit i , r2.lit i)
, neg = λ(e : (a, b)). (r1.neg (fst e), r2.neg (snd e)) }

Since row polymorphism does not support nested composition of merges, the code for
executing the two interpretations at once has to be explicitly modeled with some tedious
boilerplate code. Moreover, the results of the two interpretations have to be stored in a pair,
and explicit projections are necessary to access the values.

In essence the manual composition approach employed with row polymorphism is akin
to some existing solutions to the EP which need to tediously compose classes in different
families manually. For instance, it is well-known that Scala enables solutions to the EP [65].
However, without nested composition those solutions are cluttered with manual composition
code. In contrast, solutions based on nested composition are much more concise and elegant
thanks to the automatic composition [30, 6, 7].

Subtyping and row typing F+
i combines both subtyping and row polymorphism under one

roof. The majority of systems with row polymorphism have been employed as an alternative
to subtyping (although some row calculi also have subtyping, e.g., [11]). λ||, in particular,
has no subtyping. One argument for row polymorphism is that it also eliminates the loss of
information problem of subtyping [11]. For example, with subtyping, an identity function:

λ(x : {l : Int}). x
with type {l : Int} → {l : Int} may, inadvertently, lose some precision on the output type.
For instance, the function can be applied to the record {l = 1, l ′ = True}, but the result type
of such an application is {l : Int} and not {l : Int, l ′ : Bool}.

λ|| solves the loss of information problem by formulating the function in a different way:
Λ(α# {l : Int}). λ(x : {l : Int} || α). x

In this function the row variable α stands for any record without a label l. The type of x
expresses that x includes a label l, as well as any labels in α. In this function the output
type is {l : Int} || α as well. Therefore the application of the function to {l = 1, l ′ = True}
has the type {l : Int, l ′ : Bool}, which does not lose precision.

In F+
i we can easily translate the λ|| approach and reap its benefits too:

Λ(α ∗ {l : Int}). λ(x : {l : Int}&α). x
This function, like the row polymorphic version, preserves the precision of the output type.

Nevertheless, for many functions subtyping does not lose precision. For example:
λ(x : {l : Int}). x.l + 1

The function has type {l : Int} → Int. In this case no matter which record is passed as an
argument the output type is as precise as it can be. Note that this function is valid in F+

i

and, because of subtyping, the record {l = 1, l ′ = True} is a valid argument. However in λ||,
the only way to allow records with more labels, is to generalize the function to:

Λ(α# {l : Int}). λ(x : {l : Int} || α). x.l + 1
In this case the generalization does not gain any precision, and in fact it requires a more
complex type than the version with subtyping.

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:9

In summary, unlike λ||, many functions in F+
i can have a simpler non-polymorphic type

and still allow for larger records to be used as inputs.

3 Disjoint Polymorphism

This section reviews F+
i , which serves as target of our elaborations of row and bounded

polymorphism. The F+
i calculus and its metatheory have been studied already in Bi et al. [7].

We refer to prior work on for further details regarding F+
i ’s formalization and metatheory.

3.1 Syntax and Semantics
Syntax The syntax of F+

i is given at the top of Figure 1. Types A,B,C include integers
Int, the top type >, the bottom type ⊥, arrows A→ B, intersection types A & B, singleton
record types {l : A}, type variables α and disjoint quantification ∀(α ∗A).B. Expressions
E include term variables x, integers i, the top value >, abstractions λx.E , applications
E1 E2, merge expressions E1 , , E2, annotated terms E : A, singleton records {l = E}, record
projections E .l, type abstractions Λ(α ∗A).E and type applications E A. Term contexts Γ
record types of term variables, and type contexts ∆ record disjointness constraints of type
variables. Well-formedness of a type or a context are standard and omitted here.

Subtyping The subtyping relation of F+
i is presented in the middle of Figure 1. Most

rules are standard. For functions (rule S-arr) and disjoint quantifications (rule S-forall),
subtyping is covariant in positive positions, and contravariant in negative positions. Rules S-
andl, S-andr, and S-and for intersection types axiomatize that A & B is the greatest lower
bound of A and B. Moreover, F+

i features BCD-style subtyping [4], where intersections
are distributive over other type constructs. Concretely, intersections distribute over arrows
(rule S-distArr), records (rule S-distRcd) and disjoint quantifications (rule S-distAll).
Rules S-topArr, S-topRcd, and S-topAll are special cases of the distributivity rules,
when viewing > as a 0-ary intersection.

Typing The bidirectional typing rules for F+
i are given at the bottom of Figure 1. The

inference judgment ∆; Γ ` E ⇒ A says that under the type context ∆ and the term context
Γ, we can synthesize the type A for the expression E . The checking judgment ∆; Γ ` E ⇐ A
checks E against the type A under the contexts ∆ and Γ. Most of the typing rules are
standard. Rule T-merge says that the merge expression E1 , , E2 is well-typed if both
sub-expressions are well-typed, and their types are disjoint. The disjointness judgment
∆ ` A1 ∗A2 is important to rule out invalid merges, such as 1 , , 2. Rule T-tabs says that,
when typing a type abstraction, we put the disjointness constraint into the type context and
then type-check the body. Conversely, rule T-tapp checks that the type argument should
satisfy the disjointness constraint.

Disjointness Figure 2 presents the rules of the disjointness relation. Essentially, disjointness
checks whether the merge of two expressions preserves coherence. Rules D-topL and D-
topR say that top-like types are disjoint with any type. The top-like predicate eAd, given at
the top of Figure 2, captures the set of types that are isomorphic to >. Disjointness axioms
A ∗ax B (appearing in rule D-ax) take care of two types with different type constructors (e.g.,
Int and records). The axiom rules can be found in Appendix A.2. The other disjointness
rules are standard and explained in detail in previous work [46, 2]. Finally, we note that
subtyping preserves disjointness.

ECOOP 2020

27:10 Row and Bounded Polymorphism via Disjoint Polymorphism

Types A,B,C ::= Int | > | ⊥ | A→ B | A & B | {l : A} | α | ∀(α ∗A).B
Expressions E ::= x | i | > | λx.E | E1 E2 | E1 , , E2 | E : A | {l = E} | E .l

| Λ(α ∗A).E | E A
Term contexts Γ ::= • | Γ, x : A
Type contexts ∆ ::= • | ∆, α ∗A

A <: B (Declarative subtyping)

S-refl

A <: A

S-trans
A2 <: A3 A1 <: A2

A1 <: A3

S-top

A <: >

S-bot

⊥ <: A

S-rcd
A <: B

{l : A} <: {l : B}

S-arr
B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

S-forall
B1 <: B2 A2 <: A1

∀(α ∗A1).B1 <: ∀(α ∗A2).B2

S-and
A1 <: A2 A1 <: A3

A1 <: A2 & A3

S-andl

A1 & A2 <: A1

S-andr

A1 & A2 <: A2

S-distArr

(A1 → A2) & (A1 → A3) <: A1 → A2 & A3

S-distRcd

{l : A}& {l : B} <: {l : A & B}

S-distAll

(∀(α ∗A).B1) & (∀(α ∗A).B2) <: ∀(α ∗A).B1 & B2

S-topArr

> <: > → >

S-topRcd

> <: {l : >}

S-topAll

> <: ∀(α ∗ >).>

∆; Γ ` E ⇒ A (Inference)

T-top
` ∆ ∆ ` Γ
∆; Γ ` > ⇒ >

T-nat
` ∆ ∆ ` Γ
∆; Γ ` i⇒ Int

T-var
` ∆ ∆ ` Γ (x : A) ∈ Γ

∆; Γ ` x ⇒ A

T-app
∆; Γ ` E1 ⇒ A1 → A2 ∆; Γ ` E2 ⇐ A1

∆; Γ ` E1 E2 ⇒ A2

T-tabs
∆ ` A ∆, α ∗A; Γ ` E ⇒ B

∆; Γ ` Λ(α ∗A).E ⇒ ∀(α ∗A).B

T-merge
∆; Γ ` E1 ⇒ A1 ∆; Γ ` E2 ⇒ A2 ∆ ` A1 ∗A2

∆; Γ ` E1 , , E2 ⇒ A1 & A2

T-rcd
∆; Γ ` E ⇒ A

∆; Γ ` {l = E} ⇒ {l : A}

T-proj
∆; Γ ` E ⇒ {l : A}

∆; Γ ` E .l ⇒ A

T-anno
∆; Γ ` E ⇐ A

∆; Γ ` E : A⇒ A

T-tapp
∆; Γ ` E ⇒ ∀(α ∗ B).C ∆ ` A ∗ B

∆; Γ ` E A⇒ [A/α]C

∆; Γ ` E ⇐ A (Checking)

T-abs
∆ ` A ∆; Γ, x : A ` E ⇐ B

∆; Γ ` λx.E ⇐ A→ B

T-sub
∆; Γ ` E ⇒ B B <: A

∆; Γ ` E ⇐ A

Figure 1 Syntax, declarative subtyping, and bidirectional type system of F+
i .

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:11

eAd (Top-like types)

TL-top

e>d

TL-and
eAd eBd
eA & Bd

TL-arr
eBd

eA→ Bd

TL-rcd
eAd

e{l : A}d

TL-all
eBd

e∀(α ∗A).Bd

∆ ` A ∗ B (Disjointness)

D-topL
eAd

∆ ` A ∗ B

D-topR
eBd

∆ ` A ∗ B

D-ax
A ∗ax B

∆ ` A ∗ B

D-arr
∆ ` A2 ∗ B2

∆ ` A1 → A2 ∗ B1 → B2

D-andL
∆ ` A1 ∗ B ∆ ` A2 ∗ B

∆ ` A1 & A2 ∗ B

D-andR
∆ ` A ∗ B1 ∆ ` A ∗ B2

∆ ` A ∗ B1 & B2

D-rcdNeq
l1 6= l2

∆ ` {l1 : A} ∗ {l2 : B}

D-rcdEq
∆ ` A ∗ B

∆ ` {l : A} ∗ {l : B}

D-tvarL
(α ∗A) ∈ ∆ A <: B

∆ ` α ∗ B

D-tvarR
(α ∗A) ∈ ∆ A <: B

∆ ` B ∗ α

D-forall
∆, α ∗A1 & A2 ` B1 ∗ B2

∆ ` ∀(α ∗A1).B1 ∗ ∀(α ∗A2).B2

Figure 2 Selected rules for disjointness.

I Lemma 1 (Subtyping preserves disjointness). If ∆ ` A ∗ B and B <: C, then ∆ ` A ∗ C.

3.2 Elaboration and Coherence
The dynamic semantics of F+

i is given by a type-directed elaboration (e) into another
calculus, Fco, a variant of System F with explicit coercions. The full definition of Fco and
the elaboration process can be found in Appendix B. The main challenge of the elaboration
is that, due to the non-deterministic nature of the declarative type system, an F+

i expression
can elaborate to different Fco expressions. For example, the subtyping rules S-and, S-andl,
and S-andr overlap with each other when both sides are intersections, leading to different
coercions depending on the order in which these rules are applied. To establish coherence for
F+
i , Bi et al. [7] resort to contextual equivalence, and they prove that different elaborations of

the same F+
i expression are contextually equivalent. More formally, ∆; Γ ` e1 wctx e2 means

that two Fco expressions are contextually equivalent under the corresponding elaboration
contexts of ∆ and Γ. We state the central coherence theorem below.

I Theorem 2 (Coherence of F+
i). We have that

If ∆; Γ ` E ⇒ A e1 , and ∆; Γ ` E ⇒ A e2 , then ∆; Γ ` e1 wctx e2.
If ∆; Γ ` E ⇐ A e1 , and ∆; Γ ` E ⇐ A e2 , then ∆; Γ ` e1 wctx e2.

4 Encoding Row Polymorphism

This section shows how to systematically elaborate λ|| [34]—a polymorphic record calculus
with constrained quantification—into F+

i . We first identify a simple and direct elaboration

ECOOP 2020

27:12 Row and Bounded Polymorphism via Disjoint Polymorphism

for a fragment of λ||, and then present a carefully crafted elaboration of full λ|| using a more
sophisticated elaboration.

4.1 Syntax of λ||

We start by briefly reviewing the syntax of λ||, shown at the top of Figure 3. Metavariable t
ranges over types, which include the integer type Int, function types t1 → t2, constrained
quantifications ∀α# R. t and record types r . Record types are built from record type variables
α, the empty record type Empty, single-field records {l : t} and record merges r1 || r2.1 A
constraint list R of record types is used to constrain instantiations of record type variables.

Metavariable ε ranges over terms, including term variables x, integers i, lambda abstrac-
tions λ(x : t). ε, function applications ε1 ε2, the empty record empty, single-field records
{l = ε}, record merges ε1 || ε2, record restrictions ε\l, record projections ε.l, type abstractions
Λ(α# R). ε and type applications ε [r]. As a side note, from the syntax of type applications
ε [r], it can already be seen that λ|| only supports quantification over record types.

4.2 Typing Rules of λ||

The type system of λ|| consists of several conventional judgments. The complete set of rules
appears in Appendix C.2. Figure 3 presents selected well-formedness rules for record types.
A merge r1 || r2 is well-formed in context T if r1 and r2 are well-formed, and moreover, r1
and r2 are compatible in T (rule wfr-Merge)—the most important judgment in λ||, as we
will explain next.

Compatibility The compatibility relation in the middle of Figure 3 plays a central role in λ||.
It is the underlying mechanism for deciding when merging two records is “sensible”. Informally,
T ` r1 # r2 holds if r1 lacks every field contained in r2 and vice versa. Compatibility is
symmetric (rule cmp-Symm) and respects type equivalence (rule cmp-Eq). Rule cmp-Base
says that if a record is compatible with {l : t}, it is also compatible with every record
{l : t′} with the same label l. A type variable is compatible with the records in its constraint
list (rule cmp-Tvar). Two single-field records are compatible if they have different labels
(rule cmp-BaseBase). The remaining rules are self-explanatory; we refer the reader to [34]
for further explanation. The judgment of constraint list satisfaction T ` r # R ensures that
r is compatible with every record in the constraint list R.

Type equivalence Unlike F+
i , λ|| does not have subtyping. Instead, λ|| uses type equivalence

to convert terms of one type to another. A selection of the rules defining equivalence of types
and constraint lists appears at the bottom of Figure 3. The relation t1 ∼ t2 is an equivalence
relation, and is a congruence with respect to the type constructors. Merge is associative
(rule teq-MergeAssoc), commutative (rule teq-MergeComm), and has Empty as its unit
(rule teq-MergeUnit). As a consequence, records are identified up to permutations. The
equivalence of constrained quantification (rule teq-CongAll) relies on the equivalence of
constraint lists R1 ∼ R2. Again, it is an equivalence relation, and it respects type equivalence.
Constraint lists are essentially finite sets, so order is irrelevant (rule ceq-Swap). Merges
of constraints can be “flattened” (rule ceq-Merge), and occurrences of Empty may be

1 The original λ|| also includes record type restrictions r \ l, which can be systematically erased using
type equivalence, thus we omit type-level restrictions but keep term-level restrictions.

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:13

Types t ::= Int | t1 → t2 | ∀α# R. t | r
Records r ::= α | Empty | {l : t} | r1 || r2

Constraint lists R ::= � | r ,R
Terms ε ::= x | i | λ(x : t). ε | ε1 ε2 | empty | {l = ε} | ε1 || ε2

| ε \ l | ε.l | Λ(α# R). ε | ε [r]
Term contexts G ::= � | G, x : t
Type contexts T ::= � | T, α# R

T ` r record (Well-formed record types)

wfr-Var
(α# R) ∈ T
T ` α record

wfr-Merge
T ` r1 record T ` r2 record T ` r1 # r2

T ` r1 || r2 record

T ` r1 # r2 (Compatibility)

cmp-Eq
T ` r # s r ∼ r ′ s ∼ s′

T ` r ′ # s′

cmp-Symm
T ` r # s
T ` s # r

cmp-Base
T ` r # {l : t} T ` t′ type

T ` r # {l : t′}

cmp-Tvar
(α# R) ∈ T T ` R ok r ∈ R

T ` α# r

cmp-MergeE
T ` r # (s1 || s2)

T ` r # si

cmp-Empty
T ` r record
T ` r # Empty

cmp-MergeI
T ` s1 # s2 T ` r # s1 T ` r # s2

T ` r # (s1 || s2)

cmp-BaseBase
l 6= l ′ T ` t type T ` t′ type

T ` {l : t}# {l ′ : t′}

T ` r # R (Constraint list satisfaction)

cmpList-Nil
T ` r record
T ` r # �

cmpList-Cons
T ` r # r ′ T ` r # R

T ` r # r ′,R

t1 ∼ t2 (Type equivalence)

teq-MergeAssoc

r1 || (r2 || r3) ∼ (r1 || r2) || r3

teq-MergeComm

r1 || r2 ∼ r2 || r1

teq-MergeUnit

r || Empty ∼ r

teq-CongAll
R ∼ R′ t ∼ t′

∀α# R. t ∼ ∀α# R′. t′

R1 ∼ R2 (Constraint list equivalence)

ceq-Swap

r , (r ′,R) ∼ r ′, (r ,R)

ceq-Merge

(r1 || r2),R ∼ r1, (r2,R)

ceq-Empty

Empty,R ∼ R

ceq-Base

{l : t},R ∼ {l : t′},R

Figure 3 Syntax, and selected rules of λ||.

ECOOP 2020

27:14 Row and Bounded Polymorphism via Disjoint Polymorphism

T ;G ` ε : t E (Type-directed elaboration)

wtt-Eq
T ;G ` ε : t E T ` t′ type t ∼ t′

T ;G ` ε : t′ E : Jt′K

wtt-Base
T ;G ` ε : t E

T ;G ` {l = ε} : {l : t} {l = E}

wtt-Restr
T ;G ` ε : {l : t} || r E

T ;G ` ε \ l : r E : JrK

wtt-Select
T ;G ` ε : {l : t} || r E

T ;G ` ε.l : t (E : {l : JtK}).l

wtt-Empty
T ok T ` G ok

T ;G ` empty : Empty >

wtt-Merge
T ;G ` ε1 : r1 E1

T ;G ` ε2 : r2 E2 T ` r1 # r2

T ;G ` ε1 || ε2 : r1 || r2 E1 , , E2

wtt-AllE
T ;G ` ε : ∀α# R. t E T ` r # R

T ;G ` ε [r] : [r/α]t E JrK JrK⊥

wtt-AllI
T ` R ok T, α# R;G ` ε : t E

T ;G ` Λ(α# R). ε : ∀α# R. t Λ(α ∗ JRK).Λ(α⊥ ∗ JRK).E

Figure 4 Selected typing rules of λ|| with elaboration.

eliminated (rule ceq-Empty). The last rule ceq-Base is quite interesting: it implies that
the types of single-field records are ignored. The reason is that, as far as compatibility is
concerned, only labels matter, thus changing the types of records in constraint lists will not
affect their compatibility relation. We will have more to say about this in Section 4.3.

Typing rules A selection of typing rules is shown in Figure 4. In a first reading, the gray
parts can be ignored. Most of the typing rules are quite standard. Typing is invariant under
type equivalence (rule wtt-Eq). Two terms can be merged if their types are compatible
(rule wtt-Merge). Type application ε [r] is well-typed if the type argument r satisfies the
constraints R (rule wtt-AllE).

I Remark 3. We have made a few simplifications compared to the original λ||, notably the
typing of record selection (rule wtt-Select) and restriction (rule wtt-Restr). In the
original formulation, both typing rules use a partial function r_l that denotes the type
associated with label l in r . Instead of using partial functions, here we explicitly expose the
expected label in a record. It can be shown that if label l is present in record type r , then
the fields in r can be rearranged so that l comes first by type equivalence. This formulation
was also adopted by Leijen [35].

4.3 A Simple yet Incomplete Encoding
The similarities between λ|| and F+

i , which the astute reader may have already observed,
suggest an intuitive elaboration scheme. On the syntactic level, it is easy to see a one-to-one
correspondence between λ|| types and F+

i types. We use JtK to denote the elaboration
function from λ|| types to F+

i types, whose formal definition is given at the top of Figure 5.
Elaboration of expressions is also easy. Constrained type abstractions Λ(α# R). ε correspond
to Λ(α ∗ A).E ; record merges can be simulated by the more general merge operator of

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:15

JtK JIntK = Int JRK J�K = >
Jt1 → t2K = Jt1K→ Jt2K Jr ,RK = JrK & JRK

J∀α# R. tK = ∀(α ∗ JRK). JtK JT K J�K = •
JαK = α JT, α# RK = JT K, α ∗ JRK

JEmptyK = > JGK J�K = •
J{l : t}K = {l : JtK} JG, x : tK = JGK, x : JtK

Jr1 || r2K = Jr1K & Jr2K

T ;G ` ε : t i E (Type-directed elaboration)

wtti-Eq
T ;G ` ε : t i E T ` t′ type t ∼ t′

T ;G ` ε : t′ i E : Jt′K

wtti-Base
T ;G ` ε : t i E

T ;G ` {l = ε} : {l : t} i {l = E}

wtti-AllI
T ` R ok T, α# R;G ` ε : t i E

T ;G ` Λ(α# R). ε : ∀α# R. t i Λ(α ∗ JRK).E

wtti-AllE
T ;G ` ε : ∀α# R. t i E T ` r # R

T ;G ` ε [r] : [r/α]t i E JrK

Figure 5 Intuitive elaboration functions, and selected type-directed elaboration from λ|| to F+
i .

F+
i ; record restriction can be modeled as annotated terms, and so on. On the semantic

level, well-formedness judgments of λ|| match with well-formedness judgments of F+
i . The

compatibility relation corresponds to the disjointness relation. What might not be so obvious
is that type equivalence is expressible via subtyping. More specifically, t1 ∼ t2 induces two
subtyping relations: Jt1K <: Jt2K and Jt2K <: Jt1K. Under this elaboration scheme, the full
definition of type-directed elaboration, denoted as T ;G ` ε : t i E , where i stands for
“intuitive”, is simple (selected rules are given at the bottom of Figure 5). With all these in
mind, let us consider two examples.

I Example 4. Consider the term Λ(α# {l : Int}). λ(x : α). x . This term can be assigned the
type (among others) ∀α# {l : Int}. α→ α, and its F+

i counterpart Λ(α ∗ {l : Int}). λ(x : α). x
has type ∀(α ∗ {l : Int}). α → α, which corresponds directly to ∀α# {l : Int}. α → α. In
λ||, the same term could also be assigned type ∀α# {l : Bool}. α→ α (rule wtt-Eq), since
∀α# {l : Bool}. α → α is equivalent to ∀α# {l : Int}. α → α by rules teq-CongAll and
ceq-Base. However, in F+

i , these two types have no relationship at all—∀(α∗{l : Int}). α→ α

is not the same as ∀(α ∗ {l : Bool}). α→ α, and indeed it should not be, as these two types
have completely different meanings!

I Example 5. Consider the term ε = Λ(α# {l : Bool}). λ(x : α). λ(y : {l : Int}). x || y. This
term has type ∀α# {l : Bool}. α→ {l : Int} → α || {l : Int}, and its “obvious” elaboration is
E = Λ(α∗{l : Bool}). λ(x : α). λ(y : {l : Int}). x , , y. However, expression E is ill-typed in F+

i :
we cannot merge x with y because their types (α and {l : Int} respectively) are not disjoint.
Allowing it to type-check causes incoherence: evaluating (E {l : Int} {l = 1} {l = 2}).l could
result in 1 or 2!

These examples underline a crucial observation: disjointness is more fine-grained than
compatibility. Unlike F+

i , the existence of ε in λ|| will not cause incoherence because
compatibility can only relate records with different labels, and thus ε can only be applied to

ECOOP 2020

27:16 Row and Bounded Polymorphism via Disjoint Polymorphism

records without label l at all. So λ|| rejects type application ε [{l : Int}] in the first place.
However, disjointness also relates records with the same label as long as their types are
disjoint, i.e., rule D-rcdEq. Section 2.4 illustrates the importance of rule D-rcdEq for
distributivity, which is not supported by λ||. A careful comparison between the two calculi
reveals that two rules are “to blame”: rule ceq-Base and rule cmp-Base, which are the
cause for the problem in Example 4 and Example 5 respectively.

{l : t},R ∼ {l : t′},R
ceq-Base

T ` r # {l : t} T ` t′ type
T ` r # {l : t′}

cmp-Base

Yet, both Example 4 and Example 5 seem contrived. From the expression Λ(α# {l :
Int}). λ(x : α). x, the user can reasonably expect the type to be ∀α# {l : Int}. α → α. For
ε, an equivalent definition with more sensible and readable annotation is ε′ = Λ(α# {l :
Int}). λ(x : α). λ(y : {l : Int}). x || y, whose corresponding elaboration type-checks successfully.
We believe that programs with the same issue always have some equivalent accepted programs
by changing some type annotations.

We propose a restricted λ|| by: (1) replacing rule ceq-Base with rule ceq-BaseAlt; and
(2) removing rule cmp-Base. We conjecture that this change has no practical consequences
and no expressiveness is lost. Moreover, the restrictions coincide with the observation in
Harper and Pierce [34]: we may normalize constraint lists into the form l1, . . . , ln, α1, . . . , αm
where the li’s are labels and the αi’s are record type variables. The normalization then
validates the change of rules.

t ∼ t′

{l : t},R ∼ {l : t′},R
ceq-BaseAlt

In return, we can prove the intuitive elaboration for restricted λ|| is, indeed, sound:

I Theorem 6 (Type-safety of i elaboration). If T ;G ` ε : t i E then JT K; JGK ` E ⇒ JtK.

4.4 A Complete Encoding of λ|| and its Challenges
One criticism to the intuitive encoding is that it does not fully model λ||: fewer expressions
type-check in the modified λ||. Thus, we present a carefully designed encoding that is able
to elaborate the original λ|| to F+

i without any restrictions at all. It is highly non-trivial and
reveals the essence of constrained quantification from the point of view of disjointness.

First, let us take a step back and have another look at Example 5. As we have discussed,
the root cause is rule cmp-Base, which says that if a record is compatible with a single-field
record {l : t}, then it is compatible with every single-field record {l : t′}. To express the
essence of rule cmp-Base in F+

i , we utilize the bottom type ⊥. In F+
i , according to Lemma 1,

if some type A is disjoint to {l : ⊥}, then, because {l : ⊥} <: {l : B} (by rules S-rcd and
S-bot) for any B, we have that A is disjoint to {l : B}. In other words, in F+

i , if a record is
disjoint to {l : ⊥}, then it is disjoint to every single-field record {l : A}.

I Lemma 7 (Disjointness to records with bottom). If ∆ ` A ∗ {l : ⊥}, then ∆ ` A ∗ {l : B}
for all B.

Essentially, a compatibility constraint with {l : t} in λ|| corresponds to a disjointness
constraint to {l : ⊥} in F+

i . Thus, we bottom-elaborate the record types that appear in a
constraint list: if a record {l : t} appears in a constraint list, then it is bottom-elaborated to
{l : ⊥}. For Example 4, both ∀α# {l : Int}. α→ α and ∀α# {l : Bool}. α→ α elaborate to

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:17

∀(α ∗ {l : ⊥}). α→ α. For Example 5, ε elaborates to E ′ = Λ(α ∗ {l : ⊥}). λ(x : α). λ(y : {l :
Int}). x , , y, which type-checks in F+

i .

I Example 8. Now consider the λ|| term
ε1 = (Λ(α# Empty). λ(x : (∀β#α. Int)). 1) [{l : Int}] (Λ(β# {l : Int}). 2)

The term type-checks in λ|| and has type Int. During elaboration, we treat records differently
according to where they occur. For the type argument {l : Int}, since it is not in a constraint
list, we elaborate it normally to {l : Int}. For the term argument (Λ(β# {l : Int}). 2),
since the record {l : Int} appears in a constraint list, we elaborate the term argument to
(Λ(β ∗ {l : ⊥}). 2). The whole term is then elaborated to

E1 = (Λ(α ∗ >). ((λx. 1) : (∀(β ∗ α). Int)→ Int)) {l : Int} (Λ(β ∗ {l : ⊥}). 2)
However, E1 fails to type-check in F+

i : after type application, we substitute α with the type
argument {l : Int} in x ’s type (∀(β ∗ α). Int), yielding (∀(β ∗ {l : Int}). Int), whereas the term
argument has type (∀(β ∗ {l : ⊥}). Int), which does not match (and is not a subtype of) the
expected parameter type!

The tricky part here is that, for type variables that appear in the constraint list, after
type application, the elaborated disjointness constraint contains the original type argument
instead of the bottom-elaborated type. In this case, the result type of type application, i.e.,
((∀(β ∗ {l : Int}). Int)→ Int), has {l : Int} instead of {l : ⊥} in the disjointness constraint.

Apparently we cannot bottom-elaborate every type argument, or otherwise we would lose
type information for records. For example, ((Λ(α# Empty). λ(x : α). x) [{l : Int}] {l = 1}).l +1
should not elaborate to ((Λ(α ∗ >). (λx. x) : α→ α) {l : ⊥}{l = 1}).l + 1, which is ill-typed.

Therefore, we bottom-elaborate record variables that appear in a constraint list. To this
end, we map a record type variable α to a pair of type variables α and α⊥, where α⊥ is
used in the disjointness constraint. Note that, α⊥ is not a new sort of type variable–we can
use α1 or α2 as well—the subscript ⊥ here is only for readability. The bottom-elaborated
type variable α⊥ is introduced by an extra type abstraction. While α takes the normal
type argument, α⊥ takes an extra bottom-elaborated type argument. As an example, the
expression ε1 in Example 8 is elaborated to E ′1, which type-checks successfully in F+

i , where
the differences from E1 are highlighted in gray.
E ′1 = (Λ(α ∗ >). Λ(α⊥ ∗ >) . (λx. 1) : (∀(β ∗ α⊥). Int)→ Int) {l : Int} {l : ⊥} (Λ(β ∗ {l : ⊥}). 2)

Intentionally, α⊥ is a subtype of α, as it always takes bottom-elaborated type arguments
that are subtype of the original type arguments. For example, {l : ⊥} is a subtype of {l : Int}.
However, the type system is unaware of this observation.

I Example 9. Consider the term
ε2 = Λ(α# Empty).Λ(β#α). λ(x : α). λ(y : β). x || y.

Under the current approach, it elaborates to
E2 = Λ(α ∗ >).Λ(α⊥ ∗ >).Λ(β ∗ α⊥).Λ(β⊥ ∗ α⊥). λ(x : α). λ(y : β). x , , y

However, the merge x , , y fails to type-check, as we do not have the information that α ∗ β.
We only have β ∗α⊥ in the context. If the system could know that α⊥ <: α, then by Lemma 1
we could derive β ∗ α.

Twisting F+
i by adding the axiom α⊥ <: α is unsatisfactory, as it complicates the subtyping

relation and also significantly affects the metatheory. Our solution is to include both the
regularly elaborated types as well as the bottom-elaborated types into the disjointness

ECOOP 2020

27:18 Row and Bounded Polymorphism via Disjoint Polymorphism

JtK JIntK = Int JrK⊥ JαK⊥ = α⊥

Jt1 → t2K = Jt1K→ Jt2K JEmptyK⊥ = >
J∀α# R. tK = ∀(α ∗ JRK). ∀(α⊥ ∗ JRK). JtK J{l : t}K⊥ = {l : ⊥}

JαK = α Jr1 || r2K⊥ = Jr1K⊥ & Jr2K⊥

JEmptyK = > JRK J�K = >

J{l : t}K = {l : JtK} Jr ,RK = JrK & JrK⊥ & JRK

Jr1 || r2K = Jr1K & Jr2K JT K J�K = •

JGK J�K = • JT, α# RK = JT K, α ∗ JRK, α⊥ ∗ JRK

JG, x : tK = JGK, x : JtK

Figure 6 Elaboration functions from λ|| to F+
i .

constraint. In other words, β is disjoint with both α and α⊥. Now ε2 elaborates to E ′2, which
type-checks successfully in F+

i . Note we have also elaborated and bottom-elaborated Empty.
E ′2 = Λ(α ∗ >&>).Λ(α⊥ ∗ >&>).Λ(β ∗ α&α⊥).Λ(β⊥ ∗ α&α⊥). λx : α. λy : β. x , , y

4.5 Formal Elaboration
With all the above ideas and observations in mind, we are ready to give a formal account of
the elaboration. The elaboration of types is given in Figure 6. We highlight the differences
from Figure 5 in grey. There are two ways of elaborating records: JrK (contained in JtK) for
regular elaboration and JrK⊥ for bottom elaboration. In regular elaboration JtK, α elaborates
to α. Of particular interest is the case of elaborating quantifiers: each quantifier ∀α# R. t is
split into two quantifiers ∀(α ∗ JRK).∀(α⊥ ∗ JRK). JtK in F+

i . The relative order of α and α⊥ is
not important, as long as we respect the order when elaborating type applications. Bottom
elaboration JrK⊥ elaborates α to α⊥, and {l : t} to {l : ⊥}.

When elaborating constraint lists (JRK), a record r is elaborated to the intersection of
both its regular elaboration and bottom elaboration. Thus if β is compatible with α, then
its elaboration β is disjoint with both α and α⊥.

Now let us go back to the gray parts in Figure 4. The major difference from Figure 5
is rule wtt-AllI and rule wtt-AllE. In rule wtt-AllI, we elaborate constrained type
abstractions to disjoint type abstractions with two quantifiers, matching the elaboration of
constrained quantification. Note that the relative order of α and α⊥ should match the order of
α and α⊥ in elaborating quantifiers. Similarly, in the type application ε [r] (rule wtt-AllE),
we first elaborate e to E . The elaboration E is then applied to two types JrK and JrK⊥, as E
has two quantifiers resulting from the elaboration. It is of great importance that the relative
order of JrK and JrK⊥ should match the order of α and α⊥ in elaborating quantifiers. There
is a protocol that we must follow during elaboration: if α is substituted by JrK, then α⊥ is
substituted by JrK⊥.

4.6 Metatheory
Our elaboration enjoys desirable properties. The following lemma states that our elaboration
function commutes with substitution, in a slightly involved way:

I Lemma 10 (Elaboration commutes with substitution). We have (1) J[r/α]tK = [JrK⊥/α⊥][JrK/α]JtK;
(2) J[r/α]r1K⊥ = [JrK⊥/α⊥][JrK/α]Jr1K⊥; and (3) J[r/α]RK = [JrK⊥/α⊥][JrK/α]JRK.

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:19

We show key lemmas that bridge the gap between row and disjoint polymorphism.

I Lemma 11 (Type equivalence implies subtyping). If t1 ∼ t2, then we have Jt1K <: Jt2K and
Jt2K <: Jt1K.

I Lemma 12 (Compatibility implies disjointness). If T ` r1 # r2, then we have: (1) JT K `
Jr1K ∗ Jr2K; (2) JT K ` Jr1K ∗ Jr2K⊥; (3) JT K ` Jr1K⊥ ∗ Jr2K; and (4) JT K ` Jr1K⊥ ∗ Jr2K⊥.

I Lemma 13 (Essence of compatibility). If T ` r # {l : t}, then for all A, we have (1)
JT K ` JrK ∗ {l : A}; and (2) JT K ` JrK⊥ ∗ {l : A}.

With everything in place, we prove that our elaboration in Figure 4 is type-safe. The
reader can refer to our Coq formalization for details.

I Theorem 14 (Type-safety of elaboration). If T ;G ` ε : t E , then JT K; JGK ` E ⇒ JtK.

Coherence Because of rule wtt-Eq, a λ|| expression can possibly elaborate to many
different F+

i expressions. For example, the term Λ(α# {l : Int}). λ(x : α). x has the following
two elaborations E1 and E2 (among others). This is the problem of coherence [56]: the
meaning of a target program depends on the choice of a particular elaboration typing.
1. E1 = Λ(α ∗ ({l : Int}& {l : ⊥})).Λ(α⊥ ∗ ({l : Int}& {l : ⊥})). λ(x : α). x;
2. E2 = (E1 : J∀α# {l : Bool}. α→ αK) : J∀α# {l : Int}. α→ αK

To prove that different elaborations are equivalent, we utilize the definition of contextual
equivalence. In particular, we prove that if a λ|| expression ε with type t elaborates to two
F+
i expressions, and these two F+

i expressions further elaborate to two Fco expressions, then
the Fco expressions are contextually equivalent.

I Theorem 15 (Coherence of elaboration). If �; � ` ε : t E1 , and �; � ` ε : t E2 , and
•; • ` E1 ⇒ JtK e1 , and •; • ` E2 ⇒ JtK e2 , then •; • ` e1 wctx e2.

5 Encoding Bounded Quantification

This section presents a type-safe and coherent encoding of kernel F<: [12] into F+
i . This

encoding validates the informal observation about the relationship between polymorphic
intersection systems and bounded quantification.

5.1 Syntax and Semantics of kernel F<:

We start by reviewing the syntax and semantics of kernel F<:, a polymorphic calculus with
bounded quantification. The syntax of F<: is given at the top of Figure 7. It is a version of
F<: extended with records2 [10]. In addition to standard System F constructs, types σ include
bounded quantifications ∀(α <: τ). σ, which give a bound for the type variable; and record
types {l1 : σ1, .. , ln : σn}, for which we assume all labels are distinct. In addition to standard
System F terms, terms ε include type abstractions Λ(α <: σ). ε, records {l1 = ε1, .. , ln = εn},
and projections ε.l. Contexts Σ record both the types of term variables, and the bounds of
type variables. We use Σ ` σ to mean that a type is well-formed under a context.

2 We could also encode record types in F<:, which however is a bit involved.

ECOOP 2020

27:20 Row and Bounded Polymorphism via Disjoint Polymorphism

Types σ, τ ::= Int | > | α | σ → τ | ∀(α <: τ). σ | {l1 : σ1, .. , ln : σn}
Terms ε ::= i | > | x | λ(x : σ). ε | ε1 ε2 | Λ(α <: τ). ε | ε σ | {l1 = ε1, .. , ln = εn} | ε.l
Value υ ::= i | > | λ(x : σ). ε | Λ(α <: σ). ε | {l1 = υ1, .. , ln = υn}
Context Σ ::= � | Σ, x : σ | Σ, α <: σ

Σ ` σ <: τ (Subtyping)

f-sub-refl
Σ ok Σ ` σ

Σ ` σ <: σ

f-sub-trans
Σ ` σ1 <: σ2 Σ ` σ2 <: σ3

Σ ` σ1 <: σ3

f-sub-top
Σ ok Σ ` σ

Σ ` σ <: >

f-sub-tvar-binds
(α <: σ) ∈ Σ
Σ ` α <: σ

f-sub-arrow
Σ ` τ1 <: σ1 Σ ` σ2 <: τ2

Σ ` σ1 → σ2 <: τ1 → τ2

f-sub-forall
Σ, α <: τ ` σ1 <: σ2

Σ ` ∀(α <: τ). σ1 <: ∀(α <: τ). σ2

f-sub-rcdDepth
for each i Σ ` σi <: τi

Σ ` {li : σi} <: {li : τi}

f-sub-rcdWidth

Σ ` {li : σi∈1..n+k
i } <: {li : σi∈1..n

i }

f-sub-rcdPerm
{l ′

j : τ j∈1..n
j } is a permutation of {li : σi∈1..n

i }
Σ ` {l ′

j : τ j∈1..n
j } <: {li : σi∈1..n

i }

Σ ` ε : σ E (Typing)

f-top
Σ ok

Σ ` > : > >

f-nat
Σ ok

Σ ` i : Int i

f-var
Σ ok (x : σ) ∈ Σ

Σ ` x : σ x

f-arrow
Σ, x : σ ` ε : τ E

Σ ` λ(x : σ). ε : σ → τ (λx.E) : (JσKΣ → JτKΣ)

f-sub
Σ ` ε : σ E Σ ` σ <: τ

Σ ` ε : τ E : JτKΣ

f-app
Σ ` ε1 : σ → τ E1 Σ ` ε2 : σ E2

Σ ` ε1 ε2 : τ E1 E2

f-tabs
Σ, α <: σ ` ε : τ E

Σ ` Λ(α <: σ). ε : ∀(α <: σ). τ Λ(α ∗ >).E

f-rcd
Σ ` ε1 : σ1 E1 ..Σ ` εn : σn En

Σ ` {l1 = ε1, .. , ln = εn} : {l1 : σ1, .. , ln : σn} {l1 = E1}, , .. , , {ln = En}

f-proj
Σ ` ε : {l1 : σ1, .. , l : σ, .. , ln : σn} E

Σ ` ε.l : σ (E : J{l : σ}KΣ).l

f-tapp
Σ ` ε : ∀(α <: τ1). τ2 E Σ ` σ <: τ1

Σ ` ε σ : [σ/α]τ2 (E JσKΣ) : (J([σ/α]τ2)KΣ)

JσKΣ JIntKΣ = Int TΣU T�U = •
J>KΣ = > TΣ, α <: σU = TΣU, α ∗ >

J(σ → τ)KΣ = JσKΣ → JτKΣ TΣ, x : σU = TΣU
J({l1 : σ1, .. , ln : σn})KΣ = {l1 : Jσ1KΣ}& .. & {ln : JσnKΣ}

JαK(Σ,x:σ) = JαKΣ

JαK(Σ,β<:σ) = JαKΣ VΣW V�W = •
JαK(Σ,α<:σ) = α& JσKΣ VΣ, α <: σW = VΣW

J∀(α <: σ). τKΣ = ∀(α ∗ >). JτKΣ,α<:σ VΣ, x : σW = VΣW, x : JσKΣ

Figure 7 Syntax, subtyping, typing and elaboration of kernel F<:.

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:21

Subtyping The subtyping relation is presented in the middle of Figure 7. Most rules are
quite standard. Rule f-sub-tvar-binds says that a type variable α is a subtype of its
bound σ. Rule f-sub-forall, first introduced in Fun [12], requires that the bounds of
two quantified types must be identical in order for one to be a subtype of the other. Full
F<: relaxes this restriction and includes a more powerful formulation where subtyping of
quantified types is contravariant in their bounds and covariant in their bodies. We will discuss
full F<: in Section 6.2. Rules f-sub-rcdDepth, f-sub-rcdWidth, and f-sub-rcdPerm
together form the usual record subtyping.

Typing The typing rules of F<: are shown below the subtyping relation. The reader is
advised to ignore the gray parts for now. Most rules are straightforward. Unlike F+

i , F<:
has a subsumption rule (rule f-sub) for implicit upcasting that can be triggered anywhere
during type-checking. Type abstractions are checked by moving their bounds into the context
(rule f-tabs), and type applications check that the type being passed satisfies the bound of
the corresponding quantifier (rule f-tapp).

5.2 Elaboration Function
Adapting the encoding from Pierce [48] to our setting, we have
∀(α <: σ). τ , ∀(α ∗ >). [α&σ/α]τ

We turn the encoding into an elaboration function. Instead of immediately substituting α
with α&σ, we collect the bounds α <: σ as we traverse the quantifiers, and only substitute
when we encounter a type variable α. This strategy is consistent with elaborating types with
free type variables. For example, consider the expression α <: Int ` (λ(x : α). x + 1) : α→ Int.
This expression type-checks because we have the information α <: Int in the context so that
we can upcast (by rule f-sub) the type of x to Int when checking x + 1. Here it is important
to propagate the context information to the type being elaborated. In a fairly standard
way, we regard the context as a big binder. Intuitively, if we elaborate α under the context
α <: Int, it should give us the same result as if elaborating α inside ∀(α <: Int). α. Therefore,
in this case, we substitute α by α& Int, which yields x : α& Int, and thus validates x + 1.

Formally, type elaboration is denoted as JσKΣ = A, which reads: under context Σ, type σ
elaborates to type A. Elaboration of a closed type is just a special case where the context is
empty, i.e., JσK�. The full definition is given on the lower left of Figure 7. Most rules are
self-explanatory. In particular, bounded quantification elaborates into disjoint quantification
by moving the bound information into the context. When elaborating a type variable α, we
traverse the context until we find its subtyping constraint α <: σ, and then we substitute it
with an intersection type α& JσKΣ.

I Lemma 16 (JσKΣ is total). If Σ ` σ, then there exists a unique type A such that JσKΣ = A.

We now lift the elaboration function to contexts, given on the lower right of Figure 7.
TΣU elaborates a F<: context to a F+

i type context, in which subtyping constraints α <: σ
of type variables are elaborated to disjointness constraints α ∗ > and all term variables are
ignored. VΣW elaborates a F<: context to a F+

i term context, in which all type variables are
ignored and the types of term variables are elaborated under the prefix context.

5.3 Type-directed Elaboration
An intuitive elaboration scheme of expressions is to simply apply the elaboration function
to types. For example, under context Σ, if ε elaborates to E , then type applications ε σ

ECOOP 2020

27:22 Row and Bounded Polymorphism via Disjoint Polymorphism

elaborates to E JσKΣ. Now let us consider an example.

I Example 17. Consider a F<: judgment
β <: Int ` (Λ(α <: >). λ(x : α). x)β : β → β

Here the type application type-checks because by rule f-sub-top we have β <: >. If we
elaborate ε σ to E JσKΣ directly, the resulting expression is

(Λ(α ∗ >). (λx. x) : (α&>)→ (α&>)) (β& Int)
Note that as F+

i does not have annotated abstractions, we put the elaborated arrow type as
the type annotation. Following the typing rule of F+

i , we can infer the type of this expression:

β ∗ >; • ` (Λ(α ∗ >). ((λx. x) : (α&>)→ (α&>)) (β& Int))⇒ (β& Int &>)→ (β& Int &>)

However, the expected result type β → β elaborates to
(β& Int)→ (β& Int)

Now we get a mismatch between the actual type ((β& Int &>) → (β& Int &>)) and the
expected type ((β& Int)→ (β& Int)) of the expression!

Fortunately, in this particular example, we can prove that the actual type and the
expected type are subtypes of each other, i.e., they are isomorphic. Why is that true? Recall
that we have β <: >, which after elaboration gives us (β& Int) <: >. Therefore we can show
that the following two subtyping instances are valid: (1) (β& Int &>) → (β& Int &>) <:
(β& Int)→ (β& Int); and (2) (β& Int)→ (β& Int) <: (β& Int &>)→ (β& Int &>).

More generally, we prove that elaboration commutes with substitution, yielding isomorphic
types. Consider that under the context Σ, we have a type application ε σ, where ε has type
∀(α <: τ1). τ2, and in order for it to type-check, we have σ <: τ1. The expected type we want
of the expression is the elaboration of the F<: typing result, i.e., J([σ/α]τ2)KΣ. The actual
type is the result of feeding the elaborated argument JσKΣ to the elaborated quantification
J∀(α <: τ1). τ2KΣ, i.e., [JσKΣ/α](Jτ2K(Σ,α<:τ1)).

I Lemma 18 (Elaboration commutes with substitution). Given Σ ` σ <: τ1, we have (1)
J[σ/α]τ2KΣ <: [JσKΣ/α](Jτ2K(Σ,α<:τ1)); and (2) [JσKΣ/α](Jτ2K(Σ,α<:τ1)) <: J([σ/α]τ2)KΣ.

Note that the elaboration scheme slightly varies depending on the type semantics of the
target intersection type calculi. It is a desirable property that typing should be preserved
after elaboration, i.e., the elaborated expression should have the corresponding elaborated
type. For languages with an implicit subsumption rule (e.g., rule f-sub in kernel F<:),
Lemma 18 can implicitly upcast the actual type to the expected type, and thus validates the
intuitive elaboration of the type applications. For languages with explicit subsumption rules
(e.g., rule T-sub in F+

i), to remedy this situation, we need to annotate the expression with
the expected type to explicitly upcast the type. Concretely, in this example, the elaborated
expression, with the added annotation highlighted in grey, will be:

((Λ(α ∗ >). (λx. x) : (α&>)→ (α&>)) (β& Int)) : (β& Int)→ (β& Int)
Finally, we can go back and consider the elaboration of expressions in the grey part of

Figure 7. Most of the elaboration rules are self-explanatory. In particular, in rule f-tapp,
type applications ε σ elaborates to (E JσKΣ) : J([σ/α]τ2)KΣ.

5.4 Metatheory
Now that we have everything in place, we are ready to prove that our elaboration is sound.

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:23

kernel F<: (Λ(α <: Int). λ(x : α). 1) Int −→ λ(x : Int). 1

F+
i

((Λ(α∗>). ((λx. 1) : α& Int→ Int)) Int) : Int→ Int (λx. 1) : Int→ Int

Fco (〈id, id〉 → id) ((Λα. λx. 1) Int) −→ (〈id, id〉 → id) (λx. 1) wctx λx. 1

Figure 8 Key idea of simulation illustrated with an example.

I Theorem 19 (Type-safety of elaboration). If Σ ` ε : σ E , then TΣU; VΣW ` E ⇒ JσKΣ.

However, due to the implicit upcasting (rule f-sub), a F<: expression can possibly
elaborate to many different ones in F+

i . For example, consider (λ(x : >). 2) 1. Two elaborations
(among others) are (1) ((λx. 2) : > → Int) (1 : >); and (2) (((λx. 2) : > → Int) : Int→ Int) 1.
Therefore, we prove that different elaborations lead to contextually equivalent results.3

I Theorem 20 (Coherence of elaboration). If � ` ε : σ E1 , and � ` ε : σ E2 , and
•; • ` E1 ⇒ JσK� e1 , and •; • ` E2 ⇒ JσK� e2 , then •; • ` e1 wctx e2.

We also prove a weaker simulation result4: if the standard direct operational semantics of
kernel F<: produces ε1 −→ ε2, and ε2 elaborates to E2 in F+

i , which in turn elaborates to e2
in Fco, then ε1 elaborates to E1 in F+

i , which in turn elaborates to e1 in Fco, and e1 −→ e′1,
where e′1 and e2 are contextually equivalent. The lemma is weaker in the sense that e′1 and e2
are not syntactically equivalent. Given the coherence lemmas of F+

i and of the elaboration,
it is no surprise that here contextual equivalence takes the place of the syntactic equivalence,
as explicit upcasting generates coercions, which may break syntactic equivalence. As an
example, consider Figure 8, where e1 steps to an expression e′1 = (〈id, id〉 → id) (λx. 1) that
is contextually equivalent to e2 = λx. 1.

I Theorem 21 (Simulation). If ε1 −→ ε2, and � ` ε2 : σ E2 , and •; • ` E2 ⇒ JσK� e2 ,
then there exist E1, e1, e′1 such that � ` ε1 : σ E1 , and •; • ` E1 ⇒ JσK� e1 , and
e1 −→ e′1, where •; • ` e′1 wctx e2.

The detailed paper proof of this lemma is given in Appendix D. This lemma requires
a generalized logical equivalence for F+

i , which is not yet supported in the current Coq
framework. Therefore we only present the paper proof. If the Coq framework of F+

i is
generalized, we expect that the lemma can be proved in Coq.

6 Discussion

In this section we discuss some possible paths for further exploration.

3 One restriction in Bi et al. [7] is that due to the well-foundedness issue, the logical relation of F+
i is

defined only for its predicative subset, where type arguments in type applications can only be monotypes.
Since our proof is built upon the logical relation of F+

i , Theorem 20 is restricted to predicative subset
of kernel F<: as well. If the well-foundedness of impredicative F+

i is recovered, e.g., by employing
step-indexing logical relations [1], we expect that our proof remains valid.

4 Note that λ|| does not provide a semantics [34], so we did not discuss the operational semantics in
Section 4. If λ|| had a operational semantics, we believe a similar theorem would apply.

ECOOP 2020

27:24 Row and Bounded Polymorphism via Disjoint Polymorphism

6.1 Variants of Row Polymorphism
According to Rémy [53], record calculi can typically be categorized into two groups based on
how they support the extension operation: the strict group does not allow duplicate labels,
while the free group does. We have already shown that F+

i supports λ||, a calculus in the
strict group, with a more fine-grained control as disjointness allows duplicate labels as long as
their types are disjoint. λTIR [60] is another calculus from the strict group, which introduces
type-indexed rather than label-indexed rows, and uses membership constraints to avoid
conflicts. To distinguish types and row, λTIR incorporates a kind system that distinguishes
rows from types. We believe that F+

i could also serve as a target for λTIR, as type-indexed
rows are closely related to disjoint intersections. Thus an elaboration from λTIR to F+

i is
interesting future work.

For the free group, there are two different approaches for extension: previous fields are
always retained, and record projections always select the first matching label [35]; or the
extension overwrites the field if it is already present [5, 53, 11]. The former system suffers
from the similar issue of ambiguity, as records can be extended with the same label even
when types are overlapping, which violates the essence of disjointness. For the latter system,
essentially F+

i is capable to encode the extension operation in a different form. Consider a
function that overwrites (←) the label l in a record by incrementing the original value [11]:

inc = Λα <: {l : Int}.λ(x : α). x ← {l = x.l + 1}

In F+
i , we can define

inc′ = Λ(α ∗ {l : Int}). λ(x : α& {l : Int}). (x : α , , {l = (x : {l : Int}).l + 1})

There are two differences. Firstly, the type arguments to the two functions are different: inc
expects a type argument which includes {l : Int}, while inc′ expects a type argument which
excludes {l : Int}, and {l : Int} is later recovered in x’s type by an intersection type. This
explains a more involved encoding. Secondly, the term arguments to the two functions are
also different: inc accepts arguments that have exactly one l label with type Int, while inc′
can accept arguments of type {l : Int}& {l : Bool}. This again manifests the fine-grained
control of disjointness. That being said, we have not studied nor formalized the encoding.

Type-inference The focus of our work is languages that have more modest goals in terms
of type-inference. Note that neither λ|| or F+

i address sophisticated type-inference. We focus
on languages with subtyping, including TypeScript, Ceylon, Scala or Flow. Languages like
Racket also include a variant of row polymorphism, without full-type inference to model
powerful OOP features [61]. Many other row type systems [53, 64, 63, 35] support type
inference. For the future, we wish to investigate whether a disjoint polymorphic calculus
offering similar type inference can model calculi with row polymorphism and type inference.
We believe that several ideas employed in work on type inference for row polymorphism can
be adapted to a setting with disjoint polymorphism.

6.2 Variants of Bounded Quantification
Full F<: [23] includes a more powerful formulation of subtyping for universal quantification
(rule f-sub-forallAlt), which is contravariant in the bound types and covariant in the
body types. However, this subtyping rule renders subtyping in full F<: undecidable [49].

Σ ` τ2 <: τ1 Σ, α <: τ2 ` σ1 <: σ2

Σ ` ∀(α <: τ1). σ1 <: ∀(α <: τ2). σ2
f-sub-forallAlt

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:25

Moreover, this rule breaks the encoding. Consider the example [48]:
� ` ∀(α <: >). α <: ∀(α <: Int). α

which elaborates to a non-derivable F+
i judgment

• ` ∀(α ∗ >). α&> <: ∀(α ∗ >). α& Int
since α ∗ > ` α&> <: α& Int is not true.

One possible solution is to adopt a more powerful subtyping relation in the target calculus,
where a polymorphic type is a subtype of one type if the first has more instances [45]. For
example, the following judgment holds true, as α can be instantiated to Int to get Int→ Int:
∀α. α→ α <: Int→ Int

Then the judgment • ` ∀(α ∗ >). α&> <: ∀(α ∗ >). α& Int is derivable. After we skolemise
the type variable α in the right hand side, we can instantiate α in the left hand side by
α& Int to get α ∗ > ` α& Int &> <: α& Int.

Interestingly, such subtyping is usually predicative, i.e., universal quantifications can only
be instantiated with monotypes; or otherwise it is undecidable. Thus if the bounds can only
be monotypes, it may be the case that a target calculus with the more powerful subtyping
rule can encode the predicative version of full F<:.

6.3 Variants of Intersection Type Systems
λ|| is encodable into intersection type systems that feature the merge operator, unrestricted
intersection types, polymorphism and guarantee coherence through constraints similar to
compatibility or disjointness. This currently only applies to F+

i . Some intersection type
systems [28, 6, 46] only support simple record types. While Alpuim and Oliveira [2] do
support polymorphism, they only allow intersection types between disjoint types. Hence, our
elaboration of constraint lists to JrK & JrK⊥ is rejected as JrK and JrK⊥ may not be disjoint.

Kernel F<: is encodable for intersection type systems that feature polymorphism and
unrestricted intersection types. For example, a similar encoding might be applicable to other
intersection type systems [17, 19]. Interestingly, the behavior of elaborated expressions varies
according to the type semantics of the target. Consider a function f of type ∀(α <: Int). α→ α,
which, based on the encoding, elaborates to ∀α. α& Int→ α& Int. The original type expects a
type argument which is a subtype of Int; while in the intersection type system, the elaborated
type can take any type argument, e.g., Bool, and then expect a term argument of type
Int & Bool. In intersection type systems (e.g., [43]) where Int & Bool is uninhabited (equivalent
to the bottom type), f Bool can take nothing. Yet, in calculi with the merge operator, we
can have, e.g., f Bool (1 , , True).

7 Related Work

Bounded quantification and intersection types The language Fun [12] introduced bounded
quantification. Bounded quantification is later extended with extensible records [10, 11],
recursively defined types [9] and session types [25, 33] among other extensions. The full
variant of F<: [23] (see also Section 6.2) is proved to be undecidable [49]. The kernel Fun
variant [12], which restricts the subtyping of bounds to be invariant, is decidable.

Pierce [48] proposed the encoding of bounded quantification in terms of intersection
types in an informal discussion, which is the main inspiration of our Section 5. Castagna
and Xu [19] mentioned in a footnote that a type variable α bounded by a type σ can be
encoded by replacing every occurrence of α by β ∧ σ where β is a fresh unbounded variable.

ECOOP 2020

27:26 Row and Bounded Polymorphism via Disjoint Polymorphism

Castagna et al. [17] further mentioned that the possible instantiation of a type variable α
with a upper bound σ and a lower bound τ is equivalent to the possible instantiation of
(τ ∨ β)∧ σ. Dolan and Mycroft [26] used a similar encoding as one of the main ingredients of
the biunification algorithm: α <: σ− (where types have polarity) implies the bisubstitution
θ = [(µ−β.α u [β/α−](σ−))/α−], which by unrolling implies that θ(α−) = α u θ(σ−). The
idea of encoding bounded quantification using intersection types is not new. However, as
far as we know, we are the first to formalize an elaboration and study the metatheory
from a calculus with bounded quantification into a calculus with intersection types and
polymorphism. This contrasts with the previous informal discussions, which have only shown
a few concrete examples of programs that could be manually translated (or not).

Row calculi and intersection types Along the way we have mentioned many row calculi [35,
5, 53, 11, 64, 63]. Reynolds [57] developed an encoding of simple records in terms of
intersection types and his merge construct. Similar ideas had been applied by more recent
work on intersection types with a merge operator [28, 6, 2]. Alpuim and Oliveira [2]
showed informally that many features of row polymorphism can be simulated with disjoint
polymorphism. However, their system is limiting for the encoding in Section 4.4.

Intersection types and the merge operator The F+
i calculus follows from a line of work

on intersection types with a merge operator. The programming language Forsythe [57, 55]
includes a merge operator. However, several restrictions were imposed to make the merge
operator coherent [56]. For example, merging two functions is forbidden. Castagna et al. [14]
studied a special merge operator that only works on functions. Dunfield [28] proposed a
calculus with unrestricted intersection types and unrestricted merges. However his calculus
loses coherence. For example, 1, , 2 could elaborate to 1 or 2. Pierce [48] proposed a
primitive function glue, similar to unrestricted merges. Oliveira et al. [46] proposed disjoint
intersection types and disjoint merges to recover syntactic coherence. Later this approach was
extended with disjoint polymorphism [2]. Bi et al. [6] support unrestricted intersection types
and disjoint merges, based on a novel semantic coherence approach in terms of contextual
equivalence, which is later extended to support polymorphic types [7].

Other work on intersection types includes refinement intersections [24, 27]; set theoretical
foundation for type connectives including intersections, unions and negations [16, 15, 17, 19];
and the DOT calculus, which aims at providing a foundational calculus for Scala that
incorporates features including intersection types [3, 58]. In those calculi, intersection types
only increase the expressiveness of types, but not the expressiveness of terms. For example,
the intersection type Int & Bool is uninhabited. The type system of Ceylon [43] exploits this
fact and considers any intersection of such disjoint types equivalent to the bottom type (⊥).

8 Conclusion and Future Work

We have presented the elaboration from kernel F<: and λ|| to F+
i , and showed that disjoint

polymorphism is powerful enough to encode essential aspects of bounded quantification
and row polymorphism, which is useful for economy of theory and implementation. The
elaboration from kernel F<: identifies one encodable fragment of F<:, and thus validates the
previous informal observation by Pierce. The elaboration from λ|| to F+

i reveals the essence
of constrained quantification from the point of view of disjointness. As for future work, we
plan to study the encoding of other variants of F<:, as well as other row calculi. We also
plan to study type inference of F+

i .

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:27

References
1 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

European Symposium on Programming (ESOP), 2006.
2 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European

Symposium on Programming (ESOP), 2017.
3 Nada Amin, Adriaan Moors, and Martin Odersky. Dependent object types. In Workshop on

Foundations of Object-Oriented Languages, 2012.
4 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model

and the completeness of type assignment. The journal of symbolic logic, 48(04):931–940, 1983.
5 Bernard Berthomieu and Camille Le Monies De Sagazan. A calculus of tagged types, with

applications to process languages. Types for Program Analysis, page 1, 1995.
6 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The essence of nested composition. In

European Conference on Object-Oriented Programming (ECOOP), 2018.
7 Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. Distributive disjoint

polymorphism for compositional programming. In European Symposium on Programming
(ESOP), 2019.

8 Gilad Bracha. The programming language jigsaw: mixins, modularity and multiple inheritance.
PhD thesis, Dept. of Computer Science, University of Utah, 1992.

9 Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C Mitchell. F-bounded
polymorphism for object-oriented programming. In FPCA, volume 89, pages 273–280, 1989.

10 Luca Cardelli. Extensible records in a pure calculus of subtyping. Digital. Systems Research
Center, 1992.

11 Luca Cardelli and John C Mitchell. Operations on records. In International Conference on
Mathematical Foundations of Programming Semantics, 1989.

12 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–523, 1985.

13 Felice Cardone. Relational semantics for recursive types and bounded quantification. In
International Colloquium on Automata, Languages, and Programming, pages 164–178. Springer,
1989.

14 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. In Conference on LISP and Functional Programming, 1992.

15 Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. Polymorphic functions with
set-theoretic types: part 2: local type inference and type reconstruction. In Principles of
Programming Languages (POPL), 2015.

16 Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca
Padovani. Polymorphic functions with set-theoretic types: part 1: syntax, semantics, and
evaluation. In Principles of Programming Languages (POPL), 2014.

17 Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. Set-theoretic types for polymor-
phic variants. In International Conference on Functional Programming (ICFP), 2016.

18 Giuseppe Castagna and Benjamin C Pierce. Decidable bounded quantification. In Principles
of Programming Languages (POPL), 1994.

19 Giuseppe Castagna and Zhiwu Xu. Set-theoretic foundation of parametric polymorphism and
subtyping. In International Conference on Functional Programming (ICFP), 2011.

20 C. Chambers, D. Ungar, B.W. Chang, and U. Hölzle. Parents are shared parts of objects:
Inheritance and encapsulation in SELF. Lisp and Symbolic Computation, 4(3):207–222, 1991.

21 Adriana B Compagnoni and Benjamin C Pierce. Higher-order intersection types and multiple
inheritance. Mathematical Structures in Computer Science (MSCS), 6(5):469–501, 1996.

22 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Patrick Sallé. Functional characterization
of some semantic equalities inside λ-calculus. In International Colloquium on Automata,
Languages, and Programming, pages 133–146. Springer, 1979.

23 Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum typing and
type-checking in f≤. Mathematical structures in computer science, 2(1):55–91, 1992.

ECOOP 2020

27:28 Row and Bounded Polymorphism via Disjoint Polymorphism

24 Rowan Davies. Practical refinement-type checking. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2005.

25 Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and Nobuko Yoshida.
Bounded session types for object oriented languages. In Formal Methods for Components and
Objects, pages 207–245. Springer, 2007.

26 Stephen Dolan and Alan Mycroft. Polymorphism, subtyping, and type inference in mlsub. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pages 60–72, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.
1145/3009837.3009882, doi:10.1145/3009837.3009882.

27 Joshua Dunfield. Refined typechecking with stardust. In PLPV, 2007.
28 Joshua Dunfield. Elaborating intersection and union types. Journal of Functional Programming

(JFP), 24(2-3):133–165, 2014.
29 Erik Ernst. Family polymorphism. In European Conference on Object-Oriented Programming

(ECOOP), 2001.
30 Erik Ernst. The expression problem, scandinavian style. On Mechanisms For Specialization,

page 27, 2004.
31 Facebook. Flow. https://flow.org/, 2014.
32 Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with classes, mixins,

and traits. In Programming Languages and Systems (APLAS), 2006.
33 Simon J Gay. Bounded polymorphism in session types. Mathematical Structures in Computer

Science, 18(5):895–930, 2008.
34 Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In

Principles of Programming Languages (POPL), 1991.
35 Daan Leijen. Extensible records with scoped labels. Trends in Functional Programming,

5:297–312, 2005.
36 Daan Leijen. Type directed compilation of row-typed algebraic effects. In Principles of

Programming Languages (POPL), 2017.
37 Sam Lindley and James Cheney. Row-based effect types for database integration. In Proceedings

of the 8th ACM SIGPLAN workshop on Types in language design and implementation, pages
91–102. ACM, 2012.

38 Sam Lindley and J Garrett Morris. Lightweight functional session types. Behavioural Types:
from Theory to Tools. River Publishers, pages 265–286, 2017.

39 Simon Martini. Bounded quantifiers have interval models. In Proceedings of the 1988 ACM
conference on LISP and functional programming, pages 164–173. ACM, 1988.

40 Microsoft. Typescript. https://www.typescriptlang.org/, 2012.
41 Microsoft. https://www.typescriptlang.org/docs/handbook/advanced-types.html, 2019.

Online; accessed 16 June 2019.
42 J. Garrett Morris and James McKinna. Abstracting extensible data types: or, rows by any

other name. In Principles of Programming Languages (POPL), 2019.
43 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated

subtyping. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2018.

44 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview
of the scala programming language. Technical report, EPFL, 2004.

45 Martin Odersky and Konstantin Läufer. Putting type annotations to work. In Symposium on
Principles of Programming Languages (POPL), 1996.

46 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In
International Conference on Functional Programming (ICFP), 2016.

47 Bruno C. d. S. Oliveira, Tijs Van Der Storm, Alex Loh, and William R Cook. Feature-oriented
programming with object algebras. In European Conference on Object-Oriented Programming
(ECOOP), 2013.

http://doi.acm.org/10.1145/3009837.3009882
http://doi.acm.org/10.1145/3009837.3009882
http://dx.doi.org/10.1145/3009837.3009882
https://flow.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/advanced-types.html

N.Xie, B. C. d. S. Oliveira, X. Bi and T. Schrijvers 27:29

48 Benjamin C Pierce. Programming with intersection types and bounded polymorphism. PhD
thesis, University of Pennsylvania, 1991.

49 Benjamin C Pierce. Bounded quantification is undecidable. Information and Computation,
112(1):131–165, 1994.

50 Benjamin C Pierce and David N Turner. Local type argument synthesis with bounded
quantification. Technical report, Technical Report 495, Computer Science Department, Indiana
University, 1997.

51 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.

52 Redhat. Ceylon. https://ceylon-lang.org/, 2011.
53 Didier Rémy. Type inference for records in a natural extension of ML. Theoretical Aspects Of

Object-Oriented Programming. Types, Semantics and . . . , 1993.
54 Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. From object

algebras to attribute grammars. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’14, page
377–395, New York, NY, USA, 2014. Association for Computing Machinery. URL: https:
//doi.org/10.1145/2660193.2660237, doi:10.1145/2660193.2660237.

55 John C Reynolds. Preliminary design of the programming language forsythe. Technical report,
Carnegie Mellon University, 1988.

56 John C. Reynolds. The coherence of languages with intersection types. In Lecture Notes in
Computer Science (LNCS), pages 675–700. Springer Berlin Heidelberg, 1991.

57 John C Reynolds. Design of the programming language forsythe. In ALGOL-like languages,
pages 173–233. Birkhauser Boston Inc., 1997.

58 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2016.

59 Patrick Salle. Une extension de la theorie des types en lambda-calcul. In Proceedings of the
Fifth Colloquium on Automata, Languages and Programming, pages 398–410, London, UK,
UK, 1978. Springer-Verlag.

60 Mark Shields and Erik Meijer. Type-indexed rows. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’01, pages 261–275,
New York, NY, USA, 2001. ACM. URL: http://doi.acm.org/10.1145/360204.360230,
doi:10.1145/360204.360230.

61 Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Object-oriented Programming:
Systems, Languages and Applications (OOPSLA), 2012.

62 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.
63 Mitchell Wand. Complete type inference for simple objects. In Symposium on Logic in

Computer Science (LICS), 1987.
64 Mitchell Wand. Type inference for record concatenation and multiple inheritance. In Symposium

on Logic in Computer Science (LICS), 1989.
65 Mathhias Zenger and Martin Odersky. Independently extensible solutions to the expression

problem. In Foundations of Object-Oriented Languages, 2005.

ECOOP 2020

https://ceylon-lang.org/
https://doi.org/10.1145/2660193.2660237
https://doi.org/10.1145/2660193.2660237
http://dx.doi.org/10.1145/2660193.2660237
http://doi.acm.org/10.1145/360204.360230
http://dx.doi.org/10.1145/360204.360230

	Introduction
	Overview
	Background: Disjoint Polymorphism
	Row Polymorphism through Disjoint Polymorphism
	Bounded Quantification through Disjoint Polymorphism
	The Extra Power of Disjoint Polymorphism

	Disjoint Polymorphism
	Syntax and Semantics
	Elaboration and Coherence

	Encoding Row Polymorphism
	Syntax of ||
	Typing Rules of ||
	A Simple yet Incomplete Encoding
	A Complete Encoding of || and its Challenges
	Formal Elaboration
	Metatheory

	Encoding Bounded Quantification
	Syntax and Semantics of kernel F<:
	Elaboration Function
	Type-directed Elaboration
	Metatheory

	Discussion
	Variants of Row Polymorphism
	Variants of Bounded Quantification
	Variants of Intersection Type Systems

	Related Work
	Conclusion and Future Work

