Coercion Quantification
(Extended Abstract)

Ningning Xie
The University of Hong Kong, China
nnxie@cs.hku.hk

Dependent Haskell [3, 4, 7] has been desired in the com-
munity of Haskell programmers for a long time. However,
compatibility with existing GHC features makes adding full-
fledged dependent types into GHC very difficult. Thus, our
goal of this project [1] is to make the core language of Haskell,
known as System Fc¢ [2, 5, 6, 8], dependently typed, as steps
are taken towards dependent Haskell.

To this end, the first step we take is to embrace homogeneous
equality, which means equality is between types of a same
kind. Homogeneous equality simplifies meta-theory. More
importantly, it enables us to prove the important lemma,
congruence, for the dependently typed core. Adopting ho-
mogeneous equality is not straightforward. It requires us to
make the type of primitive equality, ~#, homogeneous, and
requires patches to the constraint solver.

This is a working-in-progress project. We are at the very
beginning of the stage. As a small step towards our final
goal, the focus of this talk is on coercion quantification. To
understand the motivation, consider if we had homogeneous
~#, and in the source Haskell, we still want to provide pro-
grammers the ability to use heterogeneous equalities, then
we define the heterogeneous equality, ~~, based on the ho-
mogeneous equality!:

data (~~) :: forall k1 k2. k1 -> k2 -> Constraint where
MkHEg :: forall k1 k2 (a k1) (b :: k2).
(k1 ~# k2) -=> (a ~# b) > a ~~ b

However this is definitely wrong because a ~# b is ill-kinded,
as ~# is homogeneous! To correct it, we need to give the
coercion a name, and use it to fix the kind:

data (~~) :: forall k1 k2. k1 -> k2 -> Constraint where

MkHEq :: forall k1 k2 (a k1) (b :: k2).
forall (co :: k1 ~# k2). -- a name here...
(a |>co ~# b)) —> -- and a cast here

a~~b
Coercion quantification is interesting as:

INote here data means a dictionary, the representation of a type class in
core.

HIW’18, Sept. 23, 2018, St. Louis, MO, USA

Richard A. Eisenberg
Bryn Mawr College, USA

rae@cs.brynmawr.edu

1) For people working in core, the patch to core formalization
is worth attention. Adding coercion quantification means
now polymorphic quantifications (over both types and coer-
cions) could have a coercion in their bindings. Refactor of
those basic types has a significant impact to files in the com-
pilation pipeline and introduces several subtleties involving
binders, substitutions, representations of datatypes, etc.

2) For Haskell users, coercion quantification opens up new
questions to the design space in source Haskell. For example,
is the type of fun well-formed in source Haskell?

data SameKind k -=> k -> %
fun forall k1 k2 (a::k1) (b::k2).
(k1 ~ k2) => SameKind a b

In core, we now have the ability to name the coercion k1 ~ k2
and use it to cast a. But accepting the code in the source level
requires the solver to be smart enough to generate a name
and insert the cast. This requires non-trivial extension of the
solver and we would want Haskell users to answer if this
feature is ever desired in their development.

To sum up, in this talk, we would like to share the high-
level story-line of the dependently typed core, our low-level
progress in implementing coercion quantification, as well
as the involving design space, and seek feedbacks from the
broader community.

References

[1] 2018. Implementing Dependent Haskell, Phase 2. (2018). https://ghc.
haskell.org/trac/ghc/wiki/DependentHaskell/Phase2

[2] Joachim Breitner, Richard A Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. 2016. Safe zero-cost coercions for Haskell. Journal
of Functional Programming 26 (2016).

[3] Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and
Practice. Ph.D. Dissertation. University of Pennsylvania.

[4] Adam Michael Gundry. 2013. Type Inference, Haskell and Dependent
Types. Ph.D. Dissertation. University of Strathclyde.

[5] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and
Kevin Donnelly. System F with Type Equality Coercions (TLDI *07).

[6] Stephanie Weirich, Justin Hsu, and Richard A Eisenberg. System FC
with explicit kind equality (ICFP ’13).

[7] Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de
Amorim, and Richard A. Eisenberg. A Specification for Dependent
Types in Haskell (ICFP’17).

[8] Brent A Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhdes. Giving Haskell a
promotion (TLDI ’12).


https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase2
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase2

	References

