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Abstract
We present a novel row-polymorphic record calculus, sup-

porting a unique combination of features: scoped labels, first-

class labels and rows, and record concatenation. Our work

is motivated by the similarity of record types and data table

(or data frame) schemas, commonly used in data processing

tasks. After presenting our record calculus, we demonstrate

its applicability to data frame manipulation by showing that

it can be used to successfully assign types to the functions

listed in the Brown Benchmark for Tabular Types. Our typ-

ing discipline is remarkably lightweight, compared to calculi

that require reasoning about type-level constraints when

manipulating record types, making it a viable candidate for

practical use.

CCS Concepts: • Software and its engineering → Data
types and structures; Formal language definitions; Domain
specific languages.
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1 Introduction
Quantitative research has taken over most scientific fields

and business analytics, making computerized analysis of tab-

ular data a commonplace task. Most of the programs used

to perform data analysis present a graphical user interface,

making them very accessible to a wide audience. Yet, the

convenience they offer often comes with constraints. And,

with the growing accessibility of programming education,

advanced users often turn to popular (and usually dynam-

ically typed) programming languages (R, Python, Julia) to

perform their more advanced data processing.
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With greater power comes greater responsibility. Mis-

takes in data analysis can be costly, and the flexibility of

programmable tools also makes it easier to make mistakes,

especially for non-expert programmers. The risks are only in-

flated by many libraries inheriting arguably unintuitive prac-

tices, such as the implicit use of ternary logic to model miss-

ing data that is so prevalent, e.g., in SQL. To increase their

trustworthiness, data science workloads can be extended

with forms of formal verification such as type systems. Still,

we believe that practical verification tools should remain

lightweight, to make sure that the added safety and clarity

are not outweighed by lesser accessibility caused by the need

to appease a picky verifier or compiler.

In this work we present one potential component of such

lightweight verification. We build on the well-studied type

theory of row-polymorphic record types. Record types are

a natural way to model the schema of a heterogeneous data
table, that is, the set of (named) columns annotated with a

homogeneous type for every column. Row polymorphism

keeps typed programs from being overly sensitive to table

schema changes, such that the verification is robust against,

e.g., the addition of new data sources as new columns.

While seemingly a good fit, most work focusing on row-

polymorphic records assumes a fairly advanced type system,

such as one supporting qualified type theories. In turn, most

functions dealing with records require a fairly ceremoni-

ous typing discipline. And, even if the constraints can be

inferred by the compiler, we argue that something of value is

lost: Types increase correctness, yes, but perhaps even more

important, they provide a high-level view of the data trans-

formations performed by a function. The long rows of quali-

fications necessary for a function type to be well-defined in

a conventional row-polymorphic type system create unnec-

essary syntactic noise and hamper understanding.

As a solution to this problem, we propose a novel row-

polymorphic record calculus with a unique combination of

features: (1) scoped labels [10], where unlike in many row

type systems, duplicate labels are allowed and retained in our

system; (2) first-class labels [9], where labels are first-class
values that can be passed in and returned by functions; (3) an

extension to first-class rows, where a row can be considered

a group of labels; and (4) record concatenation [5], where two

records can be merged into a single record. Except for first-

class rows, some of the individual features have been studied

in existing literature, but not in ways compatible with each

other. For example, Harper and Pierce [5] can concatenate
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two records only if they do not share common fields, as labels

cannot be duplicated; while Leijen [10] alone cannot express

polymorphic record concatenation. We discuss related work

in more detail in §5. As we will see (§4), with this set of

features we can express table types fairly well.

The rest of the paper is structured as follows:

• We begin our presentation in §2, by informally demon-

strating a sequence of record calculus extensions that

leads to our proposed system.

• In §3 we present 𝜆 ⟨⟩
, a novel row-polymorphic record

calculus. We present the static and the operational seman-

tics, and prove that 𝜆 ⟨⟩
is type-safe. Moreover, we discuss

type inference and present a sound unification algorithm.

• In §4 we evaluate our proposal on the Brown Benchmark

for Tabular Types (B2T2) [11] to better display the low-

noise characteristics and satisfactory expressiveness of

our type system.

• We discuss related work in §5 and conclude in §6.

2 Multi-Tailed Records, Informally
Product types are a standard tool in modern programming

languages, allowing convenient grouping of related values

in a single entity. Perhaps the simplest and most common

version is the tuple type, where product fields (and their

respective projections) are indexed by integers. But, when

tuples grow large or long-lived, it becomes difficult to keep

track of the positional indices. To resolve that problem many

languages allow product types with named fields (structs in
C(++), namedtuple in Python, . . . ), allowing for much cleaner

and less error-prone access to fields. Products with named

fields are exactly what we refer to as records.
For example, imagine a program for video manipulation.

It is important to be able to store video metadata such as

the frame resolution and the number of frames. It could be

stored in a tuple of type (Int, Int, Int), but its usage would
be error-prone, due to “integer blindness” (does height come

before width or after?). We can model the data as a record

type instead, with clear semantics:

{length : Int, height : Int,width : Int}.
To construct a record value, one replaces field types for con-

crete expressions. Projections can then be performed by sup-

plying a field name to the (.) operator:
{length = 240, height = 480,width = 640}.height == 480

A record type can be constructed from a sequence of la-

beled types called a row. Rows, in turn, are constructed in-

ductively, starting from an empty row ⟨⟩, that can be left-

extended by labeled fields ⟨𝑙 : 𝜏 | ⟨. . .⟩⟩, where we write

𝜏 for types. For clarity of presentation, we flatten the re-

peated extensions and abbreviate ⟨𝑙1 : 𝜏1 | ⟨𝑙2 : 𝜏2 | ⟨⟩⟩⟩ as
⟨𝑙1 : 𝜏1, 𝑙2 : 𝜏2⟩ (and similarly for record types). We use angle

brackets ⟨·⟩ to notate row types (which have kind Row) and
curly braces {·} to notate record types (which have kind ★).

In many record calculi, it is common to assume that fields

are unordered, and we make that assumption as well. That

means, that we treat the rows (and record types constructed

from them) ⟨𝑙1 : Int, 𝑙2 : String⟩ and ⟨𝑙2 : String, 𝑙1 : Int⟩ as
equivalent.

2.1 Tail-Extensible Records
A very common extension to the row calculus that our work

builds upon, is to allow arbitrary row extensions in tail posi-

tions [4]. It extends the row language to allow type variables

with kind Row, including in the tail position of the row

constructor ⟨· | ·⟩, as in ⟨𝑙 : 𝜏 | 𝜌⟩. Extensible rows are inter-
esting, because they make it possible to simulate structural

subtyping of rows. For example, one could write a function

computing the area of a rectangular object and have it apply

to records with arbitrary additional fields.

area :: ∀(𝜌 :: Row). {height : Int,width : Int | 𝜌} → Int
area 𝑥 = 𝑥 .height ∗ 𝑥 .width
area ⟨height = 10,width = 20, color = Red⟩ :: Int
area ⟨height = 10,width = 20, texture = Smooth⟩ :: Int

2.2 Scoped Labels
Since we said records are unordered, what happens if the

same label appears in a record more than once? Most pub-

lished and used record type systems (such as in [4, 5]) forbid

this. Unfortunately, they must then turn to heavy-weight

machinery like qualified types [7] to enforce label uniqueness
in the face of polymorphism.

We address this by adopting scoped labels [10]. Instead of

forbidding duplicate labels, we give them a semantics: When

a label is repeated, the first field shadows all the other fields
with the same label. For example:

{𝑙 = 2, 𝑙 = “asdf”}.𝑙 :: Int
To retain access to the second field, we also adopt a record

restriction operation, which removes a specified field from a

record:

{𝑙1 = 1, 𝑙2 = 2}\𝑙1 == {𝑙2 = 2}.
Restriction respects shadowing, so we can access the second

field with a shared name by first restricting away the first:

({𝑙 = 2, 𝑙 = “asdf”}\𝑙).𝑙 :: String
It is important to note that while we still treat rows that

permute fields with distinct labels as equivalent, permuta-

tions of fields with the same label is not allowed, because we
are now relying on their order to disambiguate them.

2.3 First-Class Labels
We also add first-class labels [9] to our calculus. To do so, we

add another kind Label and a type constructor L·M :: Label →
★ to our system. The only way to construct a value of type

LheightM is through the label literal expression:

height :: LheightM.



Infix-Extensible Record Types for Tabular Data TyDe ’23, September 4, 2023, Seattle, WA, USA

Thanks to first-class labels, the (.) operator (as well as
record restriction and extension) can be assigned a type:

(.) :: ∀(𝑙 : Label) (𝛼 : ★) (𝜌 : Row). {𝑙 : 𝛼 | 𝜌} → L𝑙M → 𝛼.

First-class labels interact with scoped labels in an interest-

ing and, to the best of our knowledge, previously undescribed

way. Consider the following expression:

𝑓 :: ∀(𝑙 : Label) . L𝑙M → {𝑙 : String, foo : Int} → ?

𝑓 𝑙 𝑥 = 𝑥 .foo // rejected

Since labels are no longer guaranteed to be unique, nothing

prevents the label variable 𝑙 from being instantiated as foo
later in the program. As such, there is no way to statically

decide upon the return type of function 𝑓 and our calculus

rejects the program. Access to the integer field is still possible,

but it requires explicitly removing the field 𝑙 :

𝑓 :: ∀(𝑙 : Label). L𝑙M → {𝑙 : String, foo : Int} → Int
𝑓 𝑙 𝑥 = (𝑥\𝑙).foo

Note that the above issue would not arise if the record

had type {foo : Int, 𝑙 : String}, as no instantiation of 𝑙 could

shadow the literal field foo. For this reason, we restrict the
row-equivalence relation such that a field labeled by a vari-

able can never be swapped with another label (either con-

stant or variable). This means that two initially unequal types

can become equal after instantiation of label variables.
1
In

contrast, [9] does not support scoped labels, and the type of

𝑓 must be rewritten with a lacks predicate ensuring that 𝑙

cannot be instantiated with foo.
In our system, we take the idea of first-class labels further

and support first-class rows, written as ⟨𝑟 ⟩, where 𝑟 : Row.
Essentially, rows can be considered as a group of labels. First-

class rows can be passed in or returned by functions. As a

contrived example, we can define a specialization 𝑔 of the

field access operator

𝑔 ::∀(𝑙 : Label) (𝛼 : ★) (𝜌 : Row).
⟨𝜌⟩ → {𝑙 : 𝛼 | 𝜌} → L𝑙M → 𝛼

Then 𝑔 applied to a row 𝜌 can be used to project out the 𝑙

label only for records with the given common postfix 𝜌 .

First-class rows are more interesting when the system is

extended with record concatenation, which we explain next.

2.4 Infix-Extensible Records
A final piece of our record calculus is record concatenation [5,

16, 20], in the form of a row concatenation operator:

⟨· | ·⟩ :: ∀(𝑟1 : Row) (𝑟2 : Row). ⟨𝑟1⟩ → ⟨𝑟2⟩ → ⟨𝑟1 | 𝑟2⟩
In this calculus, rows can be extended anywhere, i.e. they

are now infix-extensible and not just tail-extensible, making

{𝑟1 | 𝑙 : Int | 𝑟2 | foo : String}
1
This should not be surprising for any polymorphic types. For example,

while in ∀𝑎 𝑏. 𝑎 → 𝑏 → 𝑎, 𝑎 and 𝑏 are considered different, it is possible

that 𝑎 and 𝑏 are later instantiated with the same type and are then equal.

a valid record type, with row variables 𝑟1 and 𝑟2, a label

variable 𝑙 , and a label literal foo.
As before, types that differ by an exchange of a row vari-

able with a neighboring field or row are also considered

non-equivalent, since shadowing of fields can depend on

variable instantiation.

To complement field-level operations, we extend our lan-

guage with a row projection (•) operator:

(•) :: ∀(𝑟1 : Row) (𝑟2 : Row). {𝑟1 | 𝑟2} → ⟨𝑟1⟩ → {𝑟1}

Similarly, we can provide a row restriction operator, which

subsumes the previously described field restriction.

As we demonstrate in §4, the flexibility to extend and

break up record rows in multiple places is crucial to ensure

our calculus can type important table manipulation func-

tions such as joins and aggregations. Since variable rows

and labels cannot be exchanged, in polymorphic contexts

the record types behave more akin to tuples of records, with

points of concatenation delineating the tuple components.

However, once the record types are fully instantiated (e.g.

at the top level of the program), field reordering becomes

possible again (up to shadowing preservation). This places

additional burden on the implementers of polymorphic ta-

ble manipulation functions, but the users of those functions,
which we expect are a much larger group, can usually remain

unaware of the restrictions.

3 A Calculus with Infix-extensible Records
In this section we formally describe our proposed row poly-

morphic calculus 𝜆 ⟨⟩
.

3.1 Types and Contexts
The syntax of kinds, types, and contexts is defined in Fig. 1.

Kinds distinguish types. A kind 𝜅 is either a type kind ★,

a function 𝜅1 → 𝜅2, a label kind Label, or a row kind Row.
A polymorphic type 𝜎 is a list of universal quantifiers fol-

lowed by a monotype 𝜏 , where each quantified type variable

𝑎 is annotated with its kind 𝜅 . Monotypes 𝜏 include type vari-

ables 𝑎, base types2, functions →, applications 𝜏1 𝜏2, records

{𝜌}, rows ⟨𝜌⟩, and labels LℓM.
Row types 𝜌 include type variables 𝑎, empty rows (Empty),

singleton rows (ℓ : 𝜏) and record concatenation (𝜌1 | 𝜌2).
Label types ℓ include type variables 𝑎 and label literals 𝑙𝑐 .

A context Γ maps each term variable to its type, and each

type variable to its kind. Lastly, to avoid presentation clutter,

we use syntactic sugar outlined in Fig. 1. That is, we never

explicitly write Empty, and we often write commas (,) for a

series of row concatenations.

The kinding rules are presented in Fig. 2. We omit a de-

tailed exposition, as most rules are entirely standard.

2
We present the formal syntax with Int being the only base type, but we

use other common types such as Bool or String in examples throughout the

section.
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kind 𝜅 ::= ★ | 𝜅1 → 𝜅2 | Label | Row
poly type 𝜎 ::= ∀𝑎 : 𝜅. 𝜎 | 𝜏

type 𝜏 ::= 𝑎 | Int |→| 𝜏1 𝜏2 | {𝜌} | ⟨𝜌⟩ | LℓM
row 𝜌 ::= 𝑎 | Empty | ℓ : 𝜏 | (𝜌1 | 𝜌2)
label ℓ ::= 𝑎 | 𝑙𝑐

context Γ ::= • | Γ, 𝑎 : 𝜅 | Γ, 𝑥 : 𝜏

syntactic sugar

{} ≜ {Empty}
⟨⟩ ≜ ⟨Empty⟩

ℓ1 : 𝜏1, 𝜌 ≜ ℓ1 : 𝜏1 | 𝜌
ℓ1 : 𝜏1, . . . , ℓ𝑛 : 𝜏𝑛 ≜ ℓ1 : 𝜏1 | (. . . | (ℓ𝑛 : 𝜏𝑛))

Figure 1. Syntax of types and contexts

𝑎 : 𝜅 ∈ Γ

Γ ⊢ 𝑎 : 𝜅 Γ ⊢ Int : ★ Γ ⊢→: ★→ ★→ ★

Γ ⊢ 𝜏1 : 𝜅1 → 𝜅2 Γ ⊢ 𝜏2 : 𝜅1
Γ ⊢ 𝜏1 𝜏2 : 𝜅2

Γ ⊢ 𝜌 : Row

Γ ⊢ {𝜌} : ★

Γ ⊢ 𝜌 : Row

Γ ⊢ ⟨𝜌⟩ : ★
Γ ⊢ ℓ : Label
Γ ⊢ LℓM : ★ Γ ⊢ 𝑙𝑐 : Label

Γ ⊢ Empty : Row

Γ ⊢ 𝜌1 : Row Γ ⊢ 𝜌2 : Row

Γ ⊢ (𝜌1 | 𝜌2) : Row

Γ ⊢ ℓ : Label Γ ⊢ 𝜏 : ★

Γ ⊢ (ℓ : 𝜏) : Row

Figure 2. Kinding

𝜌 ≈ 𝜌
refl

𝜌1 ≈ 𝜌2

𝜌2 ≈ 𝜌1
symm

𝜌1 ≈ 𝜌2 𝜌2 ≈ 𝜌3

𝜌1 ≈ 𝜌3
trans

𝜏1 ≈ 𝜏2

𝑙𝑐 : 𝜏1 ≈ 𝑙𝑐 : 𝜏2
singleton

𝜌1 ≈ 𝜌2 𝜌 ′
1
≈ 𝜌 ′

2

𝜌1 | 𝜌 ′
1
≈ 𝜌2 | 𝜌 ′

2

concat

𝑙𝑐1 ≠ 𝑙𝑐2

𝑙𝑐1 : 𝜏1 | 𝑙𝑐2 : 𝜏2 ≈ 𝑙𝑐2 : 𝜏2 | 𝑙𝑐1 : 𝜏1
comm

(𝜌1 | 𝜌2) | 𝜌3 ≈ 𝜌1 | (𝜌2 | 𝜌3)
assoc

(ℓ : 𝜏 | Empty) ≈ ℓ : 𝜏
empR

(Empty | ℓ : 𝜏) ≈ ℓ : 𝜏
empL

Figure 3. Row equivalence

expr 𝑒 ::= 𝑥 | 𝜆𝑥 . 𝑒 | 𝑒1 𝑒2 | let 𝑥 = 𝑒1 in 𝑒2
| {} | {𝑒1 = 𝑒2} | {𝑒1 | 𝑒2} | 𝑙𝑐 | 𝑒1.𝑒2
| ⟨⟩ | ⟨𝑒⟩ | ⟨𝑒1 | 𝑒2⟩ | 𝑒1•𝑒2 | 𝑒1\𝑒2

syntactic sugar

𝑒\𝑙𝑐 ≜ 𝑒\⟨𝑙𝑐⟩
⟨𝑙𝑐 , 𝑒⟩ ≜ ⟨⟨𝑙𝑐⟩ | 𝑒⟩

⟨𝑙𝑐1 . . . , 𝑙𝑐𝑛 ⟩ ≜ ⟨⟨𝑙𝑐1⟩ | ⟨. . . | ⟨𝑙𝑐𝑛 ⟩⟩⟩
{𝑒1 = 𝑒 ′

1
. . . , 𝑒𝑛 = 𝑒 ′𝑛} ≜ {{𝑒1 = 𝑒 ′

1
} | {. . . | {𝑒𝑛 = 𝑒 ′𝑛}}}

Figure 4. Syntax of expressions

𝑥 : 𝜎 ∈ Γ Γ ⊢ 𝜎 ⊑ 𝜏

Γ ⊢ 𝑥 : 𝜏
Var

Γ ⊢ 𝑒 : 𝜏1 𝜏1 ≡ 𝜏2

Γ ⊢ 𝑒 : 𝜏2
Eq

Γ ⊢ 𝜏1 : ★
Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2

Γ ⊢ 𝜆𝑥. 𝑒 : 𝜏1 → 𝜏2
Lam

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2
Γ ⊢ 𝑒2 : 𝜏1

Γ ⊢ 𝑒1 𝑒2 : 𝜏2
App

Γ ⊢ 𝑒1 : 𝜏1
𝛼𝑖 ∉ ftv(Γ) Γ, 𝑥 : ∀𝛼𝑖 : 𝜅𝑖 . 𝜏1 ⊢ 𝑒2 : 𝜏2

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝜏2
Let

Γ ⊢ {} : {}
Empty

Γ ⊢ 𝑒1 : LℓM Γ ⊢ 𝑒2 : 𝜏
Γ ⊢ {𝑒1 = 𝑒2} : {ℓ : 𝜏}

Rcd

Γ ⊢ 𝑒1 : {𝜌1} Γ ⊢ 𝑒2 : {𝜌2}
Γ ⊢ {𝑒1 | 𝑒2} : {𝜌1 | 𝜌2}

Concat

Γ ⊢ 𝑙𝑐 : L𝑙𝑐M
Lab

Γ ⊢ 𝑒1 : {ℓ : 𝜏 | 𝜌} Γ ⊢ 𝑒2 : LℓM
Γ ⊢ 𝑒1.𝑒2 : 𝜏

Prj

Γ ⊢ ⟨⟩ : ⟨⟩
EmptyR

Γ ⊢ 𝑒 : LℓM Γ ⊢ 𝜏 : ★

Γ ⊢ ⟨𝑒⟩ : ⟨ℓ : 𝜏⟩
Row

Γ ⊢ 𝑒1 : ⟨𝜌1⟩ Γ ⊢ 𝑒2 : ⟨𝜌2⟩
Γ ⊢ ⟨𝑒1 | 𝑒2⟩ : ⟨𝜌1 | 𝜌2⟩

ConcatR

Γ ⊢ 𝑒1 : {𝜌1 | 𝜌2}
Γ ⊢ 𝑒2 : ⟨𝜌1⟩

Γ ⊢ 𝑒1•𝑒2 : {𝜌1}
PrjR

Γ ⊢ 𝑒1 : {𝜌1 | 𝜌2}
Γ ⊢ 𝑒2 : ⟨𝜌1⟩

Γ ⊢ 𝑒1\𝑒2 : {𝜌2}
Del

Figure 5. Typing rules

Row Equivalence. We formalize the row equivalence re-

lation 𝜌1 ≡ 𝜌2 in Fig. 3. We overload the ≡ operator such that

𝜏1 ≡ 𝜏2 for types that are equivalent up to row equivalence

and otherwise syntactically equal.

As an equivalence relation, row equivalence is reflexive

(refl), symmetric (symm), transitive (trans), and congruent

with respect to type constructors (singleton and concat).

Moreover, the concatenation operation is commutative over

distinct labels (comm), associative (assoc), and has Empty as
its unit (empR,empL). Notably, (comm) compares only label
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Γ ⊢ 𝜏 ⊑ 𝜏
Eq

Γ ⊢ 𝜏 : ★ Γ ⊢ 𝜎 [𝑎 ↦→ 𝜏] ⊑ 𝜎 ′

Γ ⊢ ∀𝑎 : ★. 𝜎 ⊑ 𝜎 ′ InstK

Γ ⊢ ℓ : Label
𝑎 ▶𝑙 𝜎 ∨ 𝑎 ∉ ftv(𝜎) Γ ⊢ 𝜎 [𝑎 ↦→ ℓ] ⊑ 𝜎 ′

Γ ⊢ ∀𝑎 : Label. 𝜎 ⊑ 𝜎 ′ InstL

Γ ⊢ 𝜌 : Row
𝑎 ▶𝑟 𝜎 ∨ 𝑎 ∉ ftv(𝜎) Γ ⊢ 𝜎 [𝑎 ↦→ 𝜌] ⊑ 𝜎 ′

Γ ⊢ ∀𝑎 : Row. 𝜎 ⊑ 𝜎 ′ InstR

Figure 6. Instantiation

𝑎 ▶∗ 𝜎

𝑎 ▶∗ ∀𝛽 : 𝜅.𝜎

𝑎 ▶∗ 𝜏1

𝑎 ▶∗ 𝜏1 𝜏2

𝑎 ▶∗ 𝜏2

𝑎 ▶∗ 𝜏1 𝜏2

𝜌 ≡ (𝜌 ′ | 𝑎)
𝑎 ▶𝑟 {𝜌}

𝜌 ≡ ⟨𝜌 ′ | 𝑎⟩
𝑎 ▶𝑟 ⟨𝜌⟩

𝑎 ▶𝑙 L𝑎M

𝜌 ≡ (𝜌 ′ | 𝑎 : 𝜏)
𝑎 ▶𝑙 {𝜌}

𝜌 ≡ ⟨𝜌 ′ | 𝑎 : 𝜏⟩
𝑎 ▶𝑙 ⟨𝜌⟩

Figure 7. Tail check rules. We use ▶∗ to indicate that a rule

applies to both ▶𝑙 and ▶𝑟 .

literals, but not label variables, as we cannot predict if a label

variable will introduce shadowing after instantiation.

3.2 Expressions and Typing
We outline expression syntax in Fig. 4. Expressions 𝑒 are

variables 𝑥 , function literals 𝜆𝑥 . 𝑒 , applications 𝑒1 𝑒2, let-

bindings let 𝑥 = 𝑒1 in 𝑒2, the empty record {}, a singleton
record {𝑒1 = 𝑒2}, record concatenation {𝑒1 | 𝑒2}, a label

literal 𝑙𝑐 , label projects 𝑒1.𝑒2, the empty row ⟨⟩, a singleton
row ⟨𝑒⟩, row concatenation ⟨𝑒1 | 𝑒2⟩, row projections 𝑒1•𝑒2,
and row deletion 𝑒1\𝑒2. As syntactic sugar, we define label
deletion 𝑒\𝑙𝑐 as deletion of a singleton row. And we often

write commas for record and row concatenation.

Fig. 5 gives the typing rules, which are essentially the

Hindley-Milner type system extended with records and rows.

Rule (Var) type-checks a variable by first looking up its type

𝜎 in the context. Since 𝜎 is potentially polymorphic, the rule

instantiates 𝜎 to 𝜏 ; the instantiation rules are given in Fig. 6,

which we will explain shortly.

Rule (Eq) converts between equivalent types. This rule

makes the typing rules non-syntax-directed; however, it is

easy to integrate the rule into each rule that requires type

equivalence (e.g., in rule (App)) and thus make a syntax-

directed version of the type system.

Rules (Lam), (App), and (Let) are standard. The next three

rules type-check records. An empty record always has an

empty record type (rule (Empty)). For a singleton record

(rule (Rcd)), since the system supports first-class labels, we

first get the label type LℓM from 𝑒1, and then get the field

type 𝜏 from 𝑒2, and return the record type {ℓ : 𝜏}. For record
concatenation (rule (Concat)), the result type is simply a

record of row concatenation.

In rule (Lab), a label literal has itself in the type; namely,

L𝑙𝑐M is a singleton type. Labels can be used to project a field

from a record (rule (Prj)). Here we first get the record type

{ℓ : 𝜏 | 𝜌} from 𝑒1, and then get the record type LℓM from
𝑒2, and return the field type 𝜏 . Notably, ℓ may not be the

first label in a record type, but by using row equivalence

(rule (Eq)) we may be able to move ℓ to be the head. Take

𝑒 : {𝑙1 : Int, 𝑙2 : Bool} with 𝑙1 and 𝑙2 being constants as

an example. By rule (Eq) and rule (assoc) we can deduce

𝑒 : {𝑙2 : Bool, 𝑙1 : Int}, allowing us to conclude 𝑒.𝑙2 : Bool.
However, since rule (assoc) only works on distinct label

literals, if 𝑒 ′ : {𝑎 : Int, 𝑙2 : Bool} for some label variable 𝑎 (or

𝑒 ′ : {𝑎 | 𝑙2 : Bool} for some row variable 𝑎), then 𝑒 ′.𝑙2 is not
considered well-typed (as usual, shadowing is yet unclear).

The rest of the rules concern rows. An empty row always

has an empty row type (rule (EmptyR)). For a singleton row

(rule (Row)), we get the label type LℓM from 𝑒 , and we guess a

field type 𝜏 , returning the row type ⟨ℓ : 𝜏⟩.We could also have

the programmers provide an explicit type annotation for the

field. Such annotations are not necessary, however.
3
This is

because rows are mainly used for projection (and deletion),

and just like label projection, a label in a row always projects

out the first corresponding field in a record.
4
In the row

concatenation (rule (ConcatR)), the result type is simply the

concatenated row type. Finally, projection with a row (rule

(PrjR)) gets a subset of the original record, and deletion of a

row (rule (del)) removes a subset of the record.

Instantiation and tail check. Recall that rule (Var) uses
instantiation (𝜎 ⊑ 𝜏) to turn a polymorphic type into a

monotype. Fig. 6 presents the instantiation rules.

Rule (Eq) says that a monotype is an instantiation of itself.

Rule (InstK) instantiates a type variable 𝛼 : ★ by a monotype

𝜏 . The rules for record and label variables are similar, except

for the extra condition 𝛼 ▶∗ 𝜎 ∨ 𝛼 ∉ ftv(𝜎); that is, either 𝛼
is not used in the body, or it satisfies 𝛼 ▶∗ 𝜎 .
We call the 𝛼 ▶∗ 𝜎 condition tail check, whose rules are

given in Fig. 7. At a high-level, tail check only allows in-

stantiating a label (with ▶𝑙 ) or a row (with ▶𝑟 ) variable if it
appears in a tail position. While this seems artificial at first,

take 𝑒 : ∀ 𝑎. {𝑎 : Int, 𝑙2 : Bool} as an example and consider

what the type is for 𝑒.𝑙2. Without the tail check, our type

system would allow a derivation leading to 𝑒.𝑙2 : Int (by

3
Nor are they useful: even if labels are type annotated, a projection like

𝑒• ⟨𝑙 : Bool⟩ where 𝑒 : {𝑙 : Int, 𝑙 : Bool} is rejected, since again we can only

access the first 𝑙 label from a record, and here the types mismatch. However,

we do not lose any expressive power, as we could rewrite the program as

(𝑒\𝑙)• ⟨𝑙 : Bool⟩.
4
A repeated label in a row will get the next corresponding field.
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value 𝑣 ::= 𝜆𝑥. 𝑒 | 𝑙𝑐 | {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑛 = 𝑣𝑛} | ⟨𝑙𝑐1 , . . . , 𝑙𝑐𝑛 ⟩ (𝑛 ≥ 0)
evaluation context 𝐸 ::= □ | 𝐸 𝑒 | 𝑣 𝐸 | let 𝑥 = 𝐸 in 𝑒

| {𝐸 = 𝑒} | {𝑣 = 𝐸} | {𝐸 | 𝑒} | {𝑣 | 𝐸} | 𝐸.𝑒 | 𝑣 .𝐸
| ⟨𝐸⟩ | ⟨𝐸 | 𝑒⟩ | ⟨𝑣 | 𝐸⟩ | 𝐸•𝑒 | 𝑣•𝐸 | 𝐸\𝑒 | 𝑣\𝐸

(app) (𝜆𝑥. 𝑒) 𝑣 −→ 𝑒 [𝑥 ↦→ 𝑣]
(let) let 𝑥 = 𝑣 in 𝑒 −→ 𝑒 [𝑥 ↦→ 𝑣]
(prj) {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑛 = 𝑣𝑛}.𝑙𝑐𝑖 −→ 𝑣𝑖 where 𝑙𝑐1 , . . . , 𝑙𝑐𝑖−1 ≠ 𝑙𝑐𝑖
(prjr1 ) 𝑣•⟨⟩ −→ {}
(prjr2 ) 𝑣•⟨𝑙𝑐 , 𝑣 ′⟩ −→ {𝑙𝑐 = 𝑣 .𝑙𝑐 | (𝑣\𝑙𝑐 )•𝑣 ′}
(concat) {{𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑖 = 𝑣𝑖 } | {𝑙𝑐 𝑗 = 𝑣 𝑗 , . . . , 𝑙𝑐𝑛 = 𝑣𝑛}} −→ {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑖 = 𝑣𝑖 , 𝑙𝑐 𝑗 = 𝑣 𝑗 , . . . , 𝑙𝑐𝑛 = 𝑣𝑛}
(concatr ) ⟨⟨𝑙𝑐1 , . . . , 𝑙𝑐𝑖 ⟩ | ⟨𝑙𝑐 𝑗 , . . . , 𝑙𝑐𝑛 ⟩⟩ −→ ⟨𝑙𝑐1 , . . . , 𝑙𝑐𝑖 , 𝑙𝑐 𝑗 , . . . , 𝑙𝑐𝑛 ⟩
(del1) 𝑣\⟨⟩ −→ 𝑣

(del2) {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑛 = 𝑣𝑛}\⟨𝑙𝑐𝑖 , 𝑣⟩ −→ {𝑙𝑐1 = 𝑣1, . . . 𝑙𝑐𝑖−1 = 𝑣𝑖−1, 𝑙𝑐𝑖+1 = 𝑣𝑖+1, 𝑙𝑐𝑛 = 𝑣𝑛}\𝑣
where 𝑙𝑐1 , . . . , 𝑙𝑐𝑖−1 ≠ 𝑙𝑐𝑖

(step) 𝐸 [𝑒1] ↦−→ 𝐸 [𝑒2] if 𝑒1 −→ 𝑒2

Figure 8. Operational semantics

instantiating 𝛼 = 𝑙2), as well as one leading to 𝑒.𝑙2 : Bool (for
𝛼 = 𝑙1 ≠ 𝑙2). Hence, ▶

∗
will help rule out this example.

The first three rules in Fig. 7 traverse the structure of the

type. Note that we only require the variable to appear in a

tail position once
5
, hence the two type application rules. For

row variable (▶𝑟 ), we check that the variable appears at the

tail of a record or a row type. For label variables (▶𝑙 ), the
variable can appear in a singleton type, or at the tail of a

record of a row type.

Going back to the instantiation rules in Fig. 6, we can

consider the condition 𝛼 ∉ ftv(𝜎) as a relaxation of the tail

check: we do not want to reject a polymorphic type where

the quantified variable 𝑎 is not used and thus does not appear

in any tail position.
6

3.3 Operational Semantics
Fig. 8 defines values, evaluation contexts, and the operational

semantics for 𝜆 ⟨⟩
.

Values 𝑣 include lambdas 𝜆𝑥. 𝑒 , label literals 𝑙𝑐 , and canon-
icalized records and rows; recall that commas are syntactic

sugar for a series of row concatenations (Fig. 4).

An evaluation context 𝐸 is essentially an expression with

a hole, in which we can plug in another expression. The def-

inition here is standard. We only remark that the evaluation

context decides the evaluation order. For example, the form

𝑣 𝐸 means that for applications we evaluate the argument

only when the function is already a value.

5
A more restricted version of the rules could require all occurrences of a

variable to be in tail positions, but such a system would also rule out some

useful programs.

6
One may also relax the system and delay tail-checks. For example, take

𝑓 :: ∀ 𝑎 𝑏.Int → ⟨𝑎 : Int, 𝑏 ⟩ → Int. We could consider 𝑓 1 to be well-typed,

even though 𝑎 does not pass the tail check, because 𝑓 ’s type is equivalent

to 𝑓 :: Int → ∀ 𝑎 𝑏. ⟨𝑎 : Int, 𝑏 ⟩ → Int. Such a design can be considered as

the reverse of deep skolemisation [8].

Rules (app) and (let) are standard. Rule (prj) projects
a field 𝑙𝑐𝑖 out of a record. The semantics searches for the

first field corresponding to the label, expressed using the

side condition 𝑙𝑐1 , . . . , 𝑙𝑐𝑖−1 ≠ 𝑙𝑐𝑖 . Projecting a row is defined

inductively. In the base case (prjr1), projecting an empty row

returns the empty record. If the row is not empty (prjr2),
then it must be ⟨𝑙𝑐 , 𝑣 ′⟩, in which case we first project 𝑙𝑐 , and

then build the result by recursively projecting 𝑣 ′. Notably,
𝑣\𝑙𝑐 only removes the first appearance of 𝑙𝑐 in 𝑣 , making sure

that shadowed labels can be projected too, if requested in 𝑣 .

Rule (concat) canonicalizes a record by flattening it. Simi-

larly, (concatr ) canonicalizes a row. Row deletion is defined

in an inductive way similar to row projection. In the base case

(del1), deleting an empty row returns the original record. If

the row is not empty (del2), then it must be ⟨𝑙𝑐𝑖 , 𝑣⟩, in which

case we first delete 𝑙𝑐𝑖 by searching for the first field for 𝑙𝑐𝑖
using the side condition 𝑙𝑐1 , . . . , 𝑙𝑐𝑖−1 ≠ 𝑙𝑐𝑖 , and recursively

delete 𝑣 .

Finally, (step) evaluates inside an evaluation context. Note
that we write ↦−→ here, instead of −→ used in previous rules.

Type safety. With the operational semantics, we can now

formally show that 𝜆 ⟨⟩
is type safe. All proofs can be found

in the appendix.

Theorem 3.1 (Preservation). If Γ ⊢ 𝑒 : 𝜎 , and 𝑒 ↦−→ 𝑒 ′, then
Γ ⊢ 𝑒 ′ : 𝜎 .

Theorem 3.2 (Progress). If • ⊢ 𝑒 : 𝜎 , then either 𝑒 is a value,
or there exists 𝑒 ′ such that 𝑒 ↦−→ 𝑒 ′.

3.4 Type Inference
A type inference algorithm is often implemented as a two-

stage process. In the first stage, the algorithm traverses the

input program and generates type constraints according to a
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unification variables 𝛼 , 𝛽 , 𝛾

constraint 𝐶 := ⊤ | 𝜏1 ∼ 𝜏2 | 𝜌1 ∼ 𝜌2 | ℓ1 ∼ ℓ2 | 𝐶1 ∧𝐶2

unification type 𝜏 ::= 𝛼 | Int |→| 𝜏1 𝜏2 | {𝜌} | ⟨𝜌⟩ | LℓM
substitution context Δ := • | Δ, 𝛼 : 𝜅 | Δ, 𝛼 : 𝜅 = 𝜏 | Δ, 𝛼 : 𝜅 = 𝜌 | Δ, 𝛼 : 𝜅 = ℓ

Figure 9. Unification types

Δ1 ⊢ 𝐶1 =⇒ Δ2 ⊢ 𝐶2 (Δ ⊢ 𝐶1 =⇒ 𝐶2 ≜ Δ ⊢ 𝐶1 =⇒ Δ ⊢ 𝐶2) (𝐶1 =⇒ 𝐶2 ≜ Δ ⊢ 𝐶1 =⇒ Δ ⊢ 𝐶2)

(conj) Δ1 ⊢ 𝐶1 ∧𝐶2 =⇒ Δ2 ⊢ 𝐶 ′
1
∧𝐶2 if Δ1 ⊢ 𝐶1 =⇒ Δ2 ⊢ 𝐶 ′

1

(top1) ⊤ ∧𝐶 =⇒ 𝐶

(top2) 𝐶 ∧ ⊤ =⇒ 𝐶

(Trefl) 𝜏 ∼ 𝜏 =⇒ ⊤
(Tapp) 𝜏1 𝜏2 ∼ 𝜏3 𝜏4 =⇒ 𝜏1 ∼ 𝜏3 ∧ 𝜏2 ∼ 𝜏4
(Trcd) {𝜌1} ∼ {𝜌2} =⇒ 𝜌1 ∼ 𝜌2
(Trow) ⟨𝜌1⟩ ∼ ⟨𝜌2⟩ =⇒ 𝜌1 ∼ 𝜌2
(Tlab) Lℓ1M ∼ Lℓ2M =⇒ ℓ1 ∼ ℓ2
(Tswap) 𝜏 ∼ 𝛼 =⇒ 𝛼 ∼ 𝜏 if 𝜏 ≠ 𝛽 for any 𝛽

(Tsolved) Δ ⊢ 𝛼 ∼ 𝜏 =⇒ 𝜏 ′ ∼ 𝜏 if 𝛼 : 𝜅 = 𝜏 ′ ∈ Δ
(Tsolve) Δ ⊢ 𝛼 ∼ 𝜏 =⇒ Δ ◦ 𝛼 : 𝜅 = [Δ]𝜏 ⊢ ⊤ if 𝛼 : 𝜅 ∈ Δ ∧ Δ ⊢ 𝜏 : 𝜅 ∧ 𝛼 ∉ ftv( [Δ]𝜏)

(Rrefl) 𝜌 ∼ 𝜌 =⇒ ⊤
(Rsingleton) ℓ1 : 𝜏1 ∼ ℓ2 : 𝜏2 =⇒ ℓ1 ∼ ℓ2 ∧ 𝜏1 ∼ 𝜏2

(Rfield) Δ1 ⊢ 𝑙𝑐 : 𝜏, 𝜌1 ∼ 𝜌2 =⇒ Δ2 ⊢ 𝜏 ∼ 𝜏 ′ ∧ 𝜌1 ∼ 𝜌 ′
2

if Δ1 ⊢ [Δ1]𝜌2
𝑙𝑐
↩→ 𝑙𝑐 : 𝜏

′, 𝜌 ′
2
⊣ Δ2 ∧ [Δ2]𝜌1 = [Δ1]𝜌1

(Rswap) 𝜌 ∼ 𝛼 =⇒ 𝛼 ∼ 𝜌 if 𝜌 ≠ 𝛽 for any 𝛽

(Rsolved) Δ ⊢ 𝛼 ∼ 𝜌 =⇒ 𝜌 ′ ∼ 𝜌 if 𝛼 : 𝜅 = 𝜌 ′ ∈ Δ
(Rsolve) Δ ⊢ 𝛼 ∼ 𝜌 =⇒ Δ ◦ 𝛼 : 𝜅 = [Δ]𝜌 ⊢ ⊤ if 𝛼 : 𝜅 ∈ Δ ∧ Δ ⊢ 𝜌 : 𝜅 ∧ 𝛼 ∉ ftv( [Δ]𝜌)

(Lrefl) ℓ ∼ ℓ =⇒ ⊤
(Lswap) ℓ ∼ 𝛼 =⇒ 𝛼 ∼ ℓ if ℓ ≠ 𝛽 for any 𝛽

(Lsolved) Δ ⊢ 𝛼 ∼ ℓ =⇒ ℓ ′ ∼ ℓ if 𝛼 : 𝜅 = ℓ ′ ∈ Δ
(Lsolve) Δ ⊢ 𝛼 ∼ ℓ =⇒ Δ ◦ 𝛼 : 𝜅 = [Δ]ℓ ⊢ ⊤ if 𝛼 : 𝜅 ∈ Δ ∧ Δ ⊢ ℓ : 𝜅 ∧ 𝛼 ∉ ftv( [Δ]ℓ)

(LUhead) Δ ⊢ 𝑙𝑐 : 𝜏, 𝜌
𝑙𝑐
↩→ 𝑙𝑐 : 𝜏, 𝜌 ⊣ Δ

(LUrec) Δ1 ⊢ 𝑙𝑐′ : 𝜏, 𝜌
𝑙𝑐
↩→ 𝑙𝑐 : 𝜏, 𝑙𝑐′ : 𝜏

′, 𝜌 ′ ⊣ Δ2 if 𝑙𝑐′ ≠ 𝑙𝑐 ∧ Δ1 ⊢ 𝜌
𝑙𝑐
↩→ 𝑙𝑐 : 𝜏, 𝜌

′ ⊣ Δ2

(LUtail) Δ ⊢ 𝛼
𝑙𝑐
↩→ 𝑙𝑐 : 𝛽,𝛾 ⊣ Δ ◦ 𝛼 : Row = (𝑙𝑐 : 𝛽,𝛾), 𝛽 : ★, 𝛾 : Row if 𝛼 : Row ∈ Δ where 𝛽,𝛾 fresh

Figure 10. Unification

set of syntax-directed typing rules.
7
In the second stage, the

algorithm uses a specific set of constraint solving rules to

resolve the generated constraints. As our system essentially

extends the Hindley-Milner system with records and rows,

most of the constraint generation and solving is standard.

Therefore, in this section, we focus on the unique part of our

system, which is the unification algorithm involving record

and row types, and we refer the interested reader to [15] for

general constraint-based type inference in ML-style calculi.

7
For our system, the type equivalence relation in (Eq) will be integrated into
type equity constraints, and the rest of the type system is syntax-directed.

Fig. 9 defines the constraints and types used during unfi-

ication. First, we use 𝛼, 𝛽 , and 𝛾 for unification variables. We

focus on equality constraints 𝐶 , which include the truth ⊤,
equality constraints over types, rows, and labels, and con-

straint conjunction 𝐶1 ∧ 𝐶2. Finally, a unification type 𝜏8

includes unification variables 𝛼 instead of type variables 𝑎.

To make the presentation clearer, we assume all types are

canonicalized (e.g. all record concatenations are commuted

to be left-associative and labels and variables are ordered lex-

icographically). Since the type system features a kind system,

8
We always make it clear from the context whether a type 𝜏 refers to a

declarative type or a unification type.
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we use substitution contexts Δ to keep track of unification

variables’ kinds and their solutions. We write [Δ]𝜏 for sub-
stituting unification variables in 𝜏 by their solutions in Δ, if
any solutions exist. The substitution context is idempotent,

meaning [Δ] ( [Δ]𝜏) = [Δ]𝜏 . For an unsolved 𝛼 : 𝜅 ∈ Δ, we
write Δ ◦ 𝛼 : 𝜅 = 𝜏 for solving 𝛼 with 𝜏 , which will also

substitute 𝛼 with its solution in all other items in Δ (and

canonicalize after substitution), ensuring that the resulting

context remains idempotent.

The unification rules are listed in Fig. 10. The judgment

Δ1 ⊢ 𝐶1 =⇒ Δ2 ⊢ 𝐶2 reads: under the solution contextΔ1, the

constraint𝐶1 reduces to constraint𝐶2, updating the solution

context to Δ2. Most rules are self-explanatory. Rule (conj) is
defined modulo constraint associativity, commutativity and

truth being a neutral element ((top1) and (top2)).
T-rules unify types. A reflexive constraint reduces to truth

(Trefl). The next four rules decompose constraints over type

structures into constraints over subcomponents. The last

three T-rules concern unification variables. Rule (Tswap)
puts the unification variables on the left, so that it can be

solved by the next two rules. A solved unification variable

is replaced by its solution (Tsolved). Rule (Tsolve) solves a
unification variable by [Δ]𝜏 , after checking that the solution
is of the right kind, and that 𝛼 does not occur in [Δ]𝜏 .

Similarly, the R-rules and the L-rules unify rows and labels

respectively. The most notable rule is (Rfield). In this rule,

we are unifying a row 𝑙𝑐 : 𝜏, 𝜌1 with another row 𝜌2. We first

find the corresponding 𝑙𝑐 field in 𝜌2, by using the lookup

rules

𝑙𝑐
↩→, which decomposes 𝜌2 into 𝑙𝑐 : 𝜏

′, 𝜌 ′
2
. We can then

continue by unifying the subcomponents.

The lookup rules are defined at the end of the figure. The

judgment Δ1 ⊢ 𝜌1
𝑙𝑐
↩→ 𝑙𝑐 : 𝜏, 𝜌2 ⊣ Δ2 reads: under the sub-

stitution context Δ1, we look for field 𝑙𝑐 in 𝜌1, and find that

𝜌1 can be represented as 𝑙𝑐 : 𝜏, 𝜌2, updating the substitution

context to Δ2. Rule (LUhead) finds the label successfully and
returns the context unchanged. Rule (LUrec) discovers that
the head of the row is not 𝑙𝑐 , and thus recursively looks up

in the tail of the row. Rule (LUtail) is when we encounter a

polymorphic row tail. In this case, we know that 𝛼 must be

of shape 𝑙𝑐 : 𝛽,𝛾 with fresh 𝛽 and 𝛾 .

Returning to (Rfield), note that when the lookup rule re-

turns, we have an extra side condition [Δ2]𝜌 = [Δ1]𝜌 .9 The
condition prevents us from unifying two rows with a shared

tail but different prefixes. For example, consider unifying

(𝑙1 : Int, 𝛼) ∼ (𝑙2 : Int, 𝛼) (with 𝑙1 ≠ 𝑙2). By (LUtail), we
will generate 𝛼 = 𝑙1 : 𝛽,𝛾 (with fresh 𝛽,𝛾 ) and rewrite the

right-hand-side to (𝑙1 : 𝛽, 𝑙2 : Int, 𝛾). Without the side con-

dition, by (Rfield) the original constraint is decomposed to

Int ∼ 𝛽 (with solution 𝛽 = Int) and 𝛼 ∼ 𝑙2 : Int, 𝛾 . The latter
constraint turns into (𝑙1 : Int, 𝛾) ∼ (𝑙2 : Int, 𝛾) by (Tsolved).
9
A more efficient way of implementing this condition is to calculate the

tails of 𝜌1 and pass them into the lookup rules, so (LUtail) checks that 𝛼 is

not in the tails.

Now we are back to where we started, modulo renaming of

unification variables, and thus unification will loop forever.

The side condition ensures that this kind of situation will

never happen, by checking that the newly solved unification

variable in Δ2 does not occur in [Δ1]𝜌1.

Unification Soundness. We prove that our unification

is sound. First, we define the notion of a solution context.

Definition 3.3 (Solution Context). A solution context solves

a constraint, written as Δ |= 𝐶 , if for any 𝜏1 ∼ 𝜏2 ∈ 𝐶 , we

have [Δ]𝜏1 ≡ [Δ]𝜏2. Similarly for 𝜌1 ∼ 𝜌2, and ℓ1 ∼ ℓ2 ∈ 𝐶 .

We prove that unification finds a solution context.

Theorem 3.4 (Unification Soundness). If Δ1 ⊢ 𝐶 =⇒∗ Δ2 ⊢
⊤, then Δ2 |= 𝐶 .

Most General Unifier. Since our system supports first-

class labels and rows, unification may get stuck (thus is

incomplete) when there is no unique most general unifier for

the constraint. This has already been discussed in Leijen [9],

so we only present a short example. For

(𝛼 : Int, 𝛽) ∼ (𝑙1 : Int, 𝑙2 : Int),
there are two unifiers that are incompatible with each other:

𝛼 = 𝑙1, 𝛽 = 𝑙2 : Int or 𝛼 = 𝑙2, 𝛽 = 𝑙1 : Int.

Fortunately, we can prove that when our unification suc-

ceeds, it always returns the most general unifier (in which

case the type inference returns the principal type). To prove

this, we first define the notion of context extension.

Definition 3.5 (Context Extension). A solution context ex-

tends to another solution context, written as Δ1 ⇝ Δ2, if for

any 𝜏 , we have [Δ2]𝜏 ≡ [Δ2] ( [Δ1]𝜏).

The definition effectively captures the semantics of the con-

text extension notion defined in [3]. Intuitively, context ex-

tension expresses a form of information increase: if Δ1 ⇝ Δ2,

then Δ2 preserves all equivalence relations derivable from

Δ1

10
, and may additionally include more variable solutions.

We can prove that unification extends the context.

Lemma 3.6 (Unification extends context). If Δ1 ⊢ 𝐶1 =⇒
Δ2 ⊢ 𝐶2, then Δ1 ⇝ Δ2.

Now we define the notion of a most general unifier:

Theorem 3.7 (Unification Produces the Most General Uni-

fier). IfΔ1 ⊢ 𝐶 =⇒∗ Δ2 ⊢ ⊤, then for anyΔ such thatΔ1 ⇝ Δ
and Δ |= 𝐶 , there exists Δ′ such that Δ2 ⇝ Δ′ and Δ⇝ Δ′.

The lemma states that, for a unification problem 𝐶 starting

with the substitution context Δ1, the unification result Δ2 is

the most general solution, as for any other possible solution

Δ, we can establish some relation between Δ2 and Δ. The
reader might expect that Δ2 ⇝ Δ which, however, is not

10
That is, if [Δ1 ]𝜏1 ≡ [Δ1 ]𝜏2, then [Δ2 ]𝜏1 ≡ [Δ2 ]𝜏2, as [Δ2 ]𝜏1 =

[Δ2 ] ( [Δ1 ]𝜏1) = [Δ2 ] ( [Δ1 ]𝜏2) = [Δ2 ]𝜏2.
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true in general: during unification, we may allocate extra

fresh unification variables (such as in (LUtail)) to help solve

the constraint, which the solution context Δmay not contain.

Therefore, instead of Δ2 ⇝ Δ, we can find another solution

context Δ′
that both Δ2 and Δ extend to. This effectively

ensures that Δ2 is the most general unifier: suppose Δ2 is

not the most general unifier, then there exists at least one

unification variable that does not have to be solved or could

be solved differently, say𝛼 = Int ∈ Δ2. Thenwe canmake the

solution context Δ contain a different solution 𝛼 = String,
and now it is impossible to find a Δ′

that both Δ2 and Δ
extend to. Thus Δ2 must be the most general unifier.

Design Variants. While not having most general unifier

in certain cases is unsatisfactory, we do not find it a sig-

nificant limitation in practice
11
, largely because of the tail

check (Fig. 7) imposed in the system. Back to the problematic

example above:

(𝛼 : Int, 𝛽) ∼ (𝑙1 : Int, 𝑙2 : Int)

One may find it a bit strange to have 𝛼 in the unification

constraint, since 𝛼 does not appear in a tail position. Indeed,

consider the type of the following function:

𝑓 :: ∀(𝑎 : Label) (𝑏 : Row).{𝑎 : Int, 𝑏} → L𝑎M → Int
𝑓 𝑟 𝑙 = 𝑟 .𝑙

In this case, both 𝑎 and 𝑏 can be instantiated (to 𝛼 and 𝛽

respectively) as they both satisfy the tail check. Applying

𝑓 to a record of type {𝑙1 : Int, 𝑙2 : Int} will give us the

above equality constraint. However, note that the reason 𝑎

passes the tail check is because there is a singleton label L𝑎M
which is the second argument to the function. Therefore,

once the function is applied to a second argument, we will

know exactly how to solve 𝛼 , and thus 𝛽 . This is often the

case in practice — unification could get resolved once more

information is available.
12
Indeed, this is true for all examples

in the evaluation (§4).

As a design variant, we could follow Leijen [9] to have

the unification derive a set of most general unifiers, mak-

ing unification complete. That is, a unifier is not the most

general one in the usual sense, but a most general one up

to permutation of row fields. For example for the problem-

atic example, both of the two incompatible unifiers will be

returned. However, as discussed in [9], such an algorithm is

exponential in the number of polymorphic labels.

11
We also remark this is not uncommon in practical systems, including e.g.,

the type inference [18] and the kind inference algorithms [23] in GHC.

12
The tail check is not always helpful. For example, consider 𝑓 :: ∀𝑎 𝑏.{𝑎 :

Int, 𝑏 } → (L𝑎M → L𝑎M) → Int. In this case, 𝑎 and 𝑏 still pass the tail check,

but the second argument to 𝑓 could be a polymorphic identity function that

contains no useful information about 𝑎. Still, this is a contrived scenario

that we expect to be rare in practice. It is also possible to design a stricter

tail check to make sure each tail position is useful.

4 Evaluation
To motivate the development of this new flavor of row types,

we evaluate their capability, both in terms of the functions

that can be typed, and in terms of errors that can be caught

statically, over the Brown Benchmark for Tabular Types

(B2T2) [11]. Furthermore, an important part of the evaluation,

that we will stress for the last time now, is that the type

theory is arguably simple, as it is based purely on unification

and does not require the use of qualified or dependent types.

Throughout this section, we will use the usual facilities

found in most functional programming languages, such as

sum and product types. We adopt Haskell’s naming conven-

tion and writeMaybe for an optional type.

Since our presentation here focuses on the type system

features and not a concrete implementation, we do not report

on implementation details such as error messages, but focus

on the typeability. Similarly, we do not present example

implementations of most functions, as they are either fairly

trivial (see hcat) or would not resemble a real implementation

(joins might require hash tables for efficiency).

4.1 What is a Table?
First, we represent a table as a homogeneous array of records,

whose type we denote as [{𝑟 }], with 𝑟 being the row rep-

resenting the table schema. This satisfies the benchmark

requirements of tables being a typed, rectangular collection
of cells. Moreover, since labels are first-class, column names

are, as requested, string-like first-class values.
While we consider a table as a homogeneous array (of

records), the array type constructor is not our focus here. In

particular, we assume that the array type does not put any

limitations on the element type, and any valid record type can

be supplied (as is the case in many array languages such as

[6, 14]). Thus, we only use parts of the B2T2 benchmark that

deal with column manipulation for evaluation. Functions

that focus purely on modifying the rows of a data table

(subsampling, etc.) are mostly capabilities of the array type

and are unaffected by the row type
13
.

Our main deviation from the benchmark is in the relaxed

structure of the schema. Firstly, columns are unordered. We

consider this to be a fairly unimportant property of tables,

since most data processing does not actually rely on the or-

dering of columns. Secondly, column names are not unique.

This could lead to potential errors by accidentally introducing
shadowing between columns. But, we consider the usability

upside of not having to enforce distinctness at the type level

to balance the potential risks. After all, programmers already

have to deal with the risk of accidental shadowing in pretty

much all common programming languages. And, similar to

13
The list of omitted functions includes: emptyTable, addRows, vcat, val-

ues, nrows, getRow, selectRows, head, distinct, find, tfilter, update, select,
selectMany. We additionally omit tsort, sortByColumns, orderBy, count
and bin, as all of them can be implemented by composing column projec-

tions/insertions (that we discuss) with row rearrangements.
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variable shadowing in typed languages, it only goes unno-

ticed when the shadowing does not change the type of the

variable (or changes it in a compatible way, e.g. in systems

with subtyping).

4.2 Example Tables
B2T2 provides a collection of example tables. Since neither

the array type nor the record type constrain the column

types, all example tables can be successfully represented

and typed. We omit their definitions, but provide full type

signatures.

students :: [{name : String, age : Int, favColor : String}]
studentsMissing :: [

{name : String, age : Int, favColor : Maybe String}]
gradebookSeq :: [

{name : String, age : Int, quizzes : [Int], final : Int}]
gradebookTable :: [

{name : String, age : Int, final : Int,
quizzes : [{quiz : Int, grade : Int}]}

]

4.3 Expressible Table Manipulation Functions
In this section, we list the data manipulation functions pro-

posed in the benchmark that our system can successfully

assign types to. We group them into subcategories that have

similar behaviors and share similar challenges.

Most functions are presented with the same signatures as

in the benchmark. When we modify the signature, we attach

a subscript to the function name, e.g., almostOkmodified. We

discuss all the functions in the benchmark, here or in §4.5.

4.3.1 Column Manipulation Functions. We start with

functions that manipulate the columns of a data table inde-

pendently over its rows. These are implementable as fmap/zipWith
of a record-manipulating function.

Our type system can successfully assign type signatures

to almost all the functions in this category. However, due

to columns being unordered, the overloads of getColumn
and selectColumns that use integers or boolean masks as

selectors are inexpressible.

hcat :: ∀𝑟1 𝑟2 . [{𝑟1}] → [{𝑟2}] → [{𝑟1 | 𝑟2}]
getValue :: ∀𝑟 𝑙 𝑎. {𝑙 : 𝑎 | 𝑟 } → L𝑙M → 𝑎

getColumn :: ∀𝑟 𝑙 𝑎. [{𝑙 : 𝑎 | 𝑟 }] → L𝑙M → [𝑎]
selectColumns :: ∀𝑟1 𝑟2. [{𝑟1 | 𝑟2}] → ⟨𝑟1⟩ → [{𝑟1}]
dropColumn :: ∀𝑟 𝑙 𝑎. [{𝑙 : 𝑎 | 𝑟 }] → L𝑙M → [{𝑟 }]
dropColumns :: ∀𝑟1 𝑟2. [{𝑟1 | 𝑟2}] → ⟨𝑟1⟩ → [{𝑟2}]
buildColumn
:: ∀𝑟 𝑙 𝑎. [{𝑟 }] → L𝑙M → ({𝑟 } → 𝑎) → [{𝑙 : 𝑎 | 𝑟 }]

transformColumn
:: ∀𝑟 𝑙 𝑎. [{𝑙 : 𝑎 | 𝑟 }] → L𝑙M → (𝑎 → 𝑏) → [{𝑙 : 𝑏 | 𝑟 }]

One interesting case is the addColumn function. Because

columns are not distinct, it can be implemented in two ways:

one that adds the column at the front, and one that adds it in

the back. Of course, both are equivalent if the column name

does not appear in the table, but they do differ in shadowing

semantics when it does.

addColumnfront
:: ∀𝑟 𝑙 𝑎. [{𝑟 }] → L𝑙M → [𝑎] → [{𝑙 : 𝑎 | 𝑟 }]

addColumnback
:: ∀𝑟 𝑙 𝑎. [{𝑟 }] → L𝑙M → [𝑎] → [{𝑟 | 𝑙 : 𝑎}]

Another interesting case is the renameColumns func-

tion. In the benchmark specification, it renames a set of

columns, but in our type system it can only rename one col-

umn at a time (or any fixed statically known number). We

add a column subscript to denote functions that work on a

single column only. Luckily, the general variant can be re-

covered by composing multiple single-column applications.

For renameColumns, the single-column version has clearer

semantics too, since otherwise applying the name substitu-

tion in parallel or in sequence could lead to different results

if the domain and range of the substitution overlap.

renameColumnscolumn
:: ∀𝑟 𝑙1 𝑙2 𝑎. [{𝑙1 : 𝑎 | 𝑟 }] → L𝑙1M → L𝑙2M → [{𝑙2 : 𝑎 | 𝑟 }]

4.3.2 Undefined Values. We handle undefined values us-

ing explicit Maybe types, thus giving correct types to all

functions that manipulate optional values. Since the bench-

mark specification assumes that every single column of a

table can contain missing values, the dropna function re-

moves all rows in which any column does not have a value

specified. Since in our system columns are non-optional by

default, we present dropnacolumn, which operates on and

eliminates the optional from a single column.

completeCases
:: ∀𝑟 𝑙 𝑎. [{𝑙 : Maybe 𝑎 | 𝑟 }] → L𝑙M → [Bool]

dropnacolumn
:: ∀𝑟 𝑙 𝑎. [{𝑙 : Maybe 𝑎 | 𝑟 }] → L𝑙M → [{𝑙 : 𝑎 | 𝑟 }]

fillna
:: ∀𝑟 𝑙 𝑎. [{𝑙 : Maybe 𝑎 | 𝑟 }] → L𝑙M → 𝑎 → [{𝑙 : 𝑎 | 𝑟 }]

4.3.3 Aggregations. Aggregations are some of the most

important functions in data analysis, since they allow the

modeller to synthesize a fixed size answer from a large body

of data. Here, we analyze the aggregations listed in the B2T2

benchmark.

The pivotTable function partitions rows into groups and

summarizes each group with an aggregation function. We

present its one-column version, as well as another one that

replaces a sequence of per-column reducers with a reduction

function from an array of records to a single record. This

should be as capable as the original pivotTable.
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groupBy
:: ∀𝑟 𝑟2 𝑘 𝑣 . [{𝑟 }] → ({𝑟 } → 𝑘) → ({𝑟 } → 𝑣) →

(𝑘 → [𝑣] → {𝑟2}) → [{𝑟2}]
groupByRetentive
:: ∀𝑟 𝑙 𝑎. [{𝑙 : 𝑎 | 𝑟 }] → L𝑙M →

[{key : 𝑎, groups : [{𝑙 : 𝑎 | 𝑟 }]}]
groupBySubtractive
:: ∀𝑟 𝑙 𝑎. [{𝑙 : 𝑎 | 𝑟 }] → L𝑙M →

[{key : 𝑎, groups : [{𝑟 }]}]
pivotTablecolumn

:: ∀𝑟 𝑙1 𝑙2 𝑘 𝑎 𝑏. [{𝑘 | 𝑙1 : 𝑎 | 𝑟 }] → ⟨𝑘⟩ → L𝑙1M →
L𝑙2M → ([𝑎] → 𝑏) → [{𝑘 | 𝑙2 : 𝑏}]

pivotTablerecord
:: ∀𝑟1 𝑟2 𝑘. [{𝑘 | 𝑟1}] → ⟨𝑘⟩ → ([{𝑟1}] → {𝑟2}) →

[{𝑘 | 𝑟2}]

4.3.4 Joins. Another important class of tablemanipulation

functions are joins, which collate the related data points from

multiple tables into a single one. As before, our system can

successfully assign types to most join-related functions, with

the most interesting case being leftJoin. As specified in the

benchmark, it assumes that all columns are nullable. Since

this is not an assumption that is possible to express in our

system, we suggest leftJoinmaybe that adds the whole record

of columns of the second table as an optional value, instead of

concatenating both record types. Then, handling of missing

cases in the resulting table can be handled explicitly, and

once done the non-optional record type can be concatenated

into the left table columns.

crossJoin :: ∀𝑟1 𝑟2. [{𝑟1}] → [{𝑟2}] → [{𝑟1 | 𝑟2}]
leftJoinmaybe
:: ∀𝑟1 𝑟2 𝑘. [{𝑘 | 𝑟1}] → [{𝑘 | 𝑟2}] → ⟨𝑘⟩ →

[{𝑘 | 𝑟1 | joined : Maybe {𝑟2}}]
groupJoin
:: ∀𝑟1 𝑟2 𝑟3 𝑘. [{𝑟1}] → [{𝑟2}] →

({𝑟1} → 𝑘) → ({𝑟2} → 𝑘) →
({𝑟1} → [{𝑟2}] → {𝑟3}) → [{𝑟3}]

join
:: ∀𝑟1 𝑟2 𝑟3 𝑘. [{𝑟1}] → [{𝑟2}] →

({𝑟1} → 𝑘) → ({𝑟2} → 𝑘) →
({𝑟1} → {𝑟2} → {𝑟3}) → [{𝑟3}]

4.3.5 Flattening. flattencolumn flattens a single column at

a time. As in the case of renameColumns flattening a number

of columns simultaneously is equivalent to flattening them

one by one, so little expressiveness is lost.

flattencolumn :: ∀𝑟 𝑙 𝑎. [{𝑙 : [𝑎] | 𝑟 }] → L𝑙M → [{𝑙 : 𝑎 | 𝑟 }]

4.4 Static Checks and Errors Caught
Our system requires the specification of the table schema

statically and uses it to verify the construction of a table,

ruling out all of the malformed tables listed in the benchmark.

Additionally, our type system is capable of verifying that

columns are accessed correctly (missing names are rejected)

and used according to the types listed in their schema. Both

of those are sufficient to catch pretty much all of the example

errors listed in the benchmark
14
.

Most of the invariants used to annotate benchmark func-

tions are proven statically, except for the array length equal-

ity checks, which we leave out of scope. Verification of those

depends on the ability to model array length at the type level

rather than on the record calculus, and is possible in many

array languages (for example in [6, 14]).

We stress the value of types for illuminating the interme-

diate steps in the data transformations, for example, when

columns are added, how column types change, etc. Often

just by looking at the type signatures of the table interface,

one can easily deduce the semantics of each function (i.e.,

theorems for free [19]). This is especially powerful when used

in conjunction with proper development environments that,

e.g., allow the programmer to query types on hover over

identifiers.

4.5 Negative Results
Here, we present an analysis complementary to the previous

sections, by listing all the benchmark functions that we have

found to be difficult to assign a type or implementation to.

We treat this list as a set of open problems for applying record

types to data science programming, and hope to resolve them

in the future, and for now only sketch potential solutions if

known to us.

4.5.1 Table Pivots. The two functions we have found to

be the most difficult to represent in our system are pivot-
Longer and pivotWider. They are each other’s inverse, and

convert between the standard “wide” table format to a “long”

format, where a number of same-typed columns are replaced

by two columns instead: one for the column name, the other

for its value.

There are a number of issues that make those two func-

tions difficult to represent. pivotLonger (the “wide” to “long”

conversion) requires that all flattened columns are of the

same type, which cannot be enforced on row variables in

the current system. It additionally requires extra run-time

reflection facilities to be able to extract column names (dis-

cussed further in §4.5.3). Finally, the order in which the new

rows are to be produced is unclear, since table columns are

unordered in our system. In the other direction, the main

two difficulties with pivotWider are that it needs to construct
records from unstructured column names and allow miss-

ing values in any of the flattened columns, since nothing

guarantees that all their values are present in the long table.

14
The list of errors caught is as follows: missingSchema, missingRow, miss-

ingCell, swappedColumns, schemaTooShort, schemaTooLong, midFinal,
blackAndWhite, pieCount, brownGetAcne, favoriteColor, brownJellybeans
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4.5.2 Typeclasses for Records. Many of the benchmark

functions depend on records supporting a number of basic

operations, such as equality checking (unique, leftJoin, . . . )
or having a hash function.

In many functional languages, such requirements are en-

coded as typeclass constraints. Try as we might, we have

not been able to find a satisfactory way to integrate row-

polymorphic records with existing typeclass systems. The

main difficulty we encountered is that while record types

are usually defined inductively, a single record type allows

multiple equivalent inductive definitions. This means that

typeclass constraint resolution for records is actually a non-

deterministic procedure. There are typeclasses for which the

order of derivation wouldn’t change the eventual result. For

example, when checking record equality (Eq in Haskell), it

does not matter in which order we reduce the per-field equal-

ity decisions, because the (∧, True) monoid is commutative.

But, it is not straightforward for a compiler to prove this,

and therefore be confident in typeclass coherence.

One can extract insight from the previous paragraph: we

likely want to exploit the programmer’s knowledge about

certain algebraic structures being commutative monoids to

ensure consistency over record type equivalence. But, we

have not (yet) found a satisfactory way to express that in a

real language, and leave this as future work.

4.5.3 SchemaReflection. Since our system lacks support

for run-time reflection over table (or record) schemata, it is

difficult to implement functions such as header. Another
similar example is ncols, though support for typeclasses for

records could help.

While out of scope for the B2T2 benchmark, this also

makes record I/O difficult. It is convenient to order columns

for printing, but without a more extensive constraint system

there is no way to take a list of labels that are known to

correspond to fields of a record/table.

5 Related Work
Record calculi. Following Rémy [17], we categorize record

calculi into two groups based on how how record concate-

nation is supported: the strict group does not allow dupli-

cate labels, while the free group does. In the strict group,

record concatenation is symmetric (i.e., {𝑟1 | 𝑟2} ≡ {𝑟2 | 𝑟1})
[2, 5] where the type system must check that 𝑟1 and 𝑟2 are

disjoint, often in a form of bounded quantification or quali-

fied types. In the free group, record concatenation has been

given different semantics: it can be asymmetric [1, 20] where
concatenation overwrites a field if it is already present, or

scoped (following [10]) where concatenation shadows exist-

ing labels, or recursive [13, 22] where common fields will

recursively concatenate their values. Morris and McKinna

[12] give a general account of record concatenation abstract-

ing the interpretation of records, realized via qualified types.

As we have seen, 𝜆 ⟨⟩
supports scoped record concatenation,

with a lightweight type system compared tomost existing cal-

culi, since 𝜆 ⟨⟩
does not depend on qualified types or bounded

polymorphism. However, it also means that certain programs

with qualified type constraints cannot be expressed in 𝜆 ⟨⟩
.

In particular, we can relatively easily express positive infor-
mation, but not forms of negative information. That is, we

could write 𝑟 as {𝑙 : 𝑎 | 𝜌} to express the constraint "a record
𝑟 has a label 𝑙". However, there is no direct way to say "a

record 𝑟 lacks a label 𝑙". As such, 𝜆 ⟨⟩
alone cannot enforce

distinct labels, or the "extend or overwrite" operator [20]

that extends a record with a label, or overwrites its field if

the label already exists in the record.

First-class labels in [9] are realized via singleton types,

while they can also be naturally supported in record calculi

based on dependent types such as in [2]. Following [9], 𝜆 ⟨⟩

supports first-class labels using singleton types, and further

generalizes the system to include first-class rows.

Tabular types. Tables are a widely used format for stor-

ing data. Lu et al. [11] proposed the B2T2 benchmark, whose

purpose is to serve as "a focal point for research on type

systems for tabular programming". Using record types to

express tabular types is not new. Indeed, all record calculi

discussed above can express some form of tabular types. Our

evaluation (§4) shows that while relatively lightweight, 𝜆 ⟨⟩

can express a significant number of functions in the bench-

mark using its unique combination of features. Recently, the

dependently typed language Idris has been used to evaluate

dependently-typed tables on B2T2 [21]. With full depen-

dent types, their system is effectively more expressive, but

arguably also more complex.

6 Conclusion
We have described a novel record calculus, that brings many

previously described calculi together in a coherent way. The

resulting type system is remarkably lightweight, as it re-

quires no support for qualified types and only slightly ex-

tends well-established type checking and inference proce-

dures. Finally, we show that the new record calculus can

be used to successfully analyze the transformations of table

schema in programs manipulating tabular data, as measured

by the B2T2 benchmark.

While we do not provide a concrete implementation for

our system yet, we have explored integrating it into Dex [14].

Beyond that, we hope that this document can also serve as

an inspiration for other programming language designers

wanting to improve data science applications.
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A Type Safety
Theorem 3.1 (Preservation). If Γ ⊢ 𝑒 : 𝜎 , and 𝑒 ↦−→ 𝑒 ′, then
Γ ⊢ 𝑒 ′ : 𝜎 .

Proof. By induction on the evaluation rule. Most rules are

straightforward. We discuss below the rules specific to rows.

• rule (prj). Since the rule checks that we get the first field
for 𝑙𝑐𝑖 , it’s guaranteed that we will get 𝜏𝑖 when the type

of {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑛 = 𝑣𝑛} is {𝑙𝑐𝑖 : 𝜏𝑖 | 𝜌}.
• rule (concat). We can derive that the type {𝑙𝑐1 : 𝜏1, . . . , 𝑙𝑐𝑖 :
𝜏𝑖 | 𝑙𝑐 𝑗 : 𝜏 𝑗 , . . . , 𝑙𝑐𝑛 : 𝜏𝑛} ≡ {𝑙𝑐1 : 𝜏1, . . . , 𝑙𝑐𝑖 : 𝜏𝑖 , 𝑙𝑐 𝑗 :

𝜏 𝑗 , . . . , 𝑙𝑐𝑛 : 𝜏𝑛} following Assoc.

• rule (concatr ).We can derive that the type ⟨𝑙𝑐1 : 𝜏1, . . . , 𝑙𝑐𝑖 :
𝜏𝑖 | 𝑙𝑐 𝑗 : 𝜏 𝑗 , . . . , 𝑙𝑐𝑛 : 𝜏𝑛⟩ ≡ ⟨𝑙𝑐1 : 𝜏1, . . . , 𝑙𝑐𝑖 : 𝜏𝑖 , 𝑙𝑐 𝑗 :

𝜏 𝑗 , . . . , 𝑙𝑐𝑛 : 𝜏𝑛⟩ following Assoc.
• rule (del1). We know that {𝜌} = {Empty | 𝜌} by empL.

So the goal follows.

• rule (del2). In this case we know that {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑛 =

𝑣𝑛} has type {𝑙𝑐1 : 𝜏1, . . . , 𝑙𝑐𝑛 : 𝜏𝑛} ≡ {𝑙𝑐𝑖 : 𝜏 | 𝜌 | 𝜌 ′},
and ⟨𝑙𝑐𝑖 : 𝜏 | 𝑣⟩ has type ⟨𝑙𝑐𝑖 : 𝜏 | 𝜌⟩ where 𝑣 : ⟨𝜌⟩. Thus
{𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑛 = 𝑣𝑛}\⟨𝑙𝑐𝑖 : 𝜏𝑖 | 𝑣⟩ has type {𝜌 ′}.
Since the rule checks that we remove the first field for 𝑙𝑐𝑖 ,

we know that {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑖−1 = 𝑣𝑖−1, 𝑙𝑐𝑖+1 = 𝑣𝑖+1, . . . , 𝑙𝑐𝑛 =

𝑣𝑛} is of type {𝑙𝑐1 : 𝜏1, . . . , 𝑙𝑐𝑖−1 : 𝜏𝑖−1, 𝑙𝑐𝑖+1 : 𝜏𝑖+1, . . . 𝑙𝑐𝑛 :

𝜏𝑛}, namely {𝜌 | 𝜌 ′}.
By the typing rule, we know that {𝑙𝑐1 : 𝜏1, . . . , 𝑙𝑐𝑖−1 :

𝜏𝑖−1, 𝑙𝑐𝑖+1 : 𝜏𝑖+1, . . . 𝑙𝑐𝑛 : 𝜏𝑛}\𝑣 has type {𝜌 ′}.
□
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Theorem 3.2 (Progress). If • ⊢ 𝑒 : 𝜎 , then either 𝑒 is a value,
or there exists 𝑒 ′ such that 𝑒 ↦−→ 𝑒 ′.

Proof. We first generalize the theorem statement, letting the

context be non-empty as long as it only consists of type

variables: if Γ ⊢ 𝑒 : 𝜎 , where Γ has only type variables, then

either 𝑒 is a value, or there exists 𝑒 ′ such that 𝑒 ↦−→ 𝑒 ′.
Now we proceed by induction on the typing rule. Most

cases are straightforward. The purpose of the above general-

ization step to make the case Gen go through, and it won’t

affect any other cases.

Below we discuss the rules specific to rows.

• Empty. {} is a value.
• Rcd. {𝑒1 = 𝑒2}. If 𝑒1 is not a value, then by I.H., 𝑒1 ↦−→ 𝑒3,

namely 𝑒1 = 𝐸 [𝑒 ′
1
], and 𝑒 ′

1
=⇒ 𝑒 ′

3
and 𝐸 [𝑒 ′

1
] ↦−→ 𝐸 [𝑒 ′

3
].

Therefore ({𝐸 = 𝑒2}) [𝑒 ′1] ↦−→ ({𝐸 = 𝑒2}) [𝑒 ′3].
If 𝑒1 is a value, then by typing it must be 𝑒1 = 𝑙𝑐 .

If 𝑒2 is not a value, then 𝑒2 reduces.

If 𝑒2 is also a value 𝑣 , then {𝑙 = 𝑣} is also a value.

• Concat for {𝑒1 | 𝑒2}. The case is similar to the above,

except that when 𝑒1 and 𝑒2 are values, because of their

types we know that 𝑒1 = {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑖 = 𝑣𝑖 }, and
𝑒2 = {𝑙𝑐 𝑗 = 𝑣 𝑗 , . . . , 𝑙𝑐𝑛 = 𝑣𝑛}, so by (concat) we have

{𝑒1 | 𝑒2} ↦−→ {𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑖 = 𝑣𝑖 , 𝑙𝑐 𝑗 = 𝑣 𝑗 , . . . , 𝑙𝑐𝑛 = 𝑣𝑛}.
• Lab. 𝑙𝑐 is a value.

• Prj for 𝑒1.𝑒2. The reasoning is similar to the case for Rcd.

When both 𝑒1 and 𝑒2 are values, then it must be 𝑒1 =

{𝑙𝑐1 = 𝑣1, . . . , 𝑙𝑐𝑛 = 𝑣𝑛} and 𝑒2 = 𝑙𝑐𝑖 for some 1 ≤ 𝑖 ≤ 𝑛. So

we reduce following (prj).
• EmptyR. ⟨⟩ is a value.
• Row for ⟨𝑒 : 𝜏⟩. If 𝑒 reduces, then we can reason similarly

to the case for Rcd. If 𝑒 is a value, then it must be 𝑙𝑐 , and

⟨𝑙𝑐 : 𝜏⟩ is a value.
• ConcatR. Similar to the case for Concat, except for the

evaluation step we use rule (concatr ).
• PrjR. Simlar to the case for Prj except for the evaluation

step we use the rule (prjr1) or (prjr2) according to whether
the row is empty.

• Del for 𝑒1\𝑒2. Again the reasoning is similar to case Con-

cat. When both 𝑒1 and 𝑒2 are values, it must be that

𝑒1 = {𝑙𝑐1 = 𝑣1, . . . 𝑙𝑐𝑛 = 𝑣𝑛}, and 𝑒2 is a row value.

If 𝑒2 = ⟨⟩, then following (del1) we have 𝑒1\𝑒2 ↦−→ 𝑒1.

If 𝑒2 = ⟨⟨𝑙𝑐𝑖 : 𝜏𝑖⟩ | 𝑣⟩, then 𝑒1\𝑒2 reduces following (del2).
• Inst. The goal follows from I.H..

• Gen. The goal follows from I.H.. □

B Unification Soundness
B.1 Context Extension
Lemma B.1 (Context Extension Transitivity). If Δ1 ⇝ Δ2,
and Δ2 ⇝ Δ3, then Δ1 ⇝ Δ3.

Proof. We have:

[Δ3]𝜏 ≡ [Δ3] ( [Δ2]𝜏) (Δ2 ⇝ Δ3)
≡ [Δ3] ( [Δ2] ( [Δ1]𝜏)) (Δ1 ⇝ Δ2)
≡ [Δ3] ( [Δ1]𝜏)) (Δ2 ⇝ Δ3)

□

Lemma 3.6 (Unification extends context). If Δ1 ⊢ 𝐶1 =⇒
Δ2 ⊢ 𝐶2, then Δ1 ⇝ Δ2.

Proof. By induction on =⇒. Most cases follow directly from

I.H.. The two interesting cases are:

• (Tsolve). In this case we have Δ2 being Δ1 ◦𝛼 : 𝜅 = [Δ1]𝜏 ,
and our goal is to prove [Δ2]𝜏 ′ ≡ [Δ2] ( [Δ1]𝜏 ′).
We can do a case-analysis on 𝜏 ′, and the only interesting

case is when 𝜏 ′ = 𝛼 . Since we know 𝛼 : 𝜅 ∈ Δ1, we know

that [Δ1]𝛼 = 𝛼 . Therefore [Δ2] ( [Δ1]𝛼) = [Δ2]𝛼.
• (Rfield). For this one we can prove a similar lemma for

lookup rules; namely, if Δ1 ⊢ 𝜌
𝑙𝑐
↩→ 𝜌2 ⊣ Δ2, then Δ1 ⇝

Δ2.

We do induction on

𝑙𝑐
↩→, and the only interesting case is

(LUtail), which is similar to (Tsolve) above. □

B.2 Solution Context
LemmaB.2 (Context Extension Preserves Solution Context).
If Δ1 |= 𝐶 , and Δ1 ⇝ Δ2, then Δ2 |= 𝐶 .

Proof. For any 𝜏1 ∼ 𝜏2 ∈ 𝐶 , we have:

[Δ2]𝜏1 ≡ [Δ2] ( [Δ1]𝜏1) (Δ1 ⇝ Δ2)
≡ [Δ2] ( [Δ1]𝜏2) (Δ1 |= 𝐶)
≡ [Δ2]𝜏2 (Δ1 ⇝ Δ2)

Similarly for rows and labels in 𝐶 . □

LemmaB.3 (Constraint Solving Preserves Solution Context).
If Δ1 ⊢ 𝐶1 =⇒ Δ2 ⊢ 𝐶2 and Δ2 ⇝ Δ, then:
1. if Δ |= 𝐶2 then Δ |= 𝐶1; and
2. if Δ |= 𝐶1 then Δ |= 𝐶2.

Proof. By Lemma 3.6, we can infer that Δ1 ⇝ Δ2. So by

Lemma B.1, we also have Δ1 ⇝ Δ.
(1) Since Δ |= 𝐶2, we know that for all 𝜏1 ∼ 𝜏2 ∈ 𝐶2, we

have [Δ]𝜏1 ≡ [Δ]𝜏2.
By induction on =⇒. Most cases follow directly. We dis-

cuss the only interesting cases below.

• (conj). We have Δ |= 𝐶 ′
1
∧ 𝐶2. By I.H., we have Δ |= 𝐶1.

Threfore Δ |= 𝐶1 ∧𝐶2.

• (Tapp). We have Δ |= 𝜏1 ∼ 𝜏3∧𝜏2 ∼ 𝜏4. Therefore [Δ]𝜏1 ≡
[Δ]𝜏3, and [Δ]𝜏2 ≡ [Δ]𝜏4. Thus [Δ] (𝜏1 𝜏2) ≡ [Δ] (𝜏3 𝜏4).
All other congruent rules are similar.

• (Tsolved). We have [Δ]𝜏 ′ ≡ [Δ]𝜏 . Therefore [Δ]𝛼 ≡
[Δ] ( [Δ1]𝛼) = [Δ]𝜏 ′ ≡ [Δ]𝜏 . All other solved rules are

similar.
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• (Tsolve). We have [Δ]𝛼 ≡ [Δ] ( [Δ2]𝛼) = [Δ] ( [Δ1]𝜏) ≡
[Δ]𝜏 . All other solve rules are similar.

• (Rfield). For this case we need to first prove that: if Δ1 ⊢
𝜌1

𝑙𝑐
↩→ 𝜌2 ⊣ Δ2, then [Δ2]𝜌2 = [Δ2]𝜌1. This follows di-

rectly by induction on

𝑙𝑐
↩→.

Thus,

[Δ] (𝑙𝑐 : 𝜏, 𝜌1) = 𝑙𝑐 : [Δ]𝜏, [Δ]𝜌1
≡ 𝑙𝑐 : [Δ]𝜏 ′, [Δ]𝜌 ′

2
= [Δ] (𝑙𝑐 : 𝜏 ′, 𝜌 ′

2
)

= [Δ] ( [Δ2] (𝑙𝑐 : 𝜏 ′, 𝜌 ′
2
)) = [Δ] ( [Δ2]𝜌2)

≡ [Δ]𝜌2
(2) Since Δ |= 𝐶1, we know that for all 𝜏1 ∼ 𝜏2 ∈ 𝐶1, we

have [Δ]𝜏1 ≡ [Δ]𝜏2.
By induction on =⇒. Most cases follow directly. We dis-

cuss the only interesting cases below.

• (conj). We have Δ |= 𝐶1 ∧ 𝐶2. By I.H., we have Δ |= 𝐶 ′
1
.

Therefore Δ |= 𝐶 ′
1
∧𝐶2.

• (Tapp). We have Δ |= 𝜏1 𝜏2 ∼ 𝜏3 𝜏4 Therefore [Δ] (𝜏1 𝜏2) ≡
[Δ] (𝜏3 𝜏4). Thus [Δ]𝜏1 ≡ [Δ]𝜏2. and [Δ]𝜏2 ≡ [Δ]𝜏4. All
other congruent rules are similar.

• (Tsolved). We have [Δ]𝛼 ≡ [Δ]𝜏 . Therefore [Δ]𝜏 ′ ≡
[Δ] ( [Δ1]𝜏 ′) = [Δ] ( [Δ1]𝛼) = [Δ] (𝛼) ≡ [Δ]𝜏 . All other
solved rules are similar.

• (Tsolve). Δ |= ⊤ trivially. All other solve rules are similar.

• (Rfield). We have proven in the previous (Rfield) case
that: if Δ1 ⊢ 𝜌1

𝑙𝑐
↩→ 𝜌2 ⊣ Δ2, then [Δ2]𝜌2 ≡ [Δ2]𝜌1.

Thus,

𝑙𝑐 : [Δ]𝜏, [Δ]𝜌1
= [Δ] (𝑙𝑐 : 𝜏, 𝜌1) ≡ [Δ]𝜌2
≡ [Δ] ( [Δ2]𝜌2)
≡ [Δ] ( [Δ2] (𝑙𝑐 : 𝜏 ′, 𝜌 ′

2
))

= 𝑙𝑐 : [Δ] ( [Δ2]𝜏 ′), [Δ] ( [Δ2]𝜌 ′
2
)

= 𝑙𝑐 : [Δ]𝜏 ′, [Δ]𝜌 ′
2

Thus [Δ]𝜏 ≡ [Δ]𝜏 ′ and [Δ]𝜌1 ≡ [Δ]𝜌 ′
2
. □

B.3 Unification Soundness
Theorem 3.4 (Unification Soundness). If Δ1 ⊢ 𝐶 =⇒∗ Δ2 ⊢
⊤, then Δ2 |= 𝐶 .

Proof. We know Δ2 |= ⊤ trivially. By Lemma B.3, we deduce

that Δ2 |= 𝐶 . □

C Most General Unifier
Lemma C.1 (Constraint Solving Preserves the Most General

Unifier). If Δ1 ⇝ Δ such that Δ |= 𝐶1, and Δ1 ⊢ 𝐶1 =⇒ Δ2 ⊢
𝐶2, then there exists Δ′ such that Δ2 ⇝ Δ′ and Δ⇝ Δ′.

Proof. By induction on the derivation of Δ1 ⊢ 𝐶1 =⇒ Δ2 ⊢ 𝐶2.

Most cases follow directly. Belowwe discuss a few interesting

cases.

• (Tsolve). We are given Δ1 ⇝ Δ and Δ |= 𝛼 ∼ 𝜏 .

We know Δ2 = (Δ1◦𝛼 : 𝜅 = [Δ1]𝜏), and we want to prove
that there exists Δ′

such that Δ⇝ Δ′
and Δ2 ⇝ Δ′

.

Let Δ′
be Δ. Now we need to prove [Δ]𝜏 ′ ≡ [Δ] ( [Δ2]𝜏 ′)

for all 𝜏 ′ (similarly for 𝜌 and ℓ).

We do induction on 𝜏 ′. Most cases follow by I.H.. The

only interesting case is when 𝜏 ′ = 𝛼 .

[Δ]𝛼
≡ [Δ]𝜏 (Δ |= 𝛼 ∼ 𝜏)

≡ [Δ] ( [Δ1]𝜏) (Δ1 ⇝ Δ)
= [Δ] ( [Δ2]𝛼) (Δ2 = (Δ1 ◦ 𝛼 : 𝜅 = [Δ1]𝜏))

Therefore, Δ2 ⇝ Δ.
• (Rfield). If Δ1 = Δ2, then the goal follows directly.

However, if Δ1 ≠ Δ2, then it must be Δ2 = Δ1 ◦𝛼 : Row =

(𝑙𝑐 : 𝛽,𝛾), 𝛽 : ★, 𝛾 : Row.
We first prove that (*): if Δ1 ⇝ Δ, and Δ |= 𝜌1 ∼ 𝜌2 and

Δ1 ⊢ 𝜌1
𝑙𝑐
↩→ 𝜌2 ⊣ Δ2, then Δ2 ⇝ Δ.

We do induction on

𝑙𝑐
↩→ and most cases follow directly.

The case for (LUtail) is simiar to (Tsolve) above.
Let Δ′

be Δ, 𝛽 : ★ = [Δ]𝜏,𝛾 : Row = [Δ]𝜌1. Therefore
Δ⇝ Δ′

. Therefore by Lemma B.1, Δ1 ⇝ Δ′
.

Now we show that

[Δ′] ( [Δ1]𝜌2)
≡ [Δ′] ( [Δ] ( [Δ1]𝜌2)) (Δ⇝ Δ′

)

≡ [Δ′] ( [Δ]𝜌2) (Δ1 ⇝ Δ)
≡ [Δ′] ( [Δ] (𝑙𝑐 : 𝜏, 𝜌1)) (Δ |= 𝑙𝑐 : 𝜏, 𝜌1 ∼ 𝜌2)

≡ [Δ′] (𝑙𝑐 : 𝜏, 𝜌1) (Δ⇝ Δ′
)

= 𝑙𝑐 : [Δ′]𝜏, [Δ′]𝜌1
= 𝑙𝑐 : [Δ]𝜏, [Δ]𝜌1 (𝛽,𝛾 are fresh)

= 𝑙𝑐 : [Δ′]𝛽, [Δ′]𝛾 (definition of Δ′
)

= [Δ′] (𝑙𝑐 : 𝛽,𝛾)
Therefore Δ′ |= [Δ1]𝜌2 ∼ (𝑙𝑐 : 𝛽,𝛾).
Therefore by the lemma (*) we proved above we have

Δ2 ⇝ Δ′
. □

Theorem 3.7 (Unification Produces the Most General Uni-

fier). IfΔ1 ⊢ 𝐶 =⇒∗ Δ2 ⊢ ⊤, then for anyΔ such thatΔ1 ⇝ Δ
and Δ |= 𝐶 , there exists Δ′ such that Δ2 ⇝ Δ′ and Δ⇝ Δ′.

Proof. We do induction on =⇒∗
.

• The base case is Δ1 ⊢ 𝐶 =⇒ Δ1 ⊢ 𝐶 . Let Δ′
be Δ and we

are done.

• The inductive case is Δ1 ⊢ 𝐶 =⇒ 𝐶 ′ ⊣ Δ′
1
and Δ′

1
⊢

𝐶 ′ =⇒∗ Δ2 ⊢ ⊤.
We are given Δ1 ⇝ Δ, and Δ |= 𝐶 . By Lemma C.1, we

know that there exists Δ′
such that Δ′

1
⇝ Δ′

, and Δ⇝
Δ′
.

By Lemma B.3, we have Δ |= 𝐶 ′
. By Lemma B.2, we have

Δ′ |= 𝐶 .

By I.H., there exists Δ′′
such that Δ′⇝ Δ′′

and Δ2 ⇝ Δ′′
.

By Lemma B.1, we have Δ⇝ Δ′′
.

Therefore Δ′′
is what we need. □
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